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A predictive model for analysing the starting pitchers’
performance using time series classification methods
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ABSTRACT ARTICLE HISTORY
Pitcher’s performance is a key factor for winning or losing baseball Received 15 June 2017
games. Predicting when a starting pitcher will enter into an Accepted 10 July 2017
unfortunate pitching sequence is one of the most difficult decision- KEYWORDS

making problems for baseball managers. Since 2007, vast amounts of Baseball; starting pitcher;
pitch-by-pitch records are available for free via the PITCHf/x system, performance analysis; time
but obtaining useful knowledge from this huge amount of data series classification; DTW;
is a complex task. In this paper, we propose a novel model for k-NN

analysing the performance of starting pitchers, determining when
they should be removed from the game and replaced by a reliever.
Our approach represents pitch-by-pitch sequences as time series
data using baseball’s linear runs and builds an instance-based model
that learns from past experience using the k-Nearest Neighbours
classification method. In order to compare time series of pitcher’s
performance, Dynamic Time Warping is used as the dissimilarity
measure in conjunction with the Keogh's lower bound technique.
We validate the proposed model using real data from 20 Major
League Baseball starting pitchers during the 2009 regular season.
The experimental results show a good performance of the predictive
model for all pitchers; with values of Precision, Recall and F1 near to
0.9 when the outcomes of their last 10 throws are unknown.

1. Introduction

Baseball is a complex and unique sport. This is mostly because of its specific and discrete
game-play structure, which allows recording and manipulating a huge amount of statistical
data during each game (Wolf, 2015). Major League Baseball (MLB) is recognised as one of
the most important professional sports organisations around the world. The popularity of
baseball in the USA and Canada has transformed the MLB in a multimillionaire business
(Peach, Fullerton, & Fullerton, 2016).

Predicting the future performance of baseball players based on their historical records
and statistics is a very active field of research today because of its numerous advantages for
managerial and decision-making. Since Lewis (2004) published his best-seller “Moneyball”
in 2003, sabermetric (recognised as the science of learning about baseball through the use
of the empirical evidence obtained) has been gaining more and more interest in the sports
analytics community (Albert, 2010b).
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In baseball, pitching is considered a very difficult skill to learn. Many experts believe
that it is an essential component for obtaining victories (Pavitt, 2011). One of the most
complex decision problems that baseball managers have to handle during games consists
in deciding when a fatigued, or faltering, pitcher should be removed from the game and
replaced by a reliever. This is a decision-making problem, which is made more difficult by
the fact that the substitute pitcher needs approximately 10 min to “warm up” before he can
enter the game. Furthermore, the reliever should not warm up for an excessive length of
time because he could become too exhausted. There is not a definitive formula for making
this decision correctly, and managers rely on various heuristics (e.g. pitch count, game
score, own experience or intuition) to decide the exact moment when a starting pitcher
should be relieved (Keeley, Oliver, Torry, & Wicke, 2014; Zimniuch, 2010).

In the last years, some models have been proposed for analysing and estimating pitcher’s
performance. For example, Piette, Braunstein, McShane, and Jensen (2010) study the
reliability and consistency of various statistics to evaluate the effectiveness of pitchers in
the MLB using a Bayesian Random Effect model, Sidhu and Caffo (2014) explore pitchers’
decision-making by modelling the at-bat information (pitch selection and counts) as a
Markov Decision Process, while Hoang, Hamilton, Murray, Stafford, and Tran (2015)
introduce a novel adaptive strategy using Linear Discriminant Analysis to predict binary
pitch types (Fastball vs. Non-fastball).

Sabermetric has proven that taking advantage from historical statistics and past data
could reveal important patterns in many baseball scenarios. Accordingly, it is viable to use
past pitches records and outcomes to learn and predict the future pitcher’s performance
(Chih-Cheng, Yung-Tan, & Chung-Ming, 2014). For this aim, we propose modelling and
analysing pitch-by-pitch data as time series data.

