
TOSEM-2021-0317: Revision

Dear Editorial Office of ACM Transactions on Software Engineering and Methodology,

We are happy to submit a major revision of our paper entitled “Coverage-Based Debloating
for Java Bytecode” exactly 43 days after the notification. We thank the reviewers for their
detailed recommendations. We have addressed all their comments, which has improved the quality
of our manuscript.

We performed five major revisions:

• We added a new research question (RQ5) comparing JDBL and JShrink. We compare the
debloating results and execution time for 17 case studies from the original paper of Bruce et
al. [1]. Asked by reviewers in comments #1.7, #2.1, #2.2, and #3.3.

• We added two additional examples (Examples 4 and 5) showing the challenges of collecting
accurate and complete coverage information for debloating. Asked by reviewers in comments
#1.1, #1.3, #2.5, and #3.4.

• We improved the description of the data collection procedure that we followed. A more
detailed description of our dataset is also available in Durieux et al. [3]. Asked by reviewers
in comments #1.4, #1.5, #3.11, and #3.12.

• We added a new section (Section 6.1) that quantifies and discusses the complementary
contribution of each coverage tool and the benefits of using this approach for debloating.
Asked by reviewers in comments #1.16 and #2.6.

• We clarified the impact of the different libraries and their versions w.r.t the results reported
in our experiments. We show that the results are not biased due to the different library
versions analyzed. Asked by reviewer in comments #3.1.

In the following pages, we give detailed answers to each of the reviewers’ comments. The
original text from the reviewers is included in boxes , our answers follow the boxes. All changes
are highlighted in blue in the revised version of the manuscript (except typos).

In case of requiring any further information, please do not hesitate to contact us.

Sincerely yours,

César Soto-Valero

On behalf of Thomas Durieux, Nicolas Harrand, and Benoit Baudry

1

Reviewer #1

Main issues

Comment #1.1: “For me it was not clear why, starting from the title, the discussion was done
about bytecode, but the listings presented in the section show the actual Java code. I believe, this
was done to make the examples more understandable for a reader. However, it hides the actual
changes in the bytecode. So, I would suggest to at least add the corresponding bytecode to the
provided listings. For example, Listing 4 could be put on a side of Listing 3. And then the authors
could show how the code in Listing 3 corresponds to the bytecode in Listing 4.”

We thank the reviewer for this comment. JDBL debloats bytecode based on the coverage
information collected from various code coverage tools. As discussed in Section 3.1, collecting
accurate and complete coverage information for debloating is challenging. The listings presented in
this section shows some representative examples of the mismatch between the actual code usage
(as expressed by the tests) and the coverage information reported by coverage tools.

We show source code only (except for example #3) to facilitate the readers’ understanding of
these examples. For further reference to the examples, the source code and coverage reports of all the
listings is available in the companion repository along the rest of the paper’s data and experiments:
https://github.com/castor-software/jdbl-experiments/tree/master/revision/coverage_examples.

Comment #1.2: “Listings placed in the paper far from the actual examples. I would suggest
to place them right inside corresponding examples.”

Following the reviewer’s suggestion, we have put all the listings side-by-side, which improves
the reading experience of the reader.

Comment #1.3: “The challenges section 3.1 should contain all the challenges addressed in the
paper. For example, I did not find the challenges for the solutions presented in 3.2.2 and 3.2.3.”

We now discuss two additional challenges in Section 4.1 (Examples #4 and #5). There is at
least one example of the challenge for each solution presented in Sections 3.2.2 and 3.2.3.

Comment #1.4: “I did not understand the motivation for several library selection steps in the
data collection process (section 4.2). For example, why only single-module Java projects? Why the
projects that do not declare a fixed release are excluded? Why not use git tags to identify commit
hashes of the released versions? I think, the clear motivations for each step is needed.”

In Maven, modules in a multi-module project are built and packaged separately. This significantly
increases the technical difficulties of debloating because each module has a separate classpath and a
separate test suite. Also, modules may depend on each other (a.k.a. internal dependencies), which
complicates the removal of classes in projects with dependent modules. JDBL is engineered with
usability in mind: the user only needs to edit the pom.xml file when using JDBL. We performed
our experiments on single-module projects to facilitate usability and obtain a single debloated JAR
file that we can use to assess the effectiveness of debloating.

2

https://github.com/castor-software/jdbl-experiments/tree/master/revision/coverage_examples

We did not consider clients that do not declare a fixed dependency version because it was not
possible to identify the library version actually needed to compile and run the client, and that
information is essential for our experiment.

We did not use the Git tags because they are not widely adopted. Moreover, the Git tag version
frequently has a different naming convention than the Maven version, adding complexity. We tried
both approaches and kept the extraction of the version number from the number as a more reliable
approach.

Comment #1.5: “My other issue about the data collection section - it is presented in a text
form, which makes it difficult for reader to quickly understand the library selection steps. I would
suggest to improve the presentation of the selection procedure. Maybe a figure can improve the
clarity.”

We thank the reviewer for this comment regarding the presentation. We have made an effort to
present our data collection pipeline in text form in order to save space for other sections of the
paper. We have edited and improved the presentation of the data collection procedure (see Section
4.2). We have enumerated the data selection steps and added more details about the dataset.
A more detailed description of the dataset, which includes an illustrative figure, is presented in
Durieux et al. [3].

Comment #1.6: “Table 1 shows the coverage according to the JaCOCO tool, however, other
tools are then used to generate the coverage. So, I think, the total coverage generated as a result
of running all the tools needs to be included in the table.”

