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Abstract—Large-scale code reuse significantly reduces both development costs and time. However, the massive share of third-party code
in software projects poses new challenges, especially in terms of maintenance and security. In this paper, we propose a novel technique
to specialize dependencies of Java projects, based on their actual usage. Given a project and its dependencies, we systematically identify
the subset of each dependency that is necessary to build the project, and we remove the rest. As a result of this process, we package
each specialized dependency in a JAR file. Then, we generate specialized dependency trees where the original dependencies are
replaced by the specialized versions. This allows building the project with significantly less third-party code than the original. As a result,
the specialized dependencies become a first-class concept in the software supply chain, rather than a transient artifact in an optimizing
compiler toolchain. We implement our technique in a tool called DEPTRIM, which we evaluate with 30 notable open-source Java projects.
DEPTRIM specializes a total of 343 (86.6 %) dependencies across these projects, and successfully rebuilds each project with a specialized
dependency tree. Moreover, through this specialization, DEPTRIM removes a total of 57,444 (42.2 %) classes from the dependencies,
reducing the ratio of dependency classes to project classes from 8.7 x in the original projects to 5.0 x after specialization.

These novel results indicate that dependency specialization significantly reduces the share of third-party code in Java projects.

Index Terms—Software specialization, Software debloating, Maven, Software supply chain, Dependency trees
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1 INTRODUCTION

OFTWARE projects are developed by assembling new fea-
S tures and components provided by reusable third-party
libraries. Software reuse at large is a known best practice in
software engineering [1]. Its adoption has rocketed in the last
decade, thanks to the rapid growth of repositories of reusable
packages, along with the development of mature package
managers [2]. These package managers let developers declare
a list of third-party libraries that they want to reuse in their
projects. The libraries declared by developers form the set of
direct dependencies of the project. Then, at build time, the
package manager fetches the code of these libraries, as well
as the code of transitive dependencies, declared by the direct
dependencies. This forms a dependency tree that the build
system bundles with the project code into a package that can
be released and deployed.

The large-scale adoption of software reuse [3] is beneficial
for software companies as it reduces their delivery times and
costs [4]. Meanwhile, reuse today has reached a point where
most of the code in a released application actually originates
from third-party dependencies [5]. This massive presence of
third-party code in application binaries has turned software
reuse into a double-edged sword [6]. Recent studies have
highlighted the new challenges that third-party dependencies
pose for maintenance [7], [8], performance [9], code quality
[10], and security [11], [12].

Several techniques have emerged to address the chal-
lenges of dependency management. The first type of ap-
proach consists of supporting developers in maintaining a
correct and secure dependency tree. Software composition
analysis [13] and software bots [14] suggest dependency

updates and warn about potential vulnerabilities among
dependencies. Integrity-checking tools aim at preventing
packaging a dependency with code that may have been
tempered with. For example, the Go community maintains
a global database for authenticating module content [15]
and sigstore facilitates the procedure of signing third-party
libraries [16]. A second type of approach to maintain healthy
dependency trees consists in reducing it, removing the
dependencies that are completely unused. Examples of such
techniques include package debloating for Linux applications
[17] dependency debloating or shading for Java applications
[18], or tree shaking for JavaScript applications [19].

In this paper, we aim at advancing the state-of-the-art
of dependency tree reduction with a novel technique that
specializes dependency trees to the needs of an application.

DEPTRIM analyses the bytecode of a Java project, as well
as all its direct and transitive third-party dependencies. First,
it removes the dependencies that are completely bloated, and
identifies the non-bloated ones. Next, for each non-bloated
dependency, DEPTRIM builds a static call graph through all
non-bloated dependencies, to identify the classes for which
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at least one member is reachable from the project. DEPTRIM
then removes the unused classes and produces one special-
ized jar for each dependency. Finally, DEPTRIM modifies
the dependency tree of the project, replacing the original
dependencies with the specialized versions in the build file.
The output of DEPTRIM is a specialized dependency tree of
the project, with the maximum number of specialized depen-
dencies such that the project builds correctly, i.e., the project
correctly compiles and all its tests pass, providing evidence
that the expected behavior of the project, as specified within
the test suite, is preserved. DEPTRIM simplifies the reuse of
specialized dependencies by generating reusable JAR files,
which can be readily deployed to external repositories and
can be documented and versioned as part of the project’s
software bill of material [21].

We demonstrate the capabilities of DEPTRIM by perform-
ing a study with 30 mature open-source Java projects that
are configured to build with MAVEN. DEPTRIM successfully
analyzes 135,343 classes across the 467 dependencies of the
projects. For 14 projects, it generates a dependency tree in
which all compile-scope dependencies are specialized. For
the 16 other projects, DEPTRIM produces a dependency tree
that includes all dependencies that can be specialized without
breaking the build, while keeping the others intact. In total,
DEPTRIM removes 51,631 (39.9 %) unused classes from 343
third-party dependencies. The specialized dependencies are
deployed locally, as reusable JAR files. For each project,
DEPTRIM produces a specialized version of the pom.xml
file that replaces original dependencies with specialized ones,
such that the project still correctly builds.

In summary, our contributions are as follows:

o A fully automated technique to specialize the depen-
dency tree of Java projects at build time.

e A tool called DEPTRIM, which automatically builds
MAVEN projects with the largest subset of specialized
dependencies.

e Novel observations about the ratio of dependency
classes compared to project classes collected on 30
mature open-source projects at three stages of the
dependency tree: original, debloated, and specialized.

o Empirical evidence that DEPTRIM successfully special-
izes the dependency tree of 14 projects in its entirety,
and 16 partially, reducing the number of third-party
classes by (42.2 %). The project classes to dependency
classes ratio is divided by two, from 8.7 x to 5.0 x.

2 BACKGROUND

In this section, we introduce the existing techniques to
reduce the amount of dependency code. Then we present
the opportunities for dependency specialization, for Java
projects.

2.1

In this work, we consider a software project as a collection of
Java source code files and configuration files organized to be
built with MAVEN [22]. MAVEN is a build automation tool
for Java-based projects. It is primarily used for managing
the dependencies of a project, testing it, and packaging it,
as specified in the Project Object Model (POM) expressed
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Figure 1: Example of transformations to reduce the share
of dependency code in the project jacop v4.10.0, and the
impact of such transformations on the dependency classes
to project classes ratio. Dependencies have compile-scope by
default if not specified. Note that jacop reuses only a portion
of its third-party dependencies.

in a file called pom.xml. This file, located at the root of the
project, includes additional information such as the project
name and version. We now define the key concepts about
dependencies in the MAVEN ecosystem.

Definition 1. Maven dependency: A MAVEN dependency
defines a relationship between a project and another com-
piled project. Dependencies are compiled JAR files, uniquely
identified with a triplet (G:A:V) where G is the groupId, A
is the artifactId, and V is the version. Dependencies are
defined in the pom.xml within a scope, which determines the
phase of the MAVEN build cycle at which the dependency
is required. MAVEN distinguishes 6 dependency scopes:
compile, runtime, test, provided, system, and import.

For example, the constraint programming solver jacop
(6ed0cd0) is a MAVEN project. As illustrated in Figure 1a,
scala-library is one of its 11 dependencies. This is a
compile-scope dependency, which means that jacop can
use some functionalities of scala-library at compile time,
and will include all the code of scala-library within the
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packaged binary of jacop. The testing framework junit is
also declared as a dependency of jacop within the test
scope, indicating that this dependency is required only for
executing unit tests.

Definition 2. Dependency tree: The dependency tree of a
MAVEN project is a directed acyclic graph that includes
all the direct dependencies declared by developers in the
project pom.xml, as well as all the transitive dependencies, i.e.
dependencies in the transitive closure of direct dependencies.
For a MAVEN project, there exists a dependency resolution
mechanism that fetches both direct and transitive depen-
dency JAR files not present locally from external repositories
such as Maven Central [23]. The project becomes the root
node of the tree, while the edges represent dependency
relationships between its direct and transitive dependencies.

For example, in Figure la, scala-compiler is a direct
dependency of jacop because it is declared by developers in
the pom.xml. It depends on scala-reflect, which makes
scala-reflect a transitive dependency of jacop. The 6
direct and 5 transitive dependencies of jacop constitute its
dependency tree.

Definition 3. Bloated dependency: A dependency is said to
be bloated if none of the elements in its API are used, directly
or indirectly, by the project [24]. This means that, although
they are present in the dependency tree of software projects,
bloated dependencies are entirely unused. Developers are
therefore encouraged to remove them [25].

For example, Figure 1b presents the compile-scope
dependencies of jacop after the removal of its bloated
dependencies. The dependencies jline, jansi, s14j-api,
s14j-10g4j12, and log4j are bloated and have been safely
removed, as no member of their APIs is exercised by jacop.

2.2 Example

We now illustrate the MAVEN dependency resolution mech-
anism and the concept of bloated dependencies. Figure 1
shows the example of the transformations of the dependency
tree of the project jacop. In Figure 1a, we see the dependency
tree of jacop as generated by the MAVEN dependency
resolution mechanism: it fetches JAR files from external repos-
itories while omitting duplication, avoiding conflicts, and
constructing a tree representation of the dependencies [26].
jacop has a total of 11 third-party dependencies: 6 are
direct and 5 are transitive. Direct dependencies are explicitly
declared by the developers in the pom.xml file of jacop, while
transitive dependencies are resolved automatically via the
MAVEN dependency resolution mechanism. MAVEN uses
the concept of scope to determine the visibility and lifecycle
of a dependency;, i.e., whether it should be included in the
classpath of a certain build phase, as well as what the class-
path of an artifact should be during the execution of a build
phase. For example, jacop has 9 compile-scope dependencies
(the default) and 2 test scope dependencies. When jacop is
packaged for deployment as a jar-with-dependencies, its
JAR file will include the bytecode of all its 9 compile-scope
dependencies. These compile-scope dependencies include
8,487 class files, while the number of classes within jacop,
written and tested by its developers, is 833. As observed, the
number of classes contributed by third-party dependencies is

one order of magnitude (i.e., 10.2 x) more than the number
of classes written by the jacop developers.

When we run DEPCLEAN, a state-of-the-art MAVEN
plugin that identifies and removes bloated dependencies [24],
[18], we find that 5 dependencies of jacop are never used,
and are therefore marked as bloated. Figure 1b shows the
dependency tree of jacop after test-scope dependencies and
bloated dependencies are removed. In this case, the number
of nodes in the tree is reduced from 11 to 4. The reduction
in the number of compile-scope dependencies represents a
removal of 504 (5.9 %) third-party classes (e.g., removing
sl4j-api leads to the removal of 34 classes). For jacop, the
removal of bloated dependencies has a minimal impact on
the reduction of third-party classes. Consequently, while
complete dependency debloating drastically reduces the
number of dependencies in jacop, it only leads to a modest
reduction in the ratio of dependency classes to project classes,
from the original 10.2 x in Figure 1a to 9.6 x in Figure 1b.