Time series analysis is an active research area because it comprises a vast field of
applications (Gooijer & Hyndman, 2006). In the last decade, time series data mining
(Fu, 2011), and especially time series classification, have been gaining particular attention
(Batista, Hao, Keogh, & Mafra-Neto, 2011; Flesca, Manco, Masciari, Pontieri, & Pugliese,
2007). However, to the best of our knowledge, no attempts of analysing and predicting
pitcher’s performance using time series classification methods have been made in the
literature.

The main contribution of this paper consists of presenting a predictive model for deter-
mining when a starting pitcher is about to falter using time series classification methods.
With this aim, we model pitch events as time series data by assigning different scores to
each possible pitcher’s thrown outcome. Once the pitch time series have been created,
the k-Nearest Neighbours (k-NN) classification algorithm is then used for predicting the
future performance (which is a binary result labelled as “High Performance” or “Low
Performance”). In order to compare time series properly during the k-NN processing,
Dynamic Time Warping (DTW) has been selected as the distance measure for k-NN.
Furthermore, the lower bounding technique of Keogh and Ratanamahatana (2005) is also
integrated in all DTW calculations to speed up the predictive algorithm.

With the purpose of evaluating the performance of our model, we conduct experiments
involving all pitches throws for a total of 20 MLB starting pitchers during the 2009 regular
season using the data provided by Albert (2010a). We reduce the length of the testing time
series, from 5 to 50 throws, in order to evaluate the reliability of the prediction obtained.
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The F1 measure and 10-fold cross-validation method are selected as the main criteria for
evaluating the global performance of the model.

The rest of this paper is organised as follows. In Section 2, we describe our method for
modelling pitch-by-pitch outcomes as time series data. Section 3 offers details about the
predictive model proposed as well as some theoretical considerations related to this specific
time series classification problem. In Section 4, we present a characterisation of the dataset
and the experimental framework used to perform the model validation process. Sections 5
and 6 present the results obtained and offer a discussion about the model applicability and
future issues, respectively. Finally, in Section 7, we give some conclusions about this work.

2. Data modelling
2.1. Runvalue of pitches based on linear runs

Weighted On-Base Average (WOBA) is a baseball statistic created by Tom Tango for mea-
suring the hitters overall offensive contribution to their teams. It represents an empirical
measure based on the relative values of each possible offensive event (Tango, Lichtman,
& Dolphin, 2007). wOBA is considered as one of the most complete offensive statistics in
baseball, combining all the different aspects of hitting into one metric and weighting
each outcome in proportion to their actual run value. While, the traditional Batting
Average (AVE), On-Base Percentage (OBP) and Slugging Percentage (SLG) fall short
in accuracy and scope, wOBA measures and captures offensive value more accurately and
comprehensively.

Equation (1) shows the general formula to calculate wOBA. First, it is necessary to find
the specific weights of each offensive event in the season (weights are denoted as , 8, y,
8, € and @) and then multiply these weights by the batter’s unintentional bases on balls
(UBB), singles (1B), doubles (2B), triples (3B) and homeruns (HR). These weights change
annually and it is possible to find the specific wWOBA weights for every year from 1871 to
the present in the Fangraph website!. Next, dividing that number by the sum of his at bats
(AB), walks (BB) excluding intentional walks (IBB), hit by pitches (HBP) and sacrifice flies
(SF), that is the wOBA of the batter for the season.

o-UBB+ 8 -HBP+y-1B+6-2B+¢€-3B+6-HR

WwOBA = (1)
AB + BB — IBB + SF + HBP

From the pitcher’s perspective, it is viable to tabulate the average of wOBA values at
each step in the count and then convert them into a run value for a strike or a ball in any
count. Assigning run values to a strike at each step in the count is not a novel concept. For
example, using data from Tom Tippet’s Diamond Mind Baseball, Burley (2004) calculated
AVE, OBP and SLG values at each count after a ball and after a strike. Then, using linear
weights he obtained the run value associated with a ball or strike in each count.