We thank the reviewer for this comment. We have edited Table 1 to show the total class
coverage of the libraries. We computed these descriptive statistics by aggregating the coverage
reports collected by the four coverage tools that we use for debloating (see Section 3.1.2). We
have shown class coverage only because, as discussed in Section 6.1, the JVM class loader does not
provide more fine-grained coverage information.

Comment #1.7: “The analysis of results are presented for the ecosystem. However, the view
of a single library is missing. I believe, presenting the impact of debloating for an individual library
will significantly improve the paper.”

We thank the reviewer for this comment. We have presented the impact of debloating for a
benchmark of 17 individual Java libraries in a new research question (RQ5), which was added
in the revised version of the paper. In this research question we have assessed the impact of
coverage-based debloating for these 17 case studies in the benchmark of Bruce et al. [1] w.r.t the
percentage of size reduction of the debloated artifact and the behavior preservation after debloating
based on the execution of the original tests (see Section 5.2.3). Moreover, we present a discussion
of the debloating execution time in this benchmark of individual projects in a new section (see
Section 6.2).

3

Comment #1.8: “The analysis of errors presented in the paper is done according to the
black-box approach. While this provides some ideas on the types of the errors, such analysis does
not provide insights on how JDBL could be improved, or which part of JDBL likely to cause such
errors, or for which libraries JDBL is likely to generate such kind of errors. Hence, I believe, the
analysis of errors needs to be improved.”

We did a manual analysis of the errors for most of the cases. This manual analysis was supported
by a custom-made dashboard (accessible at http://130.237.222.185:8881) to identify the problems
that JDBL has faced. We did not notice any particular pattern from our analysis of the errors.
The remaining problems are due to custom configurations and specificities of some projects, which
are hard to deal with, such as classpath incompatibility between different Maven plugins. We
decided not to present a deeper analysis because we did not identify any specific take-away from
our manual analysis.

Other issues

Comment #1.9: “The summary of contributions in the Introduction section is not clear. In
particular, at this moment the reader does not know why there were different sets of 395 and
220 libraries for the third and fourth contributions. I would suggest the authors to clarify the
contributions and base them on the information present in the Introduction section.”

We thank the reviewer for this remark. We have edited the list of contributions in the
Introduction section. We have clarified and removed the unnecessary information regarding the
experimental results to avoid confusing the reader at this point of the paper.

Comment #1.10: “Figure 1 - What about within library dependencies? I.e. when one
class/method depends on the other class/method of the same library. I believe, such details in the
example will be useful for the reader to completely understand the situation with the code reuse in
Java projects.”

We have modified Figure 1 to illustrate the situation pointed out by the reviewer. We added
inter-library code reuse examples within JProject, dependency A, and dependency D. We edited
the caption of the figure to reflect this change. We also improved the description regarding the
colors, so that impaired people can understand the figure, see Comment #3.24.

Comment #1.11: “In the definition of the coverage-based debloating (lines 176 - 180), the
authors are using the term “correct program”. I believe, the clarification is needed what is understood
by the correct program.”

By “correct program” we mean a “compilable program.” We have clarified this by editing the
definition. We changed the term from “correct program” to “syntactically correct program.”

4

http://130.237.222.185:8881

Comment #1.12: “Footnote 7: I would suggest to use the direct link to the Maven Repository:
https://repo.maven.apache.org/maven2/.”

We have changed the footnote to link directly to the Maven Repository https://repo.maven.
apache.org/maven2/, as suggested by the reviewer.

Comment #1.13: “The authors start analysis from the source code. And then their first step
becomes the compilation of the projects. For me this was not clear. Why not to start directly from
the compiled distributed Jar archives (e.g. available from Maven Central).”

We do not debloat the compiled JAR files directly because they do not include the tests. We
use the tests as the workload that exercises the project. Our coverage-based debloating technique,
implemented in JDBL, debloats a Java project during its build life-cycle. JDBL relies on the Maven’s
compilation and testing phases to perform the coverage collection, bytecode transformation, and
validation of syntactic and semantic correctness of the debloated artifact (see Section 3.3).

This approach has several advantages compared with existing debloating techniques:

• It facilitates the integration of JDBL: developers only need to add a few lines in the pom.xml
file of the project (Listing 1 shows an example).

• The debloating procedure occurs within the regular project build life-cycle.

• The debloating procedure is reproducible as long as the project do not have flaky tests.

• A new debloated artifact with all its debloated dependencies (jar-with-dependencies) is
generated after the project’s build.

1 <plugin>
2 <groupId>se.kth.castor</groupId>
3 <artifactId>jdbl-maven-plugin</artifactId>
4 <version>1.0.0</version>
5 <executions>
6 <execution>
7 <goals>
8 <goal>trace-based-debloat</goal>
9 </goals>

10 </configuration>
11 </execution>
12 </executions>
13 </plugin>

Listing 1: Using JDBL as a Maven plugin that executes within the package phase. This facilitates
its execution and integration into the project’s build life-cycle.

Comment #1.14: “The authors several time say that they disable surefire plugin. However,
no motivation is presented for this action. I believe, this motivation would help the reader to follow
the decisions made by the authors of the paper.”

We thank the reviewer for this remark. We have edited Section 4.3.2 of the paper with addi-
tional clarifications about our motivation to set up the maven-surefire-plugin to its default

5

https://repo.maven.apache.org/maven2/
https://repo.maven.apache.org/maven2/

configuration.

Note that we explain why we disabled the maven-surefire-plugin in Section 4.3.1 (Coverage-
Based Debloating Execution):

“The second step adds JDBL as a plugin inside the Maven configuration (pom.xml)
and resets the configuration of the maven-surefire-plugin. This reset ensures that
its original configuration is not in conflict with the execution of the coverage collection
phase of JDBL. A manual configuration of JDBL could prevent this problem, but in
order to scale up the evaluation, we decided to standardize the execution for all the
libraries.”