To assess the opportunities of further reducing the
number of dependency classes, we analyze the JAR of each
non-debloated dependency of jacop. We compute the static
call graph of method calls between the classes in the JAR files.
Based on this graph, we get the list of dependency classes
that are reachable from the project at build time. Figure 1c
shows the number of reachable classes for each dependency
of jacop. Consider the direct dependency scala-compiler.
Of its 2,984 classes, only two are reachable from jacop. This
confirms that scala-compiler is not a bloated dependency
for jacop, and that it includes way more features than what
jacop actually needs. This is evidence of the opportunity to
specialize this dependency in the context of jacop. Similar
opportunities exist for 2 other non-bloated dependencies.
In fact, we find that 5,704/7,983 (71.5 %) of the third-party
classes in these dependencies can be removed, and jacop can
still build successfully. After dependency specialization, the
ratio of the number of dependency classes to jacop’s classes
is 2.7 x. This is a drastic reduction from 9.6 x which was the
ratio after debloating (Figure 1b), and even more significant
if we consider the original ratio of 10.2 x in Figure 1a.

The number of classes actually used in the dependencies
is significantly lower than the original number of classes
provided. This observation motivates us to extend the state-
of-the-art of Java dependency management with a novel tech-
nique to specialize non-bloated dependencies, by identifying
and removing unnecessary classes through bytecode removal.
In the next section, we present our approach and provide
details on DEPTRIM, a tool that automatically specializes the
dependencies of MAVEN projects.

3 DEPENDENCY SPECIALIZATION WITH DEPTRIM
This section presents DEPTRIM, an end-to-end tool for the
automated specialization of third-party Java dependencies.
We define the concept of dependency specialization, followed
by an explanation of the key phases of DEPTRIM.

3.1 Dependency Specialization
This work introduces the concept of specialized dependencies
and specialized dependency trees. We define them below.

Definition 4. Specialized dependency: A dependency is
said to be specialized with respect to a project if all the
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Figure 2: Overview of the dependency specialization approach implemented in DEPTRIM. Blue boxes are software artifacts,
pink rounded boxes are actions performed by the build engine, and each of the three main phases of DEPTRIM are indicated

within the green rounded box.

classes within the dependency are used by the project,
and all unused classes have been identified and removed.
Consequently, there is no class in the API of a specialized
dependency that is unused, directly or indirectly, by the
project or any other dependency in its dependency tree.

Given a project, DEPTRIM creates a set of specialized
dependencies, such that the dependency tree of the project
is composed of dependencies that contain only classes that
the project uses. Recalling the example in Figure 1b and Fig-
ure 1c, jacop uses 2 of the 2,984 classes in scala-compiler.
Therefore, scala-compiler could be specialized with respect
to jacop, by removing the 2,982 unused classes.

Definition 5. Specialized dependency tree: A specialized
dependency tree is a dependency tree where at least one
dependency is specialized and the project still correctly
builds with that dependency tree. This means that in at
least one of the used dependencies, unused classes have
been identified and removed. A specialized dependency tree
may be one of the following two types:

o Totally Specialized Tree (TST): A dependency tree where
all used dependencies are specialized and the project
build is successful.

e Partially Specialized Tree (PST): A dependency tree with
the largest possible number of specialized dependencies,
such that the project build is successful.

We discuss our approach for building a project with a TST
or PST with DEPTRIM in the following subsections. DEPTRIM
identifies unused classes within the non-bloated compile-
scope dependencies of MAVEN projects, and removes them
in order to produce specialized dependencies. Using these,
DEPTRIM prepares a specialized dependency tree for the
project such that the project still correctly builds. The
following subsections explain this technique in detail.

3.2 DEPTRIM

Figure 2 illustrates the complete pipeline of the dependency
specialization approach implemented in DEPTRIM. DEPTRIM
receives as inputs the source code and the pom.xml file
of a Java MAVEN project. The project must successfully
build. DEPTRIM outputs three elements: (i) a specialized
version of the pom.xml file, which removes the bloated
dependencies and includes the largest possible number
of specialized dependencies that keep the build passing;
(i) the set of specialized dependencies as reduced JAR files;

(iii) the project compiled from its source can be packaged
with the specialized dependencies in order to have a smaller
jar-with-dependencies for release and deployment.

DEPTRIM validates that the project still builds correctly
with the specialized dependency tree. Note that DEPTRIM
only transforms the bytecode of the third-party dependencies,
while the original project source and its compiled bytecode
remain intact.

As illustrated in Figure 2, the specialization procedure of
DEPTRIM consists of three main phases. First @, DEPTRIM
leverages state-of-the-art Java static bytecode analysis to
construct a static call graph of the class members in the
third-party dependencies that are reachable from the project
binaries. The completeness of this reachability analysis is
critical for the identification of unused third-party classes.
Second @, DEPTRIM transforms the bytecode in the de-
pendencies to remove unused classes. This task requires
integration with the MAVEN build engine to resolve and
deploy the modified dependencies to the local repository.
Finally ®, DEPTRIM specializes the dependency tree of the
project by modifying its original pom.xml file. The modified
pom.xml should preserve the original configurations, except
the dependency declarations, which point to the special-
ized dependencies instead of the original ones. Moreover,
DEPTRIM must validate that dependency specialization does
not break project build. We provide more details of these
three phases in the following subsections.

3.2.1 © Call Graph Construction

Before it can specialize dependencies, DEPTRIM determines
their API usage, based on static analysis of the project binary.
To do so, DEPTRIM constructs a call graph using two inputs:
the compiled dependencies as resolved by MAVEN (Line
1 of Algorithm 1), and the compiled project sources (Line
2). Then, using the bytecode class members of the project
as entry points to this graph (Line 3), DEPTRIM infers and
reports class usage information from the bytecode directly,
without loading or initializing classes. The report captures the
set of dependencies, classes, and methods that are actually
used by the project, i.e., that are reachable via static analysis.
The output of this phase is a data structure that identifies the
minimal set of classes in each of the dependencies that are
required to build the project.

The collection of accurate and complete call graphs is
essential for specialization. If a necessary class member is not
reachable statically, then DEPTRIM will consider it as unused



and proceed to remove it in a subsequent phase. To mitigate
this limitation, DEPTRIM relies on state-of-the-art static
analysis of Java bytecode to capture invocations between
classes, methods, fields, and annotations from the project
and its direct and transitive dependencies. Furthermore, it
parses the constant pool of class files in order to capture
dynamic invocations from string literals (e.g., when loading
a class using its fully qualified name via reflection).

3.2.2 @ Individual Dependency Specialization

The dependency specialization phase receives the call graph
as input to specialize individual dependencies. During this
phase, DEPTRIM determines which dependencies are bloated
(i.e., there is no path from the project bytecode toward any of
the class members in the unused dependencies), and removes
them from the original pom.xml (Line 4 of Algorithm 1). Next,
DEPTRIM proceeds to remove the unused classes within
non-bloated dependencies (Lines 5 to 10). Any dependency
class file that is not present in the call graph is deemed
unreachable and removed. Note that a Java source file can
contain multiple classes, thus resulting in multiple class
files after compilation. DEPTRIM considers this case as well
by design, as it downloads, unzips, and removes the unused
compiled classes directly from the project dependencies at
build time (i.e., during the MAVEN package phase). Once
all the unused class files in a dependency are removed,
DEPTRIM qualifies the dependency as specialized. Moreover,
to facilitate reuse, DEPTRIM deploys each specialized depen-
dency in the local MAVEN repository along with its pom.xml
file and corresponding MANIFEST.MF metadata (Line 11).

The output of the second phase is a set of specialized JAR
files for the dependencies of the project. These files include
all the bytecode and resources that are necessary to be shared
and reused by the other packages within the dependency
tree. In particular, DEPTRIM takes care of keeping the classes
in dependencies that may not be directly instantiated by
the project, but are accessible from the used classes in the
dependencies, with regard to the project.

3.2.3 ® Dependency Tree Specialization

After specializing each non-bloated dependency, DEPTRIM
produces a specialized version of the project pom.xml file
that removes the bloated dependencies and points to the
specialized dependencies instead of their original versions.
This results in a TST or a PST for the project, as described in
Definition 5.

First, DEPTRIM builds the totally specialized dependency
tree (TST) of the project (Lines 12 to 15 of Algorithm 1).
All specialized dependencies replace their original version
in the project pom.xml. Then, in order to validate that the
specialization did not remove necessary bytecode, DEPTRIM
builds the project, i.e. its sources are compiled and its tests
are run. If the build is a SUCCESS, DEPTRIM returns this TST.

In cases where the build with the TST fails, DEPTRIM
proceeds to build the project with one specialized depen-
dency at a time (Lines 17 to 24). Thus, rather than attempting
to improve the soundness of the static call graph, which is
proven to be challenging in Java [27], DEPTRIM performs an
exhaustive search of the dependencies that are candidates
for specialization. At this step, DEPTRIM builds as many

Algorithm 1 Third-party dependency specialization

Input: P,..: Project source code
Input: P,y s: Project original build file (pom.xml)
Output: Prsr V Pest
/** Call graph construction **/
¢ Paeps < resolve_dependencies(Popy)
¢ Prin < compile(Psrc)
CG + analyze(Paeps, Poin)
: Papy  debloat(Poyy,CG)
/** Individual dependency specialization **/
Pdepsispecialized — @
: for each dep € Papy do
reachable_classes < analyze(dep,CG)
dep_specialized < specialize(dep, reachable_classes)
pdeps_spccialized — Pdeps_specialized U dep_SPECialized
: end for
: d@ploy_locally(Pdepsispecialized)
/** Dependency tree specialization **/
12: Prst < 0
13: Prst  create_config_file(Paeps_specialized)
14: if build(Prst, Pin) == SUCCESS then
15:  return Prst
16: else
17: Pest <+ 0
18:  for each dep € Pacps_speciatized A0

TV

==

19: Paep < create_con fig_file(dep)

20: if build(Paep, Pyin) == SUCCESS then
21: Pest < Pest U dep

22: end if

23:  end for

24: return Ppst

25: end if

versions of the dependency tree as there are specialized de-
pendencies, each containing a single specialized dependency.
DEPTRIM attempts to build the project with each of these
single specialized dependency trees. If the project build is
successful, DEPTRIM marks the dependency as safe to be
specialized. In case the dependency is not safe to specialize,
DEPTRIM keeps the original dependency entry intact in
the specialized pom.xml file. Finally, DEPTRIM constructs
a partially specialized dependency tree (PST) with the union
of all the dependencies that are safe to be specialized. Then,
the project is built with this PST to verify that the build is
successful. If all build steps pass, DEPTRIM returns this PST.