Tables 1 and 2 show the negative and positive run values (from the pitcher’s perspective)
of almost anything that could happen to a pitch after the ball leaves the pitcher’s hand.
Using the wOBA of every ball or strike count, we subtracted the league average wOBA
(in 2009, that value was 0.329) from each count to determine how much above or below
average the count affect WOBA. Then, using those wOBA values we determined how many
runs were added or subtracted in every possible count according to the pitch outcome. For
example, if a strike is thrown in a two-strike count, then the resulting wOBA for the batter
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Table 1. Negative linear run value for each pitch outcome based on wOBA (regular season of 2009).

New count

Count Ball Single Double Triple Homerun Error HBP Walk
0-0 -0.038095 -0.508140 -0.888141 -1.058143  -1.438144 -0.508143  -0.368142 NA
0-1 -0.024620  -0.550985  -0.930985  -1.100985  -1.480985 -0.550985  -0.410985 NA
0-2 -0.031358  -0.602511  -0.982512  -1.152512  -1.532512  -0.602512  -0.462512 NA
1-0 -0.060137  -0.470044  -0.850045 -1.020045 -1.400045 -0.470045 -0.330045 NA
1-1 -0.058002  -0.526365  -0.906365 -1.076365 -1.456365 -0.526365 -0.386365 NA
1-2 -0.040629  -0.589903  -0.969903  -1.139903  -1.519903  -0.589903  -0.449903 NA
2-0 -0.106522  -0.409907  -0.789908  -0.959908  -1.339908  -0.409908  -0.401325 NA
2-1 -0.100481  -0.468363  -0.848364 -1.018364 -1.398364 -0.468364 -0.328364 NA
2-2 -0.096860  -0.549274  -0.929274  -1.099274  -1.479274  -0.549274  -0.409274 NA
3-0 NA -0.303386  -0.683386  -1.069499  -1.233386  -0.303386  -0.368819  -0.163386
3-1 NA -0.367882  -0.747883  -0.917883  -1.297883  -0.367883  -0.227883  -0.227883
3-2 NA -0.452414  -0.832414  -1.002414  -1.382414 -0.452414 -0.312414 -0.312414

Table 2. Positive linear run value for each pitch outcome based on wOBA (regular season of 2009).

New count
Count Strike Strikeout Bunt out Fly out Groundout Line out Pop out
0-0 0.04285 NA 0.26186 0.26186 0.261859 0.261859 0.261859
0-1 0.05153 NA 0.21901 0.21901 0.219014 0.219014 0.219014
0-2 0.01261 0.16749 0.16749 0.16749 0.167488 0.167488 0.167488
1-0 0.05632 NA 0.29996 0.29996 0.299955 0.299955 0.299955
1-1 0.06354 NA 0.24363 0.24363 0.243634 0.243634 0.243634
1-2 NA 0.1801 0.18010 0.18010 0.180096 0.180096 0.180096
2-0 0.05846 NA 0.22868 0.36009 0.360092 0.360092 0.360092
2-1 0.08091 NA 0.30164 0.30164 0.301636 0.301636 0.301636
2-2 NA 0.22073 0.22073 0.22073 0.220725 0.220725 0.220725
3-0 0.06450 NA NA 0.46661 0.466613 0.466613 0.466613
3-1 0.08453 NA 0.40212 0.40212 0.402117 0.402117 0.402117
3-2 NA 0.31759 NA 0.31759 0.317585 0.317585 0.317585

is 0.000 (or a positive run value of 0.16749 for the pitcher). Thus, a strikeout in a two-strike
count transitions the batter from his starting wOBA in the two-strike count to a wOBA
of 0.000. Similarly, if a ball is thrown in a three-ball count then this transitions the batter
to a walk (or a negative run value of 0.312414 for the pitcher). Notice that a strike thrown
in a two-strike count decreases this run value in a different way than a strike thrown in a
one-strike count. Thus, if the batter is up three-ball, but grounds out, then the pitch that
created the groundout gets more credit than if it had grounded out in a two-strike count.