In addition, we further stress the motivation of this modification in Section 6.3 (Internal Validity):

“JDBL relies on the official Maven plugins for dependency management and test execu-
tion. Still, due to the variety of existing Maven configurations and plugins, JDBL may
crash at some of its phases due to conflicts with other plugins. For example, the Maven
shade plugin allows developers to change the produced JAR by including/excluding cus-
tom dependencies; or the maven-surefire-plugin allows excluding custom test cases,
thus altering the validation phase of JDBL. To overcome this threat and to automate
our experiments, we set the maven-surefire-plugin to its default configuration, and
use the maven-assembly-plugin to construct the JAR of all the study subjects.”

Comment #1.15: “In the RQ1, the authors analyse the validation errors. However, no insights
about the crash category errors are provided. Also, there were 13 time-out errors, but no information
provided on how long was the time-out set. I would suggest to complete the paper with this
information.”

As mentioned in Comment #1.8, the causes of crashing builds are diverse and difficult to diagnose
in general. This is due to the aggressive nature of the debloating transformations, which may cause
the build to stop at some phase and terminate abruptly, i.e., due to accessing invalid memory
addresses, using an illegal opcode due to JVM incompatibility, or triggering an unhandled exception.
We have performed an additional manual investigation of the build crashes. We implemented
a dashboard to facilitate the filtering and analysis of the complete results of our debloating
experiments, which is accessible for the interested reviewer here: http://130.237.222.185:8881.

Regarding the execution time-out, we set this value to 1h in our experiments. We have added
this information in Section 4.3.1 (Coverage-Based Debloating Execution) to make the description
of our experiments more accurate.

Comment #1.16: “lines 1282 - 1285 “the failures of one specific tool are likely to be corrected
by other tools”. I believe, a more precise analysis is needed to support this statement. The
complete solution would be to generate a table that presents all the cases when one tool helps to
fix the failures of another tool. But at least manual investigation of some of the failures has to be
presented.”

We have added a new Section 6.1 that discusses the complementarity of the code-coverage tools
for debloating. The Venn diagram presented in this section shows that there is not one single tool
that can capture all the code used at runtime and that each tool captures specific corner cases.

6

http://130.237.222.185:8881

Comment #1.17: “line 1299 ‘which cover projects from different domains’. I would suggest
the authors to expand the domains covered by their selected libraries.”

We have expanded this sentence in Section 6.3.2 by explicitly listing the most relevant domains
covered by the selected libraries. We also added a footnote there with the explicit list of libraries
used in our experiments.

Reviewer #2

Comment #2.1: “My major concern with the paper, however, is that it does not compare to
the state of the art. Table 7 gives some insight into the different categories of approaches and
implementations, but there is no evaluation performed with the five competing tools. While I see
that all of them target different parts of the programs to be reduced, I think that a comparison
at least against JShrink should be possible here. From my comparison of the numbers in the
evaluation of JDBL and JShrink reported in the respective papers, JDBL should be superior
to JShrink. If this is actually the case in a controlled comparative experiment, this would be a
major contribution to the field.”

We thank the reviewer for this constructive comment. We have reproduced the JShrink experi-
ments on the same benchmark reported in the companion paper by Bruce et al. [1]. To do so, we
forked the JShrink project on GitHub and updated its functionalities to execute the original
experiments in a Docker container, see https://github.com/castor-software/jshrink.

We performed a comparison between JShrink and JDBL in terms of JAR size reduction and
behavior preservation. The comparison is based on the 17 single-module Maven projects of Bruce’s
benchmark (JDBL is designed to work on single-module projects). The comparison is discussed a
new section 5.2.3, which answers a a new research question (RQ5):

“RQ5: How does coverage-based debloating compares with the state-of-the-art of Java
debloating regarding the size of the packaged artifacts?”

Our results show that JDBL outperforms JShrink in both average size reductions while
passing all the tests with the debloated artifacts. Moreover, we present an additional comparison of
the execution time of both tools in a new Section 6.2. The benchmark of projects debloated with
JDBL is accessible on the companion repository of our paper at https://github.com/castor-software/
jdbl-experiments/tree/master/revision/benchmark/projects_debloated_with_jdbl. We believe the
results reported in our paper w.r.t this benchmark is a comparison point that will benefit future
researchers working on Java bytecode debloating.

Comment #2.2: “A medium concern currently is reporting of runtimes of the approach. The
authors report a total runtime of their experiments of 4.5 days and debloat times of 1.5 days.
It would be interesting to see descriptive statistics on the runtime of the approach (avg, median,
quartiles) to see if it is feasible for every-day software development. I would appreciate to see
such statistics in a future version of the paper. Also the comparison to JShrink would be very
interesting.”

7

https://github.com/castor-software/jshrink
https://github.com/castor-software/jdbl-experiments/tree/master/revision/benchmark/projects_debloated_with_jdbl
https://github.com/castor-software/jdbl-experiments/tree/master/revision/benchmark/projects_debloated_with_jdbl

We thank the reviewer for this insightful comment. We have added a new discussion section (see
Section 6.2) comparing the execution time of JDBL and JShrink. To facilitate further research in
this direction, we have made available on GitHub the complete results of the benchmark of projects
of Bruce et al. [1] debloated with JDBL: https://github.com/castor-software/jdbl-experiments/tree/
master/revision/benchmark/projects_debloated_with_jdbl.

Comment #2.3: “line 141: You mention that your objective here is attack surface reduction,
but you do not evaluate that. I would suggest removing this.”