3.3

DEPTRIM is implemented in Java as a MAVEN plugin that
can be integrated into a project as part of the build pipeline,
or be executed directly from the command line. This design
facilitates its integration as part of the projects” CI/CD
pipeline, leading to specialized binaries for deployment. At
its core, DEPTRIM reuses the state-of-the-art static analysis of
DEPCLEAN [18], located in the depclean-core module [28].
DEPTRIM adds unique features to this core static Java
analyzer by modifying the bytecode within dependencies
based on usage information gathered at compilation time,
which is different from the complete removal of unused
dependencies performed by DEPCLEAN. It uses the ASM
Java bytecode analysis library to build a static call graph of
class files of the compiled projects and their dependencies.
The call graph registers usage towards classes, methods,
fields, and annotations. For the deployment of the specialized

Implementation Details



dependencies, DEPTRIM relies on the deploy-file goal of
the official maven-deploy-plugin from the Apache Software
Foundation. For dependency analysis and manipulation,
DEPTRIM relies on the maven-dependency-plugin. DEPTRIM
provides dedicated parameters to target or exclude specific
dependencies for specialization, using their identifier and
scope. DEPTRIM is open-source and reusable from the Maven
Central repository. Its source code is publicly available at
https:/ / github.com/ castor-software/deptrim.

4 EVALUATION

Depending on the outcome of specialization, DEPTRIM
potentially removes large portions of the compile-scope
dependencies of the project. The output is a specialized
distribution that developers should be ready to distribute to
users. The evaluation described in this section is intended to
assess that experience: we run DEPTRIM on a project, build
the project again with specialized dependencies to confirm
that its behavior is not negatively impacted (i.e., we use the
test suite of the projects as a proxy for checking functional
integrity), and evaluate the extent to which our technique is
effective. Our evaluation is guided by the following research
questions:

RQ1. What is the impact of removing bloated dependencies
on reducing the ratio of third-party code?

RQ2. To what extent can all the used dependencies be
specialized and the project built correctly?

RQ3. How does the number of classes decrease in the
dependency tree of the project after specialization?

RQ4. In what contexts is static dependency specialization
not applicable?

4.1 Study Subjects

We evaluate DEPTRIM with 30 open-source projects collected
from two data sources. The first source is the dataset of
single-module Java projects made available by Durieux et
al. [29]. This dataset contains 395 popular projects that build
successfully with MAVEN, i.e. all their tests pass, and a com-
piled artifact is produced as a result of the build. We analyze
the dependency tree of the projects in this dataset and select
those that have at least one compile-scope dependency. This
results in 13 projects. Additionally, we derive a second set of
projects through the advanced search feature of GitHub. We
filter repositories with a pom.xml file and rank the resulting
Java MAVEN projects in descending order according to the
number of stars. We rely on the number of stars as a proxy
for popularity [30]. Then, we curate these projects to have 17
projects that meet the following criteria: (i) build successfully
with MAVEN, i.e. compile and all their tests pass, (ii) declare
at least one compile-scope dependency, and (iii) have at least
one test executed by the maven-surefire-plugin. We build
the projects at least two times to avoid including projects
with flaky tests. At the end of this curation process, we have
a set of 30 study subjects with at least one compile-scope
dependency, and an executable test suite with tests that pass.

Table 1 presents descriptive statistics for the 30 study
subjects. For multi-module projects, we specify the MODULE
we use for our experiments. Furthermore, we link to the
CoMMIT SHA of the version that we consider for the evalua-
tion. The explicit documentation of PROJECT, MODULE, and

COMMIT SHA ensure the reproducibility of our evaluation.
The projects are well-known in the Java community and
have between 155 and 20,488 STARS, for commons-validator
and flink respectively. The median number of stars is 2,751.
flink also has the maximum number of COMMITS, at 32,667,
while the median number of commits across the study
subjects is 2,544. Next, we report the number of lines of
Java code (LOC) in each project, computed with the Unix
command cloc. In total, the projects have more than 2 M
LoC. The two projects with the largest number of lines of
code are CoreNLP (605,561) and checkstyle (342,795), while
the median LOC across the projects is 32,965. In the TESTS
column we give the number of tests executed by the official
maven-surefire-plugin in the projects. The median number
of tests is 599. The two projects with the most tests are
jimfs (5,834) and checkstyle (3,887). In the COV. column
we provide the code coverage of the test suite of the project,
as measured with JaCoCo'. The median coverage for the 30
study subjects is 64%. When we study one specific module of
a multi-module project, the LOC, TESTS, and COV. numbers
are for the specific module under study.

The last 4 columns of Table 1 provide dependency-
specific information. First, the number of compile-scope
dependencies as resolved by MAVEN (#CD). There are 467
compile-scope dependencies across the 30 projects, with a
median number of 9 CDs and at least 2 CDs in each project.
The maximum number of compile-scope dependencies is
56, in Recaf. The following columns present the number of
CLASSES that are written by the developers of the PROJECT,
and the number of third-party classes that come from its
compile-scope dependencies (CD). The bytecode of each of
these classes is analyzed by DEPTRIM in order to construct
a static call graph of APIs usages between the projects and
dependencies, as described in Section 3.2.1. In total, DEPTRIM
analyzes the bytecode of 15,594 project classes, and 135,343
classes from third-party dependencies. CoreNLP has 3,932
project classes, the maximum in the dataset. The largest
number of third-party classes is 17,512, in OpenPDF. In the
last column of the table, we present the dependency classes
to project classes ratio (RATIOp in Equation 1).

#CD CLASSES
RATIOp = ————— (€]
#PROJECT CLASSES

We find that, for 27 of these 30 notable projects, most of
the code actually belongs to third-party dependencies. In
fact, this ratio is as high as 206.7 x for the project tablesaw.
Across our dataset, the ratio of the project classes to the
dependency classes is 8.7 x.

Recalling the example of jacop introduced in Figure 1,
the corresponding row in Table 1 reads as follows: we select
its latest release for our evaluation (SHA 6ed0cd0), which
has 1,302 commits, 93,170 lines of Java code, 210 tests, and
has been starred by 202 users on GitHub. When jacop is
compiled, the number of classes from jacop is 833. On the
other hand, its 9 compile-scope dependencies contribute 10.2
x more classes (i.e., 8,487) compared to the classes in the
project (i.e., 833).

1. https:/ /www.eclemma.org/jacoco/
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Table 1: Description of the study subjects considered for the evaluation of DEPTRIM. The table links to the project repository
and SHA on GitHub, and lists the number of commits, stars, lines of Java code (LoC), tests, test coverage (COV), and the
original number of compile-scope dependencies in the project (#CD). Also indicated are the number of project classes in
each study subject, the total number of classes contributed by CDs, as well as the ratio between them (RATIOp).

PROJECT MODULE | COMMIT SHA | COMMITS | STARS LoC TESTS | COV. (%) | #CD CLASSES

PROJECT CD RATIOn
checkstyle - 6ec5122 12,066 7,455 | 342,795| 3,887 79 17 863 6,493 7.5 %
Chronicle-Map - 63clc60 3,298 2,539 55,178 | 1,231 49 35 375 7,595 20.3 x
classgraph - 8224786 5,307 2,366 32,151 170 61 261 224 0.9 x
commons-validator - 33ecc88 1,742 155 16,781 576 85 64 780 12.2 x
CoreNLP - 013556a 17,012 8,802 | 605,561 | 1,374 18 32 3,932 9,121 2.3 x
flink flink-java 1d6e2b7 32,667 | 20,488 36,455 836 56 16 277 6,175 22.3 %
graphhopper core bff8747 6,211 3,978 66,119 | 2,460 81 18 631 5,474 8.7 x
guice core 5f73d8a 2,026 | 11,730 49,697 979 90 10 460 2,474 5.4 %
helidon-io openapi 070f2bb 2,707 2,929 7,729 30 76 36 32 4,002 | 125.1 x
httpcomponents httpclient5 cb8bdf7 3,424 1,269 42,920 669 50 5 493 1,153 2.3 X
immutables gson 413aa37 2,588 3,218 16,448 37 60 2 31 307 9.9 X
jacop - 6ed0cdo 1,302 202 93,170 210 34 9 833 8,487 10.2 x
java-faker - bob9ebe 834 3,914 8,429 579 98 4 107 503 4.7 X
jcabi-github - 462d724 2,764 276 33,542 684 44 20 312 3,921 12.6 x
jimfs jimfs 9ef38d1 508 2,234 15,558 | 5,834 91 9 124 3,560 28.7 x
jooby jooby 1c78357 4,702 1,523 20,154 122 31 22 320 6,945 21.7 x
lettuce core fc94fch 2,280 4,861 89,468 | 2,600 42 44 1,302 | 10,364 8.0 x
modelmapper core 03663ee 721 2,090 21,769 618 84 6 210 2,700 12.9 x
mybatis-3 - 2655970 4,436 | 18,065 61,849 | 1,699 86 8 480 1,345 2.8 x
OpenPDF - bd0d458 1,296 2,573 76,397 35 29 35 484 | 17,512 36.2 X
pdfbox pdfbox aflff57 11,147 1,852 97,175 654 79 754 6,836 9.1 x
pfaj - fdooc63 692 1,901 7,199 151 73 93 115 1.2 x
poi-tl - 71b5969 732 3,063 20,882 125 79 36 255 | 12,143 47.6 x
Recaf - a30dce0 2,275 4,530 31,277 274 35 56 538 | 10,769 20.0 x
RxRelay - 09428b5 81 2,473 2,405 64 93 2 16 1,758 | 109.9 x
scribejava - 7a6185b 1,259 5,317 5,769 82 45 8 116 1,278 11.0 x
tablesaw json 80d5334 2,501 3,101 508 9 75 9 7 1,447 | 206.7 x
tika tika-core dd04a3e 6,823 1,584 32,388 305 50 2 435 253 0.6 x
undertow core cce54c6 5,517 3,284 | 106,711 682 59 5 1,581 742 0.5 x
woodstox - 58bd89e 325 180 60,476 868 67 5 208 864 4.2 X
TOTAL 14 30 139,243 | 127,952 | 2,056,960 | 27,844 | (MED.) 64 | 467 15,594 | 135,343 8.7 x

4.2 Protocol for RQ1

4.3 Protocol for RQ2

With this research question, we quantify the potential for
dependency specialization in the 30 projects described in
Table 1. In order to do so, we use DEPCLEAN to identify and
remove bloated dependencies from each project, ensuring
that the project still builds. We report the number of compile-
scope dependencies that are non-bloated, denoted as NBCD.
Next, we present the total number of classes removed
through dependency debloating (CLASSES REMOVED), and
compute the ratio (RATIOp) between the remaining depen-
dency classes and the project classes (per Equation 2). This
data provides quantitative insights regarding the impact of
dependency debloating to reduce the share of third-party
code, and on the opportunity to reduce this share further via
dependency specialization.