2.2. Time series of pitching performance

A time series T can be defined as a sequence (¢, ..., ..., ;) of n data points measured
typically at successive time intervals. The inherent temporal ordering of time series makes
its study distinct from other common data analysis problems, in which there is no natural
ordering of the observations. A time series model will generally reflect the fact that
observations close together in time will be more closely related than observations further
apart. In addition, time series models will often make use of the natural one-way ordering
of time. As a consequence, values for a given period will be expressed as deriving in some
way from past values, rather than from future values.
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We propose to model pitch-by-pitch data sequences as time series data using the run
value of each thrown outcome. For this aim, we implemented a new metric, which is
inspired by the previous work of Sidran (2005), to evaluate pitcher’s performance during
the baseball game. The metric, called Linear Run Pitcher’s Performance (LRPP), extracts
information from previous pitch outcomes. It consists of an accumulated pitcher’s score,
which is based on the linear run outcome of every pitch thrown (see Tables 1 and 2).
The LRPP metric has a numeric output, in a format which allows us to create a graphical
representation of the actual pitcher’s performance in any moment of the game.

Let U be the set of defined scores corresponding to each possible pitcher’s throw
outcome p;. Tables 1 and 2 show the U values used to calculate LRPP for the 2009 season,
positive and negative outcomes are scored according to its impact on the result of the game.
In other words, scores are defined in a way that allows balancing the output probabilities
of all possible plate appearances.

LRPP scores can be intuitively modelled as a time series data, and the idea is as follows. At
the beginning of the game (instant i = 0) the pitcher initiates with a score of performance
po = 0. Then, the associated score p; in U of each pitch i is added to the accumulated
LRPP(i) value. The Equation (2) resumes this procedure.

LRPP(i) = ) " p; ()

n=0

During each pitcher’s throw, his total score is updated and saved in order to construct
a time series of his performance during the game. For predictive purposes, we labelled the
pitcher’s performance in the moment i as a High Performance (HP) or Low Performance
(LP), according to the following function:

HP if LRPP(i) > 0,

Performance(i) = {LP otherwise

Asan example, Figure 1 represents two different time series constructing from the Justin
Verlander performance, for the Detroit Tigers, in games played during the season of 2009.
In the game labelled as HP, his LRPP score increased steadily until the pitch number 75
and then decreased just a few points, but finished with a very positive score of 2.45 points.
In the game labelled as LP, the performance of Mr Verlander is considered positive up to
his pitch number 76, but then he began to falter until he was removed in the sixth inning
and replaced by a substitute pitcher. In that moment his LRPP score was of -2.34 points.

3. Methods
3.1. Classification of pitch time series data

Time series classification is a traditional data mining task which has attracted great interest
in the data mining community, finding applications in several domains such as medicine,
finance, entertainment and industry (Gooijer & Hyndman, 2006; Keogh & Kasetty, 2003;
Nanopoulos, Alcock, & Manolopoulos, 2001). In the sport sciences context, time series
classification is a field of research still under development. It has been applied mostly for
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LRPP score

o~ Label
— HP
® 4 | — LP

T T T T T 1
0 20 40 60 80 100

Number of throws

Figure 1. Graphical representation of pitcher’s performance as time series data.
Note: The time series are labelled according to the value of its LRPP score when the starting pitcher leaves the game.

analysing video data in some specific sports such as table tennis (Maeda, Fujii, Hayashi, &
Tasaka, 2014) and baseball (Fleischman, Roy, & Roy, 2007).

Time series classification is a supervised learning problem, where the objective is to
predict the class membership of time series as accurately as possible (Xing, Pei, & Keogh,
2010). All the time series classification approaches first build a classification model based
on labelled time series. In this case, “labelled time series” means that it uses a training
dataset with correctly classified observations or time series sequences for some model
building. Then, the built model is used to predict the label of a new unlabelled observation
or time series.

Geurts (2001) illustrates one possible idea and the necessary steps to perform time series
classification accurately. The first essential step is to find local properties and patterns from
the series. In a second step, these patterns are combined to build classification rules using
classification and machine learning methods.