We have removed “attack surface reduction” from the objectives of this paper. Attack surface
reduction is part of our future work on assessing the impact of debloating in Java applications.

Comment #2.4: “line 221: Please introduce the term “artifact” before usage. It also might be
misleading here.”

We have clarified the term “artifact” in paragraph 4 of the Introduction section (where it is first
mentioned). We have also edited the sentence pointed out by the reviewer to make clear there that
by artifact we meant “the bytecode of a compiled project.”

Comment #2.5: “lines 262ff: I found the three examples a bit hard to follow. Is there a
systematic to follow (from [21] or [30]) maybe? In the current presentation is is hard to see for the
reader that the authors address all problematic cases here. As this is key to the presented approach,
I think this should be addressed.”

We have edited the description of the three examples in Section 3.1. We have added two
additional examples (Examples #4 and #5) to facilitate the comprehension of the reader. These
examples cover all the problematic cases addressed in Section 3.2. The source code of all the listings
presented in the paper is available here: https://github.com/castor-software/jdbl-experiments/tree/
master/revision/coverage_examples.

Comment #2.6: “lines 334ff: From the description it sounds as if JCov is the best choice here
and does not have any problematic cases. Why is the approach not using this solely, if correct?”

We have added a discussion about the complementarity of the code-coverage tools in new
section (Section 6.1). From the new Venn diagram presented in this section, it can be observed
that JCov covers 39,596 (51.7%) of the classes.

Comment #2.7: “lines 353ff: I agree with the authors here, but t would be good to have
some numbers later in the paper for this, so see how minimal this is.”

We have computed the size of all the class files in the original bundled JAR files of our dataset.
We compared the bytecode size of interfaces, enums, annotations, and exceptions with respect to
the bytecode size of the rest of the class file. According to our results, these constructs represent

8

https://github.com/castor-software/jdbl-experiments/tree/master/revision/benchmark/projects_debloated_with_jdbl
https://github.com/castor-software/jdbl-experiments/tree/master/revision/benchmark/projects_debloated_with_jdbl
https://github.com/castor-software/jdbl-experiments/tree/master/revision/coverage_examples
https://github.com/castor-software/jdbl-experiments/tree/master/revision/coverage_examples

15.8% of the size on disk of the JAR files. We have reported this finding in Section 5.2.2. The
Java project of the tool that we implemented to perform this particular analysis is available at:
https://github.com/castor-software/jdbl-experiments/tree/master/revision/TypeAnalyzer.

Comment #2.8: “Algorithm 1: The caption says “bytecode”, but the algorithm compiles from
source code. This is a bit confusing.”

We thank the reviewer for this comment. We have edited the caption of Algorithm 1 to reflect
the fact that the debloating procedure receives a Java project as input.

Comment #2.9: “Algorithm 1: I was confused about W . What are its members? What does
it mean to execute a complete workload?”

The workload W is a set of valid inputs belonging to the input space of a compiled Maven. The
input space of a compiled Maven project is the set of all valid inputs of its public API. Workloads
are particularly useful for performing dynamic analysis. For example, to detect distinct execution
paths in software applications through profiling and observability tasks, or using monitoring tools
to analyze how the application reacts to different workloads at runtime. For our debloating
experiments, we consider W as the complete test suite of a Maven project, where each w ∈ W
is an individual JUnit test executed by Maven. We have added this explanation in Section 3.3.1
(Coverage Collection).

Comment #2.10: “RQ2: The question currently implies completeness which the approach
does not provide by design. I suggest to rephrase and add “in the inspected context" or something
similar.”

We thank the reviewer for this suggestion. We have rephrased RQ2 to explicitly reflect the
fact that we assess behavior preservation of the debloated libraries based on the workload used for
debloating.

RQ2 now reads as follows:

“RQ2: To what extent do the debloated library versions preserve their original behavior
w.r.t the debloating workload?”

Comment #2.11: “Table 1: Client coverage is VERY low. This introduces a lot of uncertainty
in the inspection of RQ6 and is not mentioned in the threats to validity section.”

We agree with the reviewer in this regard. The clients’ coverage is not very high (20.24% on
average), which may cause that some used functionalities in the debloated libraries are not executed
by the clients’ tests. We have added text in Section 6.3 (Construct Validity) to point out the low
coverage of the clients as a threat to the validity of our results for RQ6.

9

https://github.com/castor-software/jdbl-experiments/tree/master/revision/TypeAnalyzer

Comment #2.12: “RQ5/Section 4.3.4/Section 5.3.1: I think this inspection is not necessary.
As the debloated libraries are created in the build process of the application it does not matter if a
client can be compiled against these libraries. They need to be binary compatible to the client, of
course, but I think a developer will probably not pull these debloated libraries out of the target
directory and compile against them again. Maybe I missed the point here, but to me this feels
unnecessary. If not, then this use case needs to be explained in more detail. Also, the number of
44 out of 1,001 applications was surprisingly high to me. Would this be linked to the low test
coverage observed?”

We agree with the reviewer. The purpose of RQ5 is indeed to check for binary compatibility. In
this research question, we check whether the client still compiles when using a debloated library as
a dependency. Our objective is to quantify the impact of debloating a library for its clients. From
the client’s perspective, missing used classes in a dependency causes errors at compilation time.
For example, as shown in Table 6 in the revised version of the paper, the most common error is
“Cannot find class.” Thus, we report these figures because it is critical for libraries to know the
repercussions of debloating.

As pointed out by the reviewer, the lower number of compilation errors observed in the clients
when using a debloated library may be related to the low test coverage of the clients and, in
particular, in the libraries used as dependencies. Our debloating results are influenced by the
coverage of the libraries and clients used as study subjects. We have added a sentence in Section
6.3.2 (External Validity) that refers to this point. A more in-depth investigation of the causes of
low coverage between clients and their dependencies is out of the scope of this paper.