#CD CLASSES — #CLASSES REMOVED BY DEPCLEAN
#PROJECT CLASSES

RATIOp =

]

In order to answer RQ2, we attach DEPTRIM to the MAVEN
build lifecycle of each of our study subjects. DEPTRIM is
implemented as a MAVEN plugin, which facilitates this
integration, as described in Section 3.3. This means that the
non-bloated compile-scope dependencies in the dependency
tree of each project are resolved, specialized, and deployed
to the local MAVEN repository. DEPTRIM then attempts to
build the project, i.e., compile it and run its tests, with
the goal of preparing a specialized dependency tree with
the maximum number of specialized dependencies. Per
Algorithm 1, DEPTRIM constructs either a totally specialized
tree (TST), or a partially specialized tree (PST) that includes
the largest number of specialized dependencies that preserve
the build correctness. For each project, we report whether
it builds with a TST. If it does not, we report the number
of dependencies that DEPTRIM successfully specializes to
prepare a PST (through the metric NBCD SPECIALIZED).
The findings from this research question highlight the
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applicability of DEPTRIM on real-world MAVEN projects, and
its ability to prepare minimal versions of these projects, by
removing unused classes within non-bloated dependencies
while passing the build.

4.4 Protocol for RQ3

After building each project successfully with a TST or a PST in
RQ2, we report the total number of classes that are removed
by DEPTRIM through the specialization of its non-bloated
compile-scope dependencies (as CLASSES REMOVED). We
also report the ratio of the remaining number of specialized
dependency classes to the number of project classes (RATIOs
in Equation 3). We compare RATIOs with RATIOp, i.e., we
evaluate the reduction in the original ratio after specialization.
This research question demonstrates the practical advantages
of dependency specialization with DEPTRIM, specifically the
reduction in the original proportion of third-party classes
within the compiled project binary.

RATIOS — #NBCD CLASSES — #CLASSES REMOVED BY DEPTRIM 3)
°- #PROJECT CLASSES

4.5 Protocol for RQ4

While processing each project, DEPTRIM records the project
build logs after dependency specialization (RQ2), as well
as the number of classes removed from each non-bloated
dependency (RQ3). We derive the answer for RQ4 by
analyzing these logs. In some cases, all the classes in a
non-bloated dependency are used by the project, leaving
no room for specialization. We refer to such a dependency as
a totally used dependency (TUD). We report the number of
TUD:s for each project, where DEPTRIM is not applicable by
design. Another situation where DEPTRIM is not applicable
is when a project uses dynamic features to access depen-
dency classes (Section 3.2.1). While computing the PST for
RQ2, DEPTRIM builds the project multiple times, each time
with a single specialized dependency. In case of a failure
when building the project with a specialized dependency,
we report a compilation error or a test failure. For the
assessment of the compilation results, we rely on the official
maven-compiler-plugin. We consider the execution of the
test suite to fail if there is at least one test reported within
the sets of Failures or Errors, as reported by the official
maven-surefire-plugin. With this research question, we
gain insights regarding the existing challenges of dependency
specialization with DEPTRIM. More generally, it contributes
to the understanding of the limitations of static analysis with
respect to specializing dependencies, in view of the dynamic
features of Java.

4.6 Evaluation Framework

In order to run our experiments, we have designed a fully
automated framework that orchestrates the execution of
DEPTRIM, the creation of specialized dependency trees, the
building of the projects with the specialized dependency
trees, as well as the collection and processing of data to
answer our research questions. Since DEPTRIM is imple-
mented as a MAVEN plugin, it integrates within the MAVEN
build lifecycle and executes during the package phase. The

execution was performed on a virtual machine running
Ubuntu Server with 16 cores of CPU and 32 GB of RAM.
It took one week to execute the complete experiment with
the 30 study subjects. This execution time is essentially
due to multiple executions of the large test suites of our
subjects: once with the original project; once after debloating
dependencies with DEPCLEAN; once with the TST generated
by DEPTRIM, and if we generate a PST for a project, we run
the test suite once with each individually specialized tree
and once with the final PST. The execution framework is
publicly available on GitHub at castor-software/deptrim-
experiments, and the raw data obtained from the complete
execution is available on Zenodo at 10.5281/zenodo.7613554.

5 EXPERIMENTAL RESULTS

This section presents the results from our evaluation of
DEPTRIM with the 30 Java projects described in Section 4.1.
We evaluate the effectiveness of DEPTRIM in automatically
specializing the dependency tree of these projects. The
answers to the four RQs are summarized in Table 2.

5.1 RQ1: What is the impact of removing bloated depen-
dencies on reducing the ratio of third-party code?

With this first research question, we set a baseline to assess
the impact of dependency specialization regarding the reduc-
tion of the number of classes in third-party dependencies. To
do so, we report the number of classes removed through
state-of-the-art dependency debloating with DEPCLEAN,
as described in Section 4.2. We report the ratio of third-
party classes remaining after debloating, with respect to the
number of classes in each project presented in Table 1.

For our 30 study subjects, the column NBCD in Table 2
denotes the number of compile-scope dependencies that
remain after identifying and removing bloated dependencies
with DEPCLEAN, over the original number of compile-scope
dependencies in the project (column #CD in Table 1). In
total, DEPCLEAN removes 71 bloated dependencies, with a
median of 8 dependencies, across the 30 projects. DEPCLEAN
removes 23 bloated dependencies from OpenPDF, which is
the largest number of bloated dependencies for one project
in our dataset. In total, DEPCLEAN removes 5,813 third-
party classes. It is interesting to note that, for all the projects,
dependency debloating removes 4.3 % of the total number
of classes.

All projects have at least 2 NBCDs, while Recaf has the
maximum number of NBCDs at 41. In 13 projects, such
as classgraph and commons-validator, all the dependen-
cies are used. Therefore, executing DEPCLEAN does not
contribute to the removal of any class on those projects.
On the other hand, we find that in 5 projects, the bloated
dependencies do not contain class files at all, such as in the
case of flink. This happens when a bloated dependency only
contains assets, such as resource files, or is explicitly designed
to avoid conflicts with other dependencies [31]. For exam-
ple, the dependency com.google.guava:listenablefuture
is present in the dependency tree of 5 projects, and it
is intentionally empty to avoid conflicts with guava [32].
Another dependency, called batik-shared-resources, is
included in the dependency tree of 2 projects, and only
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Table 2: Results from the evaluation of DEPTRIM with the case studies described in Table 1. For RQ1, the table indicates the
number of non-bloated compile-scope dependencies (NBCD). These are the dependencies that are identified as used in the
project by DEPCLEAN. The number of classes removed via debloating is listed in the column CLASSES REMOVED. RATIOp
represents the number of remaining third-party classes after debloating over the number of classes in the project. For RQ2,
we highlight whether DEPTRIM builds a project with a TST or a PST, as well as the number of specialized NBCDs contained
in the built project (NBCD SPECIALIZED). RQ3 presents the reduction in the number of classes in the NBCDs as a result of
specialization with DEPTRIM, and correspondingly, in the RATIOs of the third-party classes to project classes. For RQ4, we
report the three cases where specialization with DEPTRIM is not applicable: (i) if all the classes in a non-bloated dependency
are totally used by the project (TUD); (ii) if specializing a dependency causes a compilation error (COMP. ERROR) during
project build; and (iii) if a test fails when building a project with a specialized dependency (TEST FAIL.).

RQI1 RQ2 RQ3 RQ4
CLASSES CLASSES

PROJECT NBCD REMOVED RATIOp TST PST NI REMOVED RATIOg TUD Clowe | LEST

SPECIALIZED ERROR| FAIL.

(DEBLOATING) (SPECIALIZATION)

checkstyle 15/17 2 (0.0 %) 7.5 X X v 12/15 1,015 (15.6 %) 6.3 X 0/15 2/3| 1/3
Chronicle-Map 28/35 373(4.9%)| 193x || X v/ 22/28 2573 (35.2%)| 12.4x || 4/28| 1/2| 1/2
classgraph 2/2 0 (0.0 %) 0.9 x v 2/2 10 (4.5 %) 0.8 x 0/2 - -
commons-validator 4/4 0(0.0%)] 12.2x v 4/4 625 (80.1 %) 2.4 x 0/4 - -
CoreNLP 30/32 364 (4.0 %) 2.2 % v 29/30 3,648 (41.7 %) 1.3 x 1/30 - -
flink 15/16 0(0.0%)| 223x | X v 12/15 2594 (42.0%)| 12.9x || 1/15| 1/2| 1/2
graphhopper 13/18| 1,309 (23.9 %) 6.6 x X v 12/13 1,661 (39.9 %) 4.0 x 0/13 1/1| 0/1
guice 9/10 0(0.0%)| 54x| v 7/9 1,327 (53.6%)| 2.5x 2/9 - -
helidon-io 34/36 38 (0.9%)| 123.9 x X v 32/34 987 (24.9 %) 93.0 x 1/34 1/1| 0/1
httpcomponents 5/5 0 (0.0 %) 2.3 X v 4/5 432 (37.5 %) 1.5 x 1/5 - -
immutables 2/2 0 (0.0 %) 9.9 x v 2/2 48 (15.6 %) 8.4 X 0/2 - -
jacop 4/9 504 (5.9%)| 9.6x || X v 3/4 5,704 (T1.5%)| 2.7 x 0/4| 1/1] 0/1
java-faker 4/4 00.0%)| 47x| x v 3/4 211 (41.7%)| 2.8 x 0/4| 1/1| 0/1
jcabi-github 17/20 9(02%)| 125x || X v 16/17 2,415 (61.7%)| 4.8x || o/17| 1/1| o0/1
jimfs 8/9 00.0%)| 287x || v 6/8 1,741 (48.9%)| 14.7 x 2/8 - -
jooby 20/22 00.0%)| 21.7x | X v 19/20 730 (10.5%)| 19.4x || 0/20 1/1| 0/1
lettuce 39/44 00.0%) 80x]| x v 36/39 1,865 (18.0%)| 6.5x || 2/39] o0/1| 1/1
modelmapper 6/6 0(0.0%)] 12.9x X v 4/6 66 (2.4%)| 12.5x 1/6 0/1| 1/1
mybatis-3 8/8 00.0%)| 28x]| x v 7/8 414 (30.8%)|  1.9x 0/8| 0/1| 1/1
OpenPDF 12/35| 2,336 (13.3%)| 31.4x || X v 11/12 9,155 (60.3%)| 12.4x || 0/12| 1/1| 0/1
pdfbox 6/7 63(0.9%) 9.0x | v 6/6 5,070 (74.9%)| 2.3 x 0/6 - -
pfaj 3/3 00.0%)| 12x| v 2/3 10(8.7%)| 1.1x 1/3 - -
poi-tl 33/36 258 (2.1%)| 46.6x || X v 27/33 5,192 (43.7%)| 26.2x || 5/33| 0/1| 1/1
Recaf 49/56 518 (4.8 %) 19.1 x v 41/49 2,952 (28.8 %) 13.6 x 8/49 - -
RxRelay 2/2 0(0.0%)| 109.9x || X v 1/2 9 (0.5%)| 109.3 x 0/2| o/1] 1/1
scribejava 7/8 39(3.1%)| 10.7 x v 6/7 353 (28.5 %) 7.6 X 1/7 - -
tablesaw 9/9 0 (0.0%)| 206.7 x 4 7/9 379 (26.2 %) | 152.6 x 2/9 - -
tika 2/2 00.0%)| 06x]| v 2/2 187 (73.9%)| 0.2 x 0/2 - -
undertow 5/5 00.0%)| 05x| v 5/5 224 (30.2%)| 0.3 x 0/5 = =
woodstox 5/5 00.0%)| 42x| X v 3/5 34(3.9%)| 4.0x 0/5| 1/2] 1/2
TOTAL 396/467| 5,813 (4.3%)| 8.3 x |/14/30|16/30| 343 (86.6%) 51,631 (39.9%)| 5.0 ||32/396| 12/21| 9/21