Among many methods that can be used for this problem, the group of nearest neighbour
classifiers has the simplest classification idea: to assign a new time series object or time
series sequence to the most common class among its neighbourhoods. As indicated by the
name, the k-NN classifier takes the k nearest neighbours into account.

Due to its effectiveness and simplicity, our model uses the 1-NN classification method
as base learner for prediction. It is based on learning by analogy, that is, by comparing a
given time series of pitcher’s performance with others in order to find the most similar to
it. For example, given an unlabelled pitch time series P and a training set of labelled time
series S = (s1,. . .,Sy), it searches for the series in S that is more similar to P using some
comparison criterion. This time series is the “nearest neighbour” of P in S.

The combination of the 1-NN classification algorithm with DTW as the dissimilarity
measure and comparison criterion has proven to be exceptionally accurate in practice
and very difficult to beat in the time series domain (Wang et al., 2013). Furthermore, this
method is parameter-free and does not require feature selection and discretisation. We
provide more details about our predictive model in the next subsections.

3.2. Comparison of pitch time series data

As we comment in the previous section, for time series classification problems the 1-
NN classifier with DTW as dissimilarity measure has shown to outperform most of the
other distance measures (Wang et al., 2013). DTW overcome the weakness of Euclidean
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Figure 2. Aligning two pitch time series using the DTW similarity measure. (a) Aligning indexes between
a query (red) and a reference (blue) time series. (b) The warping path constructed as a result of the
alignment.

metric in measuring the similarity between time series, where time phases of different
series are distinct. Our predictive model implements DTW as the comparison criterion for
measuring the similarity among pitch time series.

DTW implements dynamic programming to find an optimal warping path between two
time series sequences. To calculate the path value, it first creates a distance matrix, where
each element in the matrix is a cumulative distance of a minimum of three surrounding
data points. Let P = (p1,.. ., pi>- . pn) and P’ = (p'y,..,p/js.. . p’,,) be two pitch time
series. First, we create an n x m matrix, where each (7, j) element §; j of the matrix is defined
as shown in Equation (3).

d .
8ij = Ipi —P/jl + min{d;—1,-1,0i—1,j8ij—1} (3)

Here, §;; is the summation of [p; — p/ jld and a minimum cumulative distance of three
elements surrounding the (i,j) element, and d is the dimension of L,-norms (typically
p = 2 for the time series domain). Then, when all elements in the matrix are filled, the
DTW measure represents the total cost of the alignment and is determined from the last
element §,, ,,, of the matrix.

Figure 2 shows the alignment between the two pitch time series of Figure 1 using DTW.
As this example illustrates, DTW compares effectively both time series even when they have
different lengths and are out of phase. In this example, the global cost of the alignment is
205.04.

Although DTW outperforms many other distance measures, it is known to consume
a huge computational cost with a time complexity of O(#n?). Due to this situation, the
lower bound of Keogh has been proposed to speed up the similarity search (Keogh &
Ratanamahatana, 2005). The LB_Keogh(P, P’) between the query time series P and a
candidate time series P’ = (p},...,p},...,p;) can be computed by the following function:

n |p;—ui| lfp; > Uj,
LB_Keogh(P,P') = > " { |l = p}l if p; <1,

i=1 0 otherwise
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where u; = max{p;—,...,pitr;} and [; = min{p;—,...,pitr} are envelope elements
calculated from a global constraint R = (ry,...,7,...,r,). Ratanamahatana and Keogh
(2005) report that LB_Keogh allows them to prune out over 90% of all DTW computations
on several datasets.

3.3. Predictive algorithm

According to our pitch-by-pitch data modelling, the length of pitch time series increases
dynamically with each new throw. It is clear that as far as the length of the testing time series
becomes larger then more information about the current performance of the pitcher could
be used for testing and better the prediction will be. Thus, our model allows predicting the
future performance of the pitcher, while the game is in progress.