Comment #2.13: “line 1276: While valid, I think the “flakiness” of the tests could be checked
in the dataset before the experiment is performed.”

We executed three times the test suite of all the library versions and all clients, as a sanity
check to filter out libraries with flaky tests. We have explicitly referred to this in Section 4.2 of the
paper (Data Collection):

Comment #2.14: “line 1281: I think also the version requirements could be checked before
executing the implementation to the approach or before adding these projects to the dataset. It is
a fair requirement.”

We thank the reviewer for this comment. We agree with the reviewer that adding Java version
requirements in our data filtering is a fair experimental protocol. We did not check the Java version
used by the debloated libraries in our dataset, but we checked that the library compiles successfully
in our experimental environment before executing the debloating. For our experiments, we use
Java version 1.8.

Comment #2.15: “The novelty of the work is a bit “oversold here”: I could 6 times “novel”, 9
times “first” in the sense of “we are the first” here. I can certainly see the novelty of the work even
when this would be toned down a little.”

10

We thank the reviewer for this comment. We have lowered the tone and removed unnecessary
novelty claims in the revised version of the paper.

Comment #2.16: “line 33: How do you identify and address useless code in this paper?”

We have noticed that there are subtle differences among different types of code bloat [2]. In
this paper, consider useless code as code that can be removed from a software project without
affecting its expected functionality. The removal of useless code in our paper is two-fold. First, we
remove useless code in libraries based on the coverage information collected after executing their
test suite. For the purposes of our experiments, we use the test suite as a proxy of the expected
functionalities and consider non-tested code as useless. We proceed to remove code if it does not
affect the compilation and test execution of the library. Second, we identify and quantify the
amount of useless code in the clients of these libraries that exist as a result of declaring the library
as a third-party dependency. Here, we analyze the syntactic correctness of the clients when using
the debloated version of the library (i.e., if the clients compile), as well as the semantic correctness
(i.e., if all the client’s tests pass).

Comment #2.17: “line 1258: I think the experiment itself is not novel.”

We have removed the word “novel” from the sentence. It is still important to notice that there
is no previous work in the literature that has analyzed the impact of debloated libraries on their
clients.

Reviewer #3

Major comments

Comment #3.1: “Treating different library versions as different libraries, the paper mixes
different versions of libraries so the results may be biased for specific libraries with many included
versions.”

We appreciate this concern of the reviewer regarding the soundness of our dataset. To describe
the number of library versions, we have added a new row in Table 1. This row shows the distribution
of library versions for the 94 unique libraries in our dataset. According to these descriptive statistics,
the number of versions in our dataset is not unbalanced in favor of a set of specific libraries (1st
Qu. = 1, Mean = 4.2, 3rd Qu. = 5.0, SD = 4.29). We performed a D’Agostino skewness test using
the R moments package [6] to check whether the distribution of successfully debloated versions of
libraries is skewed. The test results in a p-value = 0.3231, so we can conclude that the distribution
of the number of successfully debloated versions is not statistically skewed towards a particular set
of libraries (p-value > 0.05). Therefore, the debloating results are not biased as a consequence of
one library having many versions with the same debloating result.

This can be observed more easily by plotting the debloating results of library versions per
library. The stacked bar plot of Figure 1 shows this visualization. Each bar in the x-axis is one
of the 94 libraries, sorted in decreasing order according to the number of versions. The y-axis is
the number of versions of each library. The colors red in the legend represent versions that JDBL
fails to debloat (either because no debloated JAR was produced or because not all the tests pass

11

when using the debloated JAR), whereas the green accounts for the successes. As we observe, the
number of versions for which the debloating fails is scattered across many libraries, and the same
occurs with the successes. Therefore, the debloating our results are not affected by the different
library versions analyzed.

0

10

20

30

1 94
unique libraries

#
of

ve
rs

io
ns

Debloating success No debloated JAR Not all tests passs

Figure 1: Debloating results of the versions of the 94 unique libraries used in our experiments.

Comment #3.2: “65% of the libraries where JDBL worked do not have dependencies. JDBL
seems to work mostly on libraries w/o dependencies whereas from the introduction/motivation
example it is supposed to be used to remove dependencies for an application. The paper is not
clear about the percentage of libraries w/o dependencies to which JDBL was applied”

We have edited the motivating example in the figure presented in Section 2 to show more clearly
that JDBL removes bloated code in the application as well as in its dependencies. The total number
of distinct libraries with and without dependencies is 29 and 36, respectively.

Comment #3.3: “Related work: look into dead code elimination and compare your approach
with historical approaches”

JDBL debloats Java bytecode dynamically using the runtime coverage collected when executing
a workload. This means that, in contrast with only removing dead code, JDBL is able to debloat
code that is reachable in the control flow from an entry point of an application code [5]. We have
added a new research question (RQ5), comparing JDBL with JShrink [1], which is the most
recent published research tool for Java bytecode debloating.