contains resource files. We investigate the nature of these
resource files and find that they are dependency license
statements and build-related metadata. Thus, the removal of
such dependencies does not result in a build failure within
the projects.

The column RATIOp in Table 2 presents the ratio of the
number of classes in the NBCDs to the original number of
classes in the project (column PROJECT in Table 1). For 11 of
the 30 projects, RATIOp is less than RATIOp from Table 1.
This corresponds to cases where debloating results in fewer
third-party classes in the compiled project. For example, the
removal of the 23 bloated dependencies from OpenPDF results

in the maximum reduction in the number of classes (2,336).
Consequently, RATIOp for OpenPDF is 31.4 x, which is 4.8
less than its RATIO. The project with the highest percentage
of classes removed is graphhopper, for which the removal
of 5 bloated dependencies leads to a 23.9 % reduction in the
number of third-party classes. RATIOp for graphhopper is
6.6 x, down from its original RATIOp of 8.7 x. However,
despite debloating dependencies, the total RATIOp across
the 30 projectsis 8.3 x , which is only 0.4 less than the total
original RATIOp.

Of the 9 compile-scope dependencies in jacop (column
#CD in Table 1), DEPCLEAN identifies 5 dependencies as
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bloated and removes them. This leads to the removal of 504
classes, and 4 remaining NBCDs with a total of 7,983 classes.
Correspondingly, RATIOp reduces to 9.6 x, down from the
original RATIOp of 10.2 x. The 4 NBCDs are the target for
specialization with DEPTRIM, which will remove unused
classes within these dependencies while ensuring that jacop
still correctly builds.

Answer to RQ1: State-of-the-art dependency debloating
with DEPCLEAN contributes to the removal of 71 bloated
dependencies from 30 real-world Java projects. This
corresponds to the removal of 5,813 (4.3 %) third-party
classes in total. Yet, the dependency classes to project
classes ratio is reduced by only 0.4 (from 8.7 x to 8.3 x
). This calls for more extensive code removal to reduce
the dependencies to the strictly necessary parts.

5.2 RQ2: To what extent can all the used dependencies
be specialized and the project built correctly?

This research question evaluates the ability of DEPTRIM
to perform automatic dependency specialization for the
study subjects described in Section 4.1. We consider the
specialization procedure to be successful if DEPTRIM
produces a valid set of specialized dependencies, with a
corresponding specialized dependency tree captured in a
pom.xml, and for which the project builds correctly. To reach
this successful state, the project to be specialized must pass
through all the build phases of the MAVEN build lifecycle,
i.e., compilation, testing, and packaging, according to the
protocol described in Section 4.2.

Columns TST, PST, and NBCD SPECIALIZED in Table 2
present the results obtained. First, we observe that for a
total of 14 (46.7 %) projects, DEPTRIM produces a totally
specialized tree (TST), i.e., the project builds successfully with
a specialized version of all its non-bloated compile-scope
dependencies. For these projects, DEPTRIM successfully iden-
tifies and removes unused classes within the dependencies.
Moreover, DEPTRIM updates the dependency tree of each
project by replacing original dependencies with specialized
ones. The projects correctly compile, and their original test
suite still passes, indicating that their behavior is intact
w.r.t. the tests, despite the dependency tree specialization.
Opverall, these results confirm that dependency specialization
is feasible for real-world projects.

We illustrate TSTs with the example of pdfbox, a utility
library and tool to manipulate PDF documents. DEPTRIM
specializes the 6 NBCDs of pdfbox, and builds its TST
successfully. Of these 6 dependencies, 4 are direct: fontbox,
commons-logging, pdfbox-io, and bcprov-jdk18on; whereas
2 are transitive: bcutil-jdk18on and bcpkix-jdk18on. An-
other interesting example is guice, a popular dependency
injection framework from Google branded as a “lightweight”
alternative to existing libraries, as stated in its official docu-
mentation. DEPTRIM builds guice with a TST, thus making it
even smaller. The project that builds with a TST and has the
largest number of specialized dependencies is Recaf with
41 specialized dependencies. Note that, when specializing
transitive dependencies, DEPTRIM keeps all the classes in
the direct dependencies that are necessary to access the APIs
in transitive dependencies, whether directly or indirectly.
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Table 3: Dependencies specialized in the OpenPDF project

DEPENDENCY TYPE CLASSES REMOVED
xmlgraphics-commons | Transitive 366/375 (97.6 %)
bcutil-jdk1l8on Transitive 532/579 (91.9 %)
fop-core Transitive 2,278/2,547 (89.4 %)
bcpkix-jdk18on Direct 697/841 (82.9 %)
bcprov-jdk1l8on Direct 5,696/7,149 (79.7 %)
xml-apis Transitive 234/346 (67.6 %)
fontbox Transitive 100/157 (63.7 %)
xalan Transitive 942/1,501 (62.8 %)
icu4j Direct 578/1,555 (37.2 %)
serializer Transitive 69/108 (63.9 %)
commons-logging Transitive 6/18 (33.3 %)
fop Transitive N/A
ToTAL 3D/9T | 9,155/15,176 (60.3 %)

For example, the transitive dependency commons-1lang3 in
Recaf is resolved and used from the direct dependency
jphantom, a Java library for program complementation [33].
Thus, DEPTRIM keeps the bytecode in commons-lang3 that is
necessary to access the used features provided by jphantom.

On the other hand, projects that do not build with a TST
signify cases where at least one compile-scope dependency
relies on dynamic Java features that make static analysis
unsound. This observation is in line with previous work
showing that Java reflection and other dynamic features
impose limitations on performing static analysis in the Java
ecosystem [34]. However, even for these projects, DEPTRIM
successfully builds a partially specialized tree (PST) by target-
ing dependencies that could be specialized, and discarding
the ones that cause the build to break. In total, 16 (53.3 %)
of the projects build successfully with a PST. In these cases,
DEPTRIM successfully identifies the subset of dependencies
that are safe for specialization, and validates that the projects
still correctly build with a PST.

For example, DEPTRIM successfully specializes 4 depen-
dencies in the project modelmapper, an object mapping library
that automatically maps objects to each other. DEPTRIM
creates a PST with which modelmapper builds successfully.
Note that none of the 6 compile-scope dependencies of
modelmapper are bloated, and hence debloating the project
with DEPCLEAN has no impact on it. However, after ex-
ecuting DEPTRIM, the direct dependencies objenesis and
asm-tree are specialized. Moreover, the transitive depen-
dencies asm-commons and asm, resolved from asm-tree are
also specialized. This example illustrates the impact of
specialization beyond dependency debloating, for projects
that build with a PST. Indeed, across our study subjects, there
are 8 projects that successfully build with a TST, and 5 that
build with a PST, and yet for which no classes are removed
through DEPCLEAN.

It is interesting to notice that some of our study sub-
jects share dependencies that are specialized. For example,
slf4j-api is specialized in 12 different projects, jsr3e5
in 8 projects, and commons-io in 4 projects. The projects
jcabi-github, jooby, and Recaf include all these three de-
pendencies in their dependency tree. After investigating the
contents of the specialized versions of s1f4j-api prepared
by DEPTRIM, we find that there are three sets of variants for



which this dependency contains the same number of classes.
Thus, deploying multiple specialized versions of s1f4j-api
to external repositories can contribute to reducing its attack
surface for projects that reuse the exact same features.
This specialized form of code reuse also increases software
diversity. Furthermore, the dependency bcprov-jdkl8on,
which contains the largest number of classes among the
dependencies (3,768), is successfully specialized in 2 projects,
OpenPDF and pdfbox. Our findings suggest that specializing
dependencies with a large number of classes yields a greater
reduction of third-party code. To confirm this hypothesis,
additional investigation is required.

Our experiments show that, despite the challenges of
specializing the dependency trees of our 30 real-world study
subjects, DEPTRIM is capable of specializing 343 of the 396
non-bloated compile-scope dependencies across them. A
key aspect of our evaluation is that we validate that each
project builds successfully using its specialized dependency
tree. We manually analyze and classify the cases where
specialization is not achievable for a dependency, in RQ4.
The specialized dependencies contribute to the deployment
of smaller project binaries, to reduce their attack surface, and
to increase dependency diversity when deployed to external
repositories.

-

Answer to RQ2: DEPTRIM successfully builds 14 real-
world projects with a totally specialized dependency tree.
For the other 16 projects, DEPTRIM finds the largest subset
of specialized dependencies that do not break the build.
In total, DEPTRIM specializes 343 (86.6 %) of the non-
bloated compile-scope dependencies. This is evidence
that a large majority of dependencies in Java projects can
be specialized without impacting the project build.