Due to the characteristics of this prediction, it is reasonable to weight more recent
information over older information in the time series. We accomplished this issue during
the computation of DTW, multiplying the cost of the alignment between each pair of point
by a weighed factor. Let (ai,...,4d;,...,a,) and (a},...,a,...,a),) be the values of the
aligned points between the time series P and P’ settled by DTW, then the Equation (4)
defines a weighted DTW function.

WwDTW(P,P) = 3 M 4)
i=1

The prediction is based on the pitcher’s outcomes corresponding to similar situations
from the past. Our model implements 1-NN and uses WDTW as the similarity measure in
conjunction with the Keogh’s lower bound to find a nearest neighbour. Detailed pseudo-
code of the method is presented in Algorithm 1.

Algorithm 1 Predicts pitcher’s performance using 1-NN and DTW as similarity measure.
Implements Keogh’s lower bound to speed up the computation process.

1: function prepicTPERFORMANCE(P, S)

P: A pitch time series for prediction.
S: Training set of pitch time series.

2 minDist < 00

3 minLB < oo

4; class < ¢

5: while (S # () do

6: p < anyelementin S

7 distLB < IbKeogh(P, p)
8 if (distLB < minLB) then

o: dist < wDTW(P, p)
10: if (dist < minDist) then
11: class < getClass(p)
12: minDist < dist
13: end if
14: bestLB < minLB
15: end if
16: S < S\ {p}
17: end while
18: return class

19: end function
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The lower bound between the query pitch time series P and a candidate time series
p is computed in line 7. If the lower bound is sufficiently large then the DTW is not
computed (see line 8). The function wDTW in line 9 measures the distance of the optimal
alignment between P and p. If this value is lower than minDist then P is labelled (HP or
LP) accordingly with the most similar pitch time series p in S.

4. Procedures
4.1. Dataset

Since the season 0f 2007, Sportvision’s PITCHf/x system has recorded (in real time) detailed
data about each pitch that is thrown during each MLB game (Fast, 2010). This data are
available for free from the MLB GameDay website? and includes details about every pitch
thrown, as well as the outcome of the plate appearance associated with each pitch. The
PITCH{/x system has resulted in a huge amount of fine-grained data, which has proven to
be especially useful for pitching trainers, sports analysts and fans of baseball worldwide.

Data were directly obtained from Albert (2010a). He collected pitch-by-pitch data using
the PITCHf/x system for 20 starting pitchers that played in the 2009 season. This represents
the regular season games in which these pitchers participated as starters (649 in total).
Table 3 shows information about the number of games played and the classification of
their performance in the moment they left the game according to our pitch data modelling
criterion (297 classified as HP and 352 classified as LP). The average number of throws
per game was 101. Nine of those pitchers (marked with e) are considered among the
elite pitchers since each received or was nominated for the prestigious Cy Young pitching
award.

Table 3. Summary of the classification of performance for the 20 starting pitchers considered in this
study, in the moment when they left the game.

Mean =+ SD of Classified Classified Total

Pitcher throws per game as HP asLP games
Brett Anderson 93.80 4 14.60 13 17 30
Bronson Arroyo 103.24 £ 13.98 11 22 33
Scott Baker 98.73 +11.45 16 17 33
Joe Blanton 104.87 £+ 8.29 10 21 31
Scott Feldman 91.15+23.78 15 19 34
Gavin Floyd 99.37 +14.10 14 16 30
Zack Greinke® 106.48 & 10.02 21 12 33
Roy Halladay® 106.00 £+ 14.71 13 19 32
Cole Hamels 97.38 £19.99 11 21 32
Danny Haren® 97.38 +9.09 19 14 33
Felix Hernandez® 106.82 £+ 7.63 19 15 34
Cliff Lee® 103.91 £ 15.44 17 17 34
Tim Lincecum® 107.47 £11.79 25 7 32
Derek Lowe 94.50 + 15.89 9 25 34
Ricky Nolasco 97.90 + 12.43 13 18 31
Roy Oswalt 92.70 £ 23.47 1 19 30
Andy