12

Comment #3.4: “Listing 1 and L263,L269: exception in m2 is explicitly created by a throw
statement, so listing says something different than explanation -> does the paper mean m1 is not
shown as covered? If yes, the listing should highlight m1 instead of m2 to be consistent”

We thank the reviewer for this correct observation. Listing 1, which shows an example of an
incomplete coverage report given by JaCoCo, was incorrect. We have checked the coverage report
of JaCoCo by running this example and observed the coverage reported. The source code of all the
examples presented in the listings is available: https://github.com/castor-software/jdbl-experiments/
tree/master/revision/coverage_examples

Figure 2 shows a screenshot of HTML coverage report of JaCoCo corresponding to the code
presented in Listing 1. In this example, the methods m1 and m2 are executed at runtime, but m1 is
not reported as covered (represented in red in the listing) because JaCoCo does not cover methods
with implicit exceptions thrown from invoked methods [4]. We have fixed the listing and expanded
the explanation of this example to facilitate its understanding for the reader. Furthermore, we have
included two additional examples: Examples #4 and #5, to facilitate the reader’s comprehension
of the challenges.

Figure 2: JaCoCo report with the overage results of the example presented in Listing 1.

Comment #3.5: “L339: Listing 3 describes const folding, so how does a list of dynamically
loaded classes lead to errors described in Listing 3?”

We have expanded the description of the Example 3 in the revised paper. Figure 3 shows a
screenshot of the coverage report of JaCoCo for the example presented in Listing 3. As we can
observe from the figure, JaCoCo reports that the class Foo has 0% of code coverage. However,
this class is compiled (i.e., a file Foo.class is created), and if we remove the bytecode file, then
the compilation of the class FooTest will fail. We believe that this example exposes the existing
mismatch between the Java source code and is compiled representation, at the same time that
presents the limitations of debloating based solely on the output of code coverage tools.

Comment #3.6: “L370: Factual wrong: Also compile dependencies are pack-
aged by Maven (https://maven.apache.org/guides/introduction/introduction-to-dependency-
mechanism.html) Runtime scope means, this dependencies are not needed to compile please
clarify what you use”

We thank the reviewer for catching this glitch. JDBL debloats all the dependencies that end

13

https://github.com/castor-software/jdbl-experiments/tree/master/revision/coverage_examples
https://github.com/castor-software/jdbl-experiments/tree/master/revision/coverage_examples

Figure 3: JaCoCo report with the overage results of the example presented in Listing 3.

up in the fat JAR of the packaged Maven project. Therefore, we refer here to compile scope
dependencies. We have fixed this statement in the text of the paper.

Comment #3.7: “L421: How are unused classes removed from the classpath (AFAIK one can
only remove directories from the classpath), how is it verified, that a unused class does not appear
somewhere else in the classpath?”

We have edited this sentence to make the explanation of the removal procedure more under-
standable. JDBL performs the debloating transformations during the project’s Maven build. It
removes the unused classes just before the Maven package phase. The removal is performed in
the file system with class-level granularity. This way, unused classes are not packaged by Maven
after debloating; and for the packaged classes, all unused methods are removed.

Comment #3.8: “L432: How are bloated dependencies removed exactly? Again, how is it
ensured, the removed dependency does not appear somewhere else in the classpath?”

JDBL unzips the JAR files of all the dependencies and removes all their unused classes. As with
the project’s own classes, the bloated classes in the dependencies do not end up in the packaged
project. A dependency is considered as bloated if all their unused classes were removed during this
process. We have added more explanations of this bytecode removal process in Section 3.3.2.

Comment #3.9: “L485: It is important to be very explicit what Maven validates and what
guarantees Maven gives; how does Maven check that no dependencies and especially other resources
were incorrectly removed?”

During the build, Maven checks that the Java source code is syntactically correct through
the compilation of the project. This requires checking that the bytecode in the dependencies
is available and in the project modules and Maven plugins used during the build. Maven also
checks the syntactic correctness of the pom.xml. Maven then uses the test suite to check for
semantic correctness. If a class in the project or in its dependencies is incorrectly removed, then
we observe that there are many different types of error that are logged by Maven, e.g., “Cannot
find class,” or “UnsupportedOperationException.” We provide a complete descriptive and
quantitative analysis of these errors in Table 6 of our paper.

14

Comment #3.10: “L530: Does RQ1 make sense? -> debloating tool which just removes all
classes (100%) (still makes sense to report failures here, but the question itself seems ’useless’) ->
Rephrase/Combine with RQ2”

In RQ1, we assess to what extent can JDBL produce a debloated version of the Maven projects
used in our study. This involves building the original project, and if the build passes, then we
configure the project to perform the debloating using JDBL (see Figure 2). RQ1 evaluates the
feasibility of debloating with this approach automatically, at scale, in real-world Java projects. To
answer this question, we discuss the results and failures we encountered in producing the debloated
JAR of the project. As far as we know, no previous work has assessed the ability of a debloating
tool at producing a debloated JAR at the end of the build pipeline.

Comment #3.11: “L572: How many of the 147991 Java projects where Maven projects? How
many multi-module projects where dropped at this step?”

We have computed the number of Java projects that used Maven from the initial dataset of
147,991 projects. We identified that 54,745 projects have at least one pom.xml file declared in
their repository (34,560 single-module projects, 20,185 multi-module projects). We have added
this information in the paper, in section 4.2.

Comment #3.12: “L586: Considering different versions of one library unique makes all results
based on this unique libraries biased, as an example Table 2 shows entries where different (minor)
versions of one library produce the same errors. I would suggest to group all data based on the
’unique’ libraries used. For example averaging the results for each of the libraries before averaging
the averages to mitigate biased results. Moreover please better specify the libraries in each step.
The results would look less biased if for each major version of a library exactly one version would
have been selected.”

We thank the reviewer for this comment. As we explained previously, when answering Comment
#3.1, our results are not biased by the different library versions analyzed. The number of versions
for which the debloating fails is scattered across distinct libraries, and the same occurs with the
successes.

We study different versions of the same libraries in order to collect exact usage data from the
clients (see RQ6 and RQ7). For example, if considering only one single version per library, then we
could miss all the clients that use a different version. Furthermore, it is known that developers do
not always stick to semantic versioning polices [9], which may cause significant differences among
the versions.