N

5.3 RQ3: How does the number of classes decrease in
the dependency tree of the project after specialization?

To answer our third research question, we count the number
of classes removed by DEPTRIM in the 343 successfully
specialized dependencies. The goal is to evaluate the effec-
tiveness of DEPTRIM in removing unused class files through
specialization, as described in Section 4.3. We also report the
impact of this reduction on the ratio of third-party classes to
project classes, i.e., RATIOs.

The column CLASSES REMOVED in Table 2 shows the
number of classes removed by DEPTRIM from the NBCDs
of each project, in order to build its TST or PST. DEPTRIM re-
moves a total of 51,631 classes, with a median removal of 858
third-party classes for each project. This represents 39.9 % of
the total number of classes in the third-party dependencies
for all the projects (i.e., 135,343 per Table 1). For example,
the project tika has 2 dependencies specialized: s1f4j-api
with 9/52 (17.3 %) classes removed, and commons-io with
178/201 (88.6 %) classes removed. This represents a removal
of 187 (73.9 %) third-party classes in tika, as a result of
which its RATIOs is 0.2 x . Thus, the ratio of dependency
classes to project classes in tika decreased by 0.4 compared
to RATIOp (i.e., 0.6 X).

The project with the highest percentage of de-
pendency classes removed is commons-validator with
80.1%, ie., 625 of the 780 original third-party classes.
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Table 4: Summary of global impact of DEPTRIM: number of
classes in the compile-scope dependencies (CD) and size of
the bytecode of the compile-scope dependencies (CD) in the
original projects, and impact of DEPTRIM in reducing the
number of classes and the size of bytecode for dependencies.

MIN. | MAX. | MED. TOTAL
ORIGINAL
# CD classes 115 | 17,512 | 3,130 135,343
CD bytecode size (MB) 04| 49.5 9.7 455.9
IMPACT OF DEPTRIM
# CD classes removed 911,491 | 873.5 | 57,444 (42.2 %)
CD bytecode reduction (MB) | 0.02| 37.1 1.9| 186.1 (35.7 %)

This drastic reduction is the result of successfully
removing unused classes from all its compile-scope
dependenciesz commons-beanutils, commons-collections,
commons-digester and commons-logging. In particular,
DEPTRIM identifies that only 7 of the 460 classes in
commons-collections are required by commons-validator.
These classes support an implementation of the HashMap
data structure for multi-threaded operations, which are used
by commons-validator for processing form fields. The other
453 types within commons-collections correspond to data
structures that are not required by commons-validator, and
are consequently removed by DEPTRIM.

The project with the largest number of classes removed
(9,155) is OpenPDF. Table 3 shows the dependencies special-
ized in OpenPDF, of which 3 are direct and 9 are transitive.
DEPTRIM builds OpenPDF with a PST, excluding the depen-
dency fop from the specialized dependency tree. Looking at
the 11 successfully specialized dependencies, we observe that
OpenPDF depends transitively on a family of dependencies
from the Apache XML Graphics Project, including fop-core
and xmlgraphics-commons, from which DEPTRIM removes
2,278 (89.4%) and 366 (97.6%) unused classes, respec-
tively. OpenPDF also depends directly on bcpkix-jdk18on and
bcprov-jdk1l8on, which are dependencies from the Bouncy
Castle family of cryptographic libraries, from which 697
(82.9%) and 5,696 (79.7%) classes are removed, respec-
tively. Moreover, DEPTRIM systematically identifies func-
tionalities that are used transitively through direct depen-
dencies. For example, two classes within OpenPDF, called
PdfPKCS7 and TSAClientBouncyCastle, use classes from the
direct dependency bcpkix-jdk18on. In turn, these classes of
bcpkix-jdk18on depend on 4 classes within bcutil-jdk18on
that are responsible for supporting the encoding of the Time
Stamp Protocol. Therefore, DEPTRIM marks these 4 classes
within the transitive dependency as necessary for OpenPDF,
and does not remove them. Note that OpenPDF built with a
specialized dependency tree may be deployed to an external
repository, which reduces the attack surface of the clients
that rely on the features that are provided by OpenPDF when
used as a library.

Overall, the specialization of non-bloated dependencies
can significantly reduce the share of third-party classes,
beyond state-of-the-art dependency debloating techniques
such as DEPCLEAN [24]. This is evidenced in the last row of
Table 2, where we report the removal of 51,631 classes, just
through specialization, which represents 39.9 % of the classes



in non-bloated dependencies. While these observations are
compelling evidence of the benefits of specialization, we now
reflect upon the overall effect of DEPTRIM.

Table 4 summarizes the key metrics about the impact
of DEPTRIM on dependency trees. First, we provide the
distribution of the number of classes in compile-scope
dependencies (CD), as well as the distribution of the size
of the bytecode for these dependencies. Second, we provide
the global reduction of the number of classes and the size
of the bytecode for third-party dependencies. While we
focused on the number of classes so far, here we also
include the impact on the size of the bytecode, as it is
an important performance metric for some applications.
Specifically, the table highlights the minimum, maximum,
median, and total values of CD classes and bytecode sizes.
For example, DEPTRIM removes 11,491 CD classes in total
for OpenPDF, which is the maximum number of CD classes
removed. Per Table 2, we see that 2,336 classes were removed
through dependency debloating, while 9,155 classes were
removed the specialization of 11 dependencies. In RxRelay,
DEPTRIM removes only 9 classes, exclusively by specializing
one dependency. In total, DEPTRIM succeeds in removing
42.2% of the CD classes. This is a significant reduction in
the prevalence of third-party code in the Java projects under
study. For jacop, DEPTRIM achieves the largest reduction
in the size of third-party bytecode, removing 37.1 MB. This
is essentially due to large dependencies in jacop such as
scala-compiler, for which DEPTRIM removes 2,982 classes
(see Figure 1c). Note that DEPTRIM removes more than 1.9
MB of third-party bytecode for half the study subjects. In
total, DEPTRIM removes 186.1 MB of third-party bytecode,
which corresponds to a reduction in 35.7 %.

s N

Answer to RQ3: DEPTRIM reduces the number of classes
in the dependency tree of each of the 30 projects. Overall,
by adding bytecode specialization to dependency debloat-
ing, DEPTRIM reduces dependency classes by a total of
42.2% and the size of dependency bytecode by 35.7 %.
The dependency classes to project classes ratio reduces
from 8.7 x in the original project to 5.0 x . Dependency
specialization drastically reduces the share of third-party
bytecode in Java projects.

5.4 RQ4: In what contexts is static dependency special-
ization not applicable?

With this research question we report on the cases where
there is no scope for specialization in a non-bloated depen-
dency, as well as cases where projects do not build success-
fully with a specialized dependency in the dependency tree.

First, we observe that 14 projects include at least one de-
pendency that is totally used. A total of 32 dependencies are
totally used by their respective client projects, as presented
in the column TUD in Table 2. A dependency is a TUD for
a project if all its class files are exercised by the project.
Consequently, there is no scope for the specialization of a
TUD. TUD:s represent 8.1 % of the non-bloated dependencies.
Recaf has 8 TUDs, the largest number in the study subjects.
Note that a project with TUDs in its dependency tree can
still successfully build with a TST, as is true for 8 projects,
including Recaf. We observe that the dependencies asm-tree,
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Table 5: Number of unique failing tests, and the specialized
dependency that causes these failures, in the 9 projects with

tests failures.

PROJECT

DEPENDENCY

# TEST FAIL

checkstyle
Chronicle-Map
flink
lettuce-core

Saxon-HE
chronicle-wire
commons-math3
micrometer-core

1/3,887 (0.0 %)
3/1,231 (0.2 %)

1/820 (0.1 %)
6/2,600 (0.2 %)

modelmapper byte-buddy-dep 4/618 (0.6 %)
mybatis-3 s1f4j-api 1/1,699 (0.1 %)
poi-tl commons-io 107/125 (85.6 %)
RxRelay rxjava 6/64 (9.4 %)
woodstox msv-core 1/868 (0.1 %)
TOTAL 9 | 130/11,912 (1.1 %)

failureaccess, and minimal-json are TUDs in 2 projects.
For example, minimal-json is totally used by both tablesaw
and by Recaf, which is evidence of a minimal API that is
completely used by these projects. As far as we know, this is
the first time in the literature that totally used dependencies
are identified and quantified.

DEPTRIM builds 16 projects with a PST. For example,
DEPTRIM marks 1 of the 4 non-bloated compile-scope
dependencies in java- faker as not suitable for specialization.
This is because building java-faker with the specialized
version of org.yaml:snakeyaml prevents the compilation of
the project, which includes the Lebowski class. Consequently,
org.yaml:snakeyaml is excluded from the specialized depen-
dency tree of java-faker and DEPTRIM outputs a partially
specialized tree that successfully builds java-faker and
includes three specialized dependencies.

Column COMP. ERROR in Table 2 shows the number of
specialized dependencies for which the build fails due to
compilation errors. This occurs for 11 projects and 12 depen-
dencies. We investigate the causes of compilation errors by
manually analyzing the logs of the maven-compiler-plugin.
We find the following 4 causes for compilation to fail:

« Some classes are not found during compilation. For ex-
ample, attempting to build checkstyle with specialized
versions of commons-beanutils and guava fails due to
the missing classes, BasicDynaBean and ClassPath. Both
classes enable dynamic scanning and loading of classes
at runtime.

o The project has a plugin that fails at compile time. For ex-
ample, the plugin snakeyaml-codegen-maven-plugin in
the project helidon adds code to the project’s compiled
sources automatically [35], and fails when building with
the specialized dependency smallrye-open-api-core
because the specialization process changes the expected
dependency bytecode.

o The project has a plugin that checks the integrity of
the specialized dependency. For example, the depen-
dency commons-io in project jcabi-github uses the
maven-enforcer-plugin to check for certain constraints,
including checksums, on the dependency bytecode.

e The specialized dependency is not found in the local
repository. For example, the specialized dependency
snakeyaml in project java-faker is not deployed cor-
rectly due to a known issue in this dependency when



using the android MAVEN tag classifier [36].

We now discuss the number of specialized dependencies
for which the build reports test failures (column TEST FAIL.
in Table 2). For 9 projects, one specialized dependency has at
least one test failure. DEPTRIM preserves the original tested
behavior (i.e., all the tests pass) of 387 (97.7 %) specialized,
non-bloated compile-scope dependencies. This high rate
of test success is a fundamental result to ensure that the
specialized version of the dependency tree preserves the
tested behavior of the project.