Comment #3.13: “L610: ’no previous work uses test suite for debloating? -> please check
for JShrink usage of unit tests”

We thank the reviewer for this remark. We have removed this sentence in Section 4.3.

15

Comment #3.14: “L634: What is packaged in the jar file with all its dependencies -> L369
speaks about runtime dependencies”

We have fixed the error pointed by the reviewer (see the related Comment #3.6). We use
the official maven-assembly-plugin with the descriptorRef set to jar-with-dependencies

to package all the project class files and its dependencies [8]. This means that the bytecode of all
the dependencies required for compilation will be added to the JAR.

Comment #3.15: “L706: Please provide insights how many really distinct libraries are there,
and how many dependencies are there on average?”

The total number of distinct libraries (i.e., not considering the different versions) with depen-
dencies presented in Figure 6 is 29. The total number of distinct libraries without dependencies is
36.

Comment #3.16: “L721: How do you check statically if a library is used in the source code?”

We implemented a utility tool that analyzed the source and search for class usages: https:
//github.com/castor-software/jdbl-experiments/tree/master/script/extractClassUsage. Our tool uses
the integration of the Spoon library [7] with Maven (via the class MavenLauncher) to extract the
types used by a client. If there is at least one type from the library used by the client, then we
consider the library as statically used by the client. To the best of our knowledge, no previous
work has validated the debloating considering the static usages in the source code of a debloated
program. We have edited Section 4.3.4 to clarify this procedure.

Comment #3.17: “L722: How is the debloated library injected? Is there a chance, that a
removed class from the debloated library can be found in another dependency?”

We replace the original JAR used by the client with the debloated JAR produced after debloating
the library with JDBL. The library usage is assessed from the perspective of the client that uses
the library. Therefore, if another third-party dependency uses the library as a dependency (i.e.,
becoming a transitive dependency of the client), it will end up in the client’s classpath only if it is
actually used by the client.

Comment #3.18: “L752-L755: How can test succeed for RQ1 here and at the same time fail
for RQ2? How was maven executed?”

In RQ1, we report the number of projects that were debloated with JDBL and for which Maven
produced a debloated JAR at the end of the build pipeline. For our experiments, we configure
Maven to continue its execution in case of a test failure. We then analyze the Maven logs outputs
of the build and report the results in RQ1 and R2. Notice that the libraries that pass all the test
in RQ2 are a subset of the 302 libraries that compile and are packaged correctly from RQ1.

16

https://github.com/castor-software/jdbl-experiments/tree/master/script/extractClassUsage
https://github.com/castor-software/jdbl-experiments/tree/master/script/extractClassUsage

Comment #3.19: “L781: Elaborate how JDBL alters the behavior of the project build besides
changing the type to JAR”

We have added more details regarding the validation errors discussed in Section 5.1.1.

Comment #3.20: “L978: 99.1% debloating looks far too good to be true. Can you please
elaborate and explain how such good numbers are created.”

Thank you for noticing this. We have investigated the results for this project in detail, and we
found an omission in the coverage data. Consequently, we manually checked the results for all the
projects that we reported as successfully debloated. We also ran a script that automatically checks
the consistency of the coverage data. This thorough verification of our results revealed that only 1

out of 220 libraries misses coverage data. We also observed that 8 out of 220 libraries encountered
issues during the validation phase. We updated the results to take these observations into account.
We now have 302 libraries where we succeed to generate a debloated JAR (RQ1) and 211 that
pass the test-suite after the debloating (RQ2). The impact on the global results is marginal, as
evidenced by the updated figures and tables in the paper.

Comment #3.21: “L1126: How exactly does the static analysis work? False positives possible?”

We have edited the text in Section 4.3.4 and described how we used static analysis to check for
library types used by the clients. Our approach does not permit false positives. False negatives
are possible, but we believe that considering the size of our dataset, the results obtained are
representative of real-world library-clients usages.

Comment #3.22: “Table 5. How is it ensured we have multiple separate errors vs one original
error and then related ’follow’ errors”

We manually counted and classified the errors in the 44 clients that do not compile using the
debloated version of the library. Table 5 summarizes the errors that we found based on our analysis
of the Maven logs. A client may be impacted by different errors. We decided to keep the total
number of errors to reflect his fact and also to show the most common errors (e.g., “Cannot find
the class” and “Package does not exist”). We believe that this information regarding the error
that we encountered could be of interest to developers and practitioners using debloating in their
codebases.

Comment #3.23: “L1298: External Validity: Is this representative for Java project after
filtering for single POM and JUnit?”

We thank the reviewer for this remark. We believe that single POM (i.e., single-module) Maven
projects using JUnit are representative of the Java ecosystem, but unfortunately, we do not have
the data to support this claim. Therefore, we have slightly edited the second sentence in Section

17

6.2 (External Validity) to restrict our findings to the projects with these characteristics.

Minor comments

Comment #3.24: “Fig. 1 and L123: Using red/green colors is a barrier for some people”

We thank the reviewer for this comment. We have edited the description of Figure 1 and
modified the legend. It now refers to the “green circles” and “red rectangles” so that visually
impaired people can understand the figure.

Comment #3.25: “L176: A workload could in theory also exercise all of Sp, so that Fp ==
Sp and Sp’ <= Sp, so I don’t get why the workload is defined to strictly exercise a subset of Sp”

We thank the reviewer for spotting this mathematical imprecision. We have changed the
expressions in the Definition 1 from FP ⊂ SP to FP ⊆ SP , and from |SP ′ | < |SP | to |SP ′ | ≤ |SP |
to account for the particular case mentioned by the reviewer.

Comment #3.26: “L349, L353: First annotations are mentioned, than there is no discussion
why they are not always kept like the other results”

Performing an in-depth discussion of Java annotations and how they compile to bytecode is
out of the scope of our paper. Section 3.2.2 mentions that we do not remove annotations and
other Java constructs such as interfaces, exceptions, and enumerations because these elements are
necessary for compilation.

Comment #3.27: “L575: Why is there no check if the module type is Jar at the step, where
we already check if JUnit is a dependency?”

Our dataset comprises Java libraries that contain public APIs and are designed to be reused by
client applications via dependency declaration. The way Maven facilitates reuse is by packaging
dependencies as JAR files. Maven considers the JAR format as the default for packaging Java
applications (i.e., <packaging>jar</packaging> is present in the parent pom.xml). We checked
that the packaging mode of all the libraries in our dataset is the default JAR format.

Comment #3.28: “L639: How exactly is the configuration of Surefire reseted, how do ensure
this does not introduce conflicts? -> L670 if the number of tests change -> Is this enough”

We reset the configuration of the maven-surefire-plugin to its default parameters to execute
the whole test suite and collect the complete coverage information of the libraries. This is also
done to fairly compare the coverage-based debloating results obtained with all the libraries. This
change could introduce some mismatches in the number of executed tests for the libraries with
specific configurations.

18

Comment #3.29: “L629: Again, why was there no check for the package type, if the paper
points out that this step might introduce conflicts?”

In this sentence, we refer to the conflicts that may when configuring Maven plugins. We rely
on the maven-assembly-plugin with its default configuration to produce the fat JAR at the end
of the Maven build pipeline. However, this plugin is highly configurable, and in some cases, the
libraries may already use it with particular customizations. Our dataset includes libraries with very
large build pipelines, which reflects the complexity of everyday software development. This may
cause the build to break for different reasons in some situations. We present a detailed analysis of
the build errors in our answers to RQ1 and RQ2.

Comment #3.30: “L665: ’semantic preservation’ is a good term and I would like if it was
used consistently during the text”

In RQ2 and RQ7, we refer to “preservation of the original behavior” of the libraries and clients,
respectively. As explained in Section 4.3, preserving the original behavior means that all the
original tests in the test suite used for debloating pass successfully:

“We consider that the test suite has the same behavior on both versions if the number
of executed tests is the same for both versions, and if the number of passing tests is also
the same.”

We have revised the terminology across the whole paper to make it consistent with this
statement.

Comment #3.31: “L729: Is the set of dynamically used classes disjunct to the set classes
directly referenced the source code?”

No, the set of dynamically used classes is not disjunct to the set of classes statically referenced
in the source code. The union of both sets is the classes used.

Comment #3.32: “L923: Why are failing test cases accepted within JDBL, after we already
verified, that all tests should work?”

Our experiments assess the challenges of coverage-based debloating for real-world Java applica-
tions when using the test suite as workload. To have a complete picture of these challenges, we
configure JDBL so that it continues its execution with a different coverage tool in case of existing
test failures. We consider a library to be successfully debloated only if all its tests pass. This is
mentioned in the answer to RQ2, where we show that 69.9% of the debloated libraries preserve
their original behavior.

Comment #3.33: “L1291: For me it would have been better to mention the Maven assembly
plugin is used to build the fat jar -> L634”

We have edited the text to mention that we use the maven-assembly-plugin to build the fat
JAR of the debloated libraries.

19

References

[1] Bobby R Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim. Jshrink:
In-depth investigation into debloating modern java applications. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 135–146, 2020.

[2] César Soto-Valero. Unnecessary code. Author’s blog post, https://www.cesarsotovalero.net/
blog/unneccessary-code.html, 2018.

[3] Thomas Durieux, César Soto-Valero, and Benoit Baudry. DUETS: A Dataset of Reproducible
Pairs of Java Library-Clients. In Proceedings of the 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR), MSR’21, pages 545–549, New York, NY,
USA, 2021. Association for Computing Machinery.

[4] ECLEMMA. Jacoco. Official Online Documentation, https://www.eclemma.org/jacoco/trunk/
doc/flow.html, 2022.

[5] Roman Haas, Rainer Niedermayr, Tobias Roehm, and Sven Apel. Is static analysis able to
identify unnecessary source code? ACM Transactions on Software Engineering and Methodology,
29(1), jan 2020.

[6] Frederick Novomestky Lukasz Komsta. moments: Moments, cumulants, skewness, kurtosis and
related tests. CRAN, https://cran.r-project.org/web/packages/moments/index.html, 2015.

[7] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel Seinturier.
Spoon: A library for implementing analyses and transformations of java source code. Software:
Practice and Experience, 46(9):1155–1179, 2016.

[8] Apache Maven Project. Apache maven assembly plugin. Official Online Documentation,
https://maven.apache.org/plugins/maven-assembly-plugin/usage.html, 2022.

[9] Steven Raemaekers, Arie van Deursen, and Joost Visser. Semantic versioning versus breaking
changes: A study of the maven repository. In 2014 IEEE 14th International Working Conference
on Source Code Analysis and Manipulation, pages 215–224, 2014.

20

https://www.cesarsotovalero.net/blog/unneccessary-code.html
https://www.cesarsotovalero.net/blog/unneccessary-code.html
https://www.eclemma.org/jacoco/trunk/doc/flow.html
https://www.eclemma.org/jacoco/trunk/doc/flow.html
https://cran.r-project.org/web/packages/moments/index.html
https://maven.apache.org/plugins/maven-assembly-plugin/usage.html