In total, we execute 27,844 unique tests across all projects
(per Table 1). Of these, 130 do not pass. DEPTRIM produces
specialized dependency trees that break a few test cases.
These cases reveal the challenges of dependency specializa-
tion concerning static analysis. For example, DEPTRIM can
miss some used classes, resulting in the removal of bytecode
that is necessary at runtime. This is a general constraint
for static analysis tools when processing Java applications
that rely on dynamic features to load and execute code
at runtime. As a result of the absence of bytecode from a
specialized dependency, 9 projects report test failures, e.g.,
an unreachable class loaded at runtime causing a failing test
that stops the execution of the build.

Table 5 shows the number of unique test failures (column
#TEST FAIL.) in the 9 projects that have at least one PST
with test failures, as well as the specialized dependency
that causes the failure (column DEPENDENCY). For example,
the project Chronicle-Map has 3 tests that fail when spe-
cializing the dependency chronicle-wire, from a total of
1,231 executed tests, which represents 0.2 % of the total. The
project with the largest number of test failures is poi-t1, with
107 (85.6 %) tests failures when specializing its dependency
commons - io0. Overall, the number of test failures accounts for
1.1% of the total tests executed in the 9 projects, and only
0.5 % across the 30 projects.

We further investigate the causes of the failures. To do so,
we manually analyze the logs of the tests, as reported by the
maven-surefire-plugin. We find the following 3 causes:

e The tests load dependency classes dynamically. For
example, poi-tl relies on the method byte[] in class
I0Utils of commons-io to check the size of a file. This
method is loaded via reflection through an external
configuration file and causes the failure of 107 tests.
Some tests rely on Java serialization to manipulate
objects at runtime, and the input stream is not
closed properly because DEPTRIM removes a class
responsible for closing the input stream. For exam-
ple, the project Chronicle-Map uses the dependency
chronicle-wire for serialization, and 3 tests fail due
to a ClosedIORuntimeException.

The project has tests that rely on dependencies that use
Java Native Interfaces (JNI) to execute machine code
at runtime. For example, the test TestWsd1Validation
in project woodstox relies on dependency msv-core
which uses JNI to validate XML schemas. DEPTRIM's
static analysis is limited to Java bytecode, and therefore
native code executed in third-party dependencies is not
considered as used when building the call graph.

Our results reveal the challenges of dependency special-
ization based on static analysis (see Section 3.2.1) for real-
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world Java projects. Handling these cases to achieve 100 %
correctness requires specific domain knowledge of the project,
and of the reachable code in the dependencies that exercise
some form of dynamic Java features. To facilitate this task,
we provide a dedicated parameter ignoreDependencies in
DEPTRIM so that developers can declare a list of dependency
coordinates to be ignored by DEPTRIM during the call graph
analysis. Nevertheless, we recommend always checking that
the build passes to avoid semantic errors when performing
bytecode removal transformations.

-

Answer to RQ4: Of the 396 dependencies that are targets
for specialization, 32 are not specialized because they are
totally used, 12 (3.3 %) dependencies cause a compilation
failure when specialized, and 9 (2.5 %) lead to a failure
at runtime. For the latter, the test failures represent
only 0.5% of the total number of tests executed. This
behavioral assessment of DEPTRIM demonstrates that the
specialized dependency trees preserve a large majority of
syntactic and semantic correctness for the 30 projects.

6 DiISCUSSION

In this section, we discuss the state-of-the-art and the current
challenges of code specialization in Java, as well as the
implications of specialization for software integrity. We also
discuss the threats to the validity of our results.

6.1

The Java community is currently making substantial efforts to
reduce the amount of bloated code deployed in production.
The GraalVM native image compiler [37] is perceived by
many as an important step in this direction. GraalVM relies
on static analysis to build a native executable image that
only includes the elements reachable from an application
entry point and its third-party dependencies [38]. To do so,
GraalVM operates under a closed-world assumption [39]:
all the bytecode that can be called at runtime, must be
known at build time, i.e., when the native-image tool in
GraalVM is building the standalone executable [40]. Thanks
to this condition, GraalVM is able to perform a set of
aggressive optimizations such as the elimination of unused
code from third-party dependencies. The self-contained
native executable image includes only code that is actually
necessary to build and execute a Java project. This reduces
the size of container images, making Java applications easy
to ship and deploy directly in a containerized environment,
as microservices for example.

A big challenge is that many legacy applications are not
designed according to the closed-world assumption. In this
case, the reachability of some bytecode elements (such as
classes, methods, or fields) may not be identified due to
the Java dynamic features, e.g., reflection, resource access,
dynamic proxies, and serialization [41], [42], [34], [43]. For
example, the popular dependency netty, an asynchronous
event-driven framework, heavily relies on dynamic Java
features to perform blocking and non-blocking sockets
between servers and clients. The closed-world constraint
of GraalVM imposes strict limits on the natural dynamism of
Java upon which libraries and frameworks like netty depend.

Specialization in the Modern Java Ecosystem



There is a risk of violating the close world assumption if at
least one of the dependency in a project relies on some
dynamic Java feature.

To bridge the gap between the requirements of GraalVM
and the current state of Java systems, the community is
creating new versions of libraries that adhere to the closed-
world assumption. In the long run, Java developers will
have the option to embrace the full closed-world constraint
in order to produce fully-static images. Between now and
then, however, the community works on developing and
delivering incremental improvements which developers can
use sooner rather than later. DEPTRIM contributes to this
effort, offering a specialization solution for projects that have
dependencies potentially conflicting with the closed-world
assumption. With the creation of a partially specialized tree
(PST), DEPTRIM effectively achieves dependency specializa-
tion without jeopardizing the success of the build, making
it a practical option. Note that the successful build of a
project does not guarantee that its behaviour is unchanged.
Indeed, test suites can never prove the absence of bugs,
and must generally concentrate on specific issues, since it
is impossible to test everything. More research is needed to
precisely ascertain the extent to which the usage dynamic of
features affects dependency specialization.

6.2 Specialized Projects in Production

In this work, we assess the validity of the specialized projects
with respect to their tests suite. In practice, developers
who wish to deploy their specialized project in production,
might consider one more validation step to assess how
specialization may impact their users. This additional step
depends on how the specialized project is used: either
declared as dependency within client projects, or deployed
as an application with which end-users interact.

If the specialized project is mainly used as a library, an ad-
ditional validation step consists in assessing the specialized
JAR with respect to representative client projects. By running
the test suite of these clients, the developers can verify that
the specialization does not result in unexpected behaviors.
This mechanism, termed reverse dependency compatibility
testing, has been applied previously in the literature to
identify breaking updates in libraries [44]. This requires
curating a list of relevant client projects, which usage of the
library is meaningful and which test suites actually exercise
the library. If the specialized project essentially faces end
users, through a graphical or command-line interface, an
additional validation step consists in running a production-
like workload on the specialized application.

We have performed a proof of concept of this augmented
validation for specialized projects to be used in production.
We focused on user facing projects. Three projects in our
dataset have a graphical or command-line interface and
can be executed with a workload: graphhopper, pdfbox, and
Recaf. For each of these projects, we build the original JAR
and run it with a workload that is representative of a typical
production operation. Next, we build a specialized version
of the project with DEPTRIM, and run the new JAR with
the same workload. The analysis of both executions let’s
us determine if the observable behavior of the specialized
project is as intended.
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The first project, graphhopper,? is a routing application
based on OpenStreetMap. DEPTRIM removes 1,666 third-
party classes from 12 dependencies in graphhopper to output
a PST. The workload for graphhopper consists of running
its JAR and fetching the route between four locations in
Sweden from its web page. The second project, pdfbox,?
is developed by the Apache Software Foundation. It offers
command-line tools for performing common operations on
PDF documents. DEPTRIM produces a TST for pdfbox by
specializing 6 dependencies within it, which results in the
removal of 5,070 classes. As the workload for pdfbox, we use
10 of its command-line utilities, on 5 PDF documents sourced
from [45]. These operations include text and image extraction,
encryption, decryption, and merging and splitting PDF
documents. Recaf? is a code editor that allows developers
to manipulate bytecode through a graphical user interface.
DEPTRIM produces a TST for Recaf, by removing 2,952
classes from 41 of its dependencies. As the production
workload for Recaf, we import a compiled .class file into
its editor, which decompiles it, and renders its source. We
then modify the source by adding a statement, and export
this new version as a . java file.

For all three specialized projects, we do not observe
any deviation between the behavior of the original and
the specialized version. The route returned by specialized
graphhopper is identical to the one returned by the original.
The pdfbox operations also result in the same output files.
We successfully modify a decompiled .class file with
specialized Recaf and export it, as with the original Recaf
JAR file. Additionally, we do not get any unexpected log
outputs within graphhopper and pdfbox. However, Recaf
outputs a log message during startup about a missing class
within the specialized dependency logback-core. This non-
critical exception can be remediated by adding logback-core
to the specialization blacklist of DEPTRIM.

The executions of the three projects under realistic work-
loads confirm that their high-level features are not impacted
by specialization. Developers can leverage dependency
specialization to deliver focused versions of their application
to end-users, while keeping its behavior intact. An interesting
direction for future work is to conduct this evaluation for a
larger set of specialized projects.

2. https:/ /www.graphhopper.com/
3. https:/ /pdfbox.apache.org/
4. https:/ /www.coley.software /Recaf/



6.3 Specialization and Software Integrity

The integrity of software supply chains is a timely research
topic [46], [47], [48]. Ensuring the integrity of dependencies
involves checking that their code has not been tampered with
between the moment they are fetched from a repository and
the moment they are packaged in the project. Checksums,
such as the SHA family of cryptographic functions, are com-
monly used to verify the integrity of software dependencies.
These checksums are then integrated as part of the project’s
software bill of materials (SBOM) that lists all the components
that compose it, including open-source libraries, frameworks,
and tools [49]. A comprehensive, well-maintained SBOM can
help ensure software integrity by enabling organizations to
identify and track potential security vulnerabilities in their
software components and take appropriate action to address
them, while also complying with regulations and standards.

The specialization of third-party dependencies modifies
the bytecode of the target dependencies, which can break
the integrity-checking process. In other words, rehashing
a dependency with a different bytecode will produce a
different hash value, breaking the integrity check. This
is because the checksum of the original bytecode, which
was used to verify the integrity of the dependency, will
no longer match the checksum of the changed bytecode.
For example, Listing 1 shows a JSON file reporting the
checksum of the original dependency commons-io in one
of our study subjects, jcabi-github, when using the SHA-
256 hashing algorithm. DEPTRIM specializes commons -io by
removing unused classes, which constitutes a change in its
bytecode, and hence in its checksum, as presented in Listing 2.
Therefore, the checksum of the changed bytecode after
specialization no longer matches the expected checksum,
and the integrity checks fail, as discussed in Section 4.5.

A way to ensure the integrity of specialized depen-
dencies is by deploying them to external repositories at
build time. For example, in the previous example, the
project jcabi-github could deploy the specialized variant
of commons-io to Maven Central with a custom MAVEN
groupld, while updating the checksum in its SBOM ac-
cordingly. This way, it could check the integrity of this
dependency against the SHA of the specialized variant.
This approach provides the benefits of specialization while
preserving software integrity. As far as we know, there is
currently no tool that implements this technique. Preserving
integrity in the light of specialization is a challenge for
hardening the software supply chain.

6.4 Threats to Validity

Internal validity. The first internal threat relates to the usage
of static analysis to determine which parts of the dependency
bytecode are reachable from the project. We mitigate this
threat, by relying on DEPCLEAN, the state-of-the-art tool for
debloating Java dependencies [24]. Another threat lies in
the thoroughness of the test suite, which may not capture
all the dependency API behaviors that can be exercised
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"groupId": "commons-io",
"artifactId": "commons-io",
"version": "2.11.0",
"checksumAlgorithm": "SHA-256",
"checksum": "961b2f6d87dbacc5d54abf45ab7a6€2495f89b755989
<> 62d8c723ceadbc210908"
}

Listing 1: SHA checksum of the original dependency
commons-io in the project jcabi-github

{
"groupId": "se.kth.castor.deptrim.spl",
"artifactId": "commons-io",
"version": "2.11.0",
"checksumAlgorithm": "SHA-256",
"checksum": "c84eaef6b629729c71a70a2513584e7ccacf70cb4dfl
< 3e38b731bb6193c60e73"

}

Listing 2: SHA checksum of the specialized dependency
commons-io in the project jcabi-github

by the project. This means that there is a risk that some
necessary classes would be removed, yet the build would be
successful because of insufficient testing. For example, the
projects immutables, scribejava, and tablesaw successfully
build with a TST but have less than 100 tests each. To
mitigate this threat, we curate a set of study subjects that are
mature and contain tests (see Table 1). DEPTRIM is a MAVEN
plugin that modifies the pom.xml on-the-fly during the build
process. It might introduce conflicts between plugins, causing
the build to fail. For example, maven-enforcer-plugin or
license-maven-plugin check the pom.xml to ensure that it
meets specific requirements and follows the best practices.
However, since our approach only modifies the code within
the entry dependencies in the pom.xml, the failures due to
misconfigurations are minimized.

External validity. Our results are representative of the
Java ecosystem, and our findings are valid for software
projects with these particular characteristics. Moreover, our
bytecode removal results are influenced by the number of
dependencies of these projects. To address this, we found our
evaluation on 30 real-world, well-known projects, derived
from sound data sources, as described in Section 4.1. Further-
more, the selected projects cover a variety of application
domains (e.g., dependency injection, database handling,
machine learning, encryption, IO utilities, faking, meta-
programming, networking, etc). To the best of our knowledge,
this is the largest set of study subjects used in software
specialization experiments.

Construct validity. The threats to construct validity relate
to the accuracy and soundness of the results. Our results
may not be reproducible if the projects are compiled with
a different Java version or have flaky tests. To mitigate
this threat, we choose the latest Java version and build
the original projects two times in order to avoid including
projects with flaky tests. Furthermore, for all RQs, we
include logs and automated analysis scripts in our replication
package for reproducibility as described in Section 4.6.


https://youtu.be/dQw4w9WgXcQ

7 RELATED WORK

In this section, we position the contribution of our depen-
dency specialization technique with respect to previous work
that aims at reducing the size of applications composed of
multiple third-party dependencies.

Several previous works focus on reducing the size of Java
applications. While all techniques perform code analysis
based on the construction of a call graph, they vary in
the way they look for code that can be removed: dead-
code removal, inlining, and class hierarchy removal [50];
identification and removal of unused optional concerns with
respect to a specific installation context [51], unbundling user-
facing application features [52] or tailoring the Java standard
library [53], [54]. In contrast to these efforts that aim at
reducing the size of a packaged application, DEPTRIM targets
reduction while keeping the modular structure of the project
and its third-party dependencies. Our technique focuses
on reducing each dependency while keeping an explicit
dependency tree in the form of a specialized pom.xml file
as well as maintaining specialized dependencies as distinct,
deployable JAR files.

Bruce et al. [55] propose JSHRINK, augmenting static
reachability analysis with dynamic reachability analysis.
They rely on test cases to find dynamic features, including
methods and fields, invoked at runtime, adding them back
to amend the imprecision of static call graphs. DEPTRIM
differs from JSHRINK, as it does not aim to refine reachability
analysis to create smaller JAR files of the target project.
Instead, DEPTRIM focuses on specializing the dependency
tree of a Java project by removing unused code in third-party
dependencies independently, such that each dependency can
be deployed to external repositories.

In our previous work, we proposed DEPCLEAN, a tool
that identifies and removes unused dependencies in the
dependency tree [56], [25]. DEPCLEAN constructs a call graph
of the bytecode class members by capturing annotations,
fields, and methods, and accounts for a limited number of
dynamic features such as class literals. DEPCLEAN produces
a variant of the dependency tree without bloated depen-
dencies. DEPTRIM pushes forward the field of dependency
debloating through the removal of unused bytecode from
individual dependencies, thereby yielding smaller packaged
artifacts.

Table 6 shows a comparison between DEPTRIM and state-
of-the-art debloating tools for Java applications, per the re-
cent study of Ponta et al. [18]. We have included a recent tool,
JDBL, which produces debloated JAR files based on the usage
analysis obtained from code coverage tools [57]. We compare
the tools regarding three distinct specialization outcomes:
the specialized project JAR, specialized dependency JAR files,
and specialized pom.xml files. A key observation is that state-
of-the-art tools primarily focus on generating a debloated
JAR file for the target Java project. More specifically, the
MAVEN Shade Plugin, Proguard, and JDBL aim to build
an uber-JAR, which encapsulates all the utilized code from
the project’s dependencies, resulting in a self-contained
JAR file. Only DEPCLEAN produces a modified version of
the pom.xml file. The key novelty of DEPTRIM is that it is
the first tool that specializes individual dependency JAR
files and produces specialized pom.xml files. The generation
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Table 6: Comparison between specialization outputs of
existing Java debloating tools and DEPTRIM.

ToOL SPECIALIZATION OUTPUT

Project JAR  Dependency JAR  POM file
Maven Shade v
ProGuard v
JDBL v
DEPCLEAN v v
DEPTRIM v v v

and packaging of specialized individual dependency JAR
files allows developers to benefit from specialization while
maintaining a modular architecture, and they can eventually
include the specialized dependencies as part of their project’s
software bill of materials [49].

Closely related to DEPTRIM is the work on code special-
ization. Mishra and Polychronakis propose SHREDDER [20], a
defense-in-depth exploit mitigation tool that protects closed-
source applications against code reuse attacks. They also
build SAFFIRE [58] which creates specialized and hardened
replicas of critical functions with restricted interfaces to
prevent code reuse attacks. These tools target C++ API
implementations. They eliminate arguments with static
values and restrict the acceptable values of arguments. A
key feature of these techniques is to replace the code of
API members by a stub function so that, at runtime, only
specialized versions of critical API functions are exposed,
while any invocation that violates the enforced policy is
blocked. Focusing on JavaScript applications, Turcotte et
al. [59] propose STUBBIFIER, which replaces unreachable code,
identified through static and dynamic call graphs. DEPTRIM
does not remove unused code from the project but rather
replaces dependencies that are partially used by the project
with smaller and specialized versions.

Previous specialization techniques mitigate the risk of
removing code that might be needed for a specific execution,
by replacing this code by small stub functions. With DEPTRIM
we address the challenges of dynamic language features with
another strategy. We specialize each dependency and then
assess whether the completely specialized dependency tree
still passes the build. If it does not, we search for a partially
specialized tree that does not include the dependencies that
rely on the dynamic features of Java. To the best of our
knowledge, prior research on software specialization has not
addressed the customization of third-party dependencies
or the provision of build configuration files to enable the
construction of specialized dependency trees. This represents
a novel contribution of our work, differentiating it from
previous studies in this area.

As part of our experiments with DEPTRIM, we contribute
novel observations to the body of knowledge about library
and API usage. Recent work in this area includes the
following studies. Huang ef al. [60] study the usage intensity
from Java projects to libraries. They find that the number
of libraries adopted by a project is correlated to the project
size. However, their study does not provide a more fine-
grained analysis of the used components. Hejderup et al. [61]
investigate the extent to which Rust projects use the third-
party packages in their dependency tree. They propose



PRAZI, a call-based dependency network for CRATES.IO that
operates at the function level.

Some studies examine the benefits of debloating from a
security standpoint. For instance, Azad et al. [62] report that
debloating significantly reduces the number of vulnerabilities
in web applications, while also making it more difficult
for attackers to exploit the remaining ones. Agadakos et
al. [63] propose NIBBLER to erase unused functions within the
binaries of shared libraries at the binary level. This enhances
existing software defenses, such as continuous code re-
randomization and control-flow integrity, without incurring
additional run-time overhead. Ye et al. [64] implement a
tool that uses NLP and function call graphs to identify
and isolate vulnerabilities in NPM packages, effectively
reducing software bloat and preventing known vulnerability
exploitation in JavaScript applications. Although DEPTRIM’s
primary function is to specialize dependency trees and
enhance their reusability, it is important to note that the
removal of third-party code can lead to a reduction in the
potential attack surface.

8 CONCLUSION

In this paper, we propose DEPTRIM, a fully automated
technique to specialize third-party dependencies of a Java
project. DEPTRIM systematically identifies and removes un-
used classes within each reachable dependency, repackages
the used classes into a specialized dependency, and replaces
the original dependency tree of a project with a specialized
version. DEPTRIM builds a minimal project binary, which
only contains code that is necessary for the project.

Our evaluation with 30 MAVEN Java projects demon-
strates the capabilities of DEPTRIM to produce minimal
versions of the dependencies in these projects while keeping
the original build successful. In particular, DEPTRIM builds
totally specialized trees for 14 projects and builds the other
16 with the largest number of specialized dependencies
such that the project still builds. The ratio of dependency
classes to project classes decreases from 8.7 x in the original
projects to 5.0 X in the specialized projects. This represents
a reduction of 35.7% of the bytecode size in third-party
dependencies. Dependency specialization effectively reduces
the share of third-party code in Java projects.

As future work we will investigate dependency special-
ization to increase diversity in software supply chains [49].
DEPTRIM currently generates one specialized dependency
tree for each project. However, there exists a multitude of
possibilities within the realm of partially specialized trees,
which we have yet to explore. We will venture into the
forest of dependency trees to let diversity blossom in Java
applications.
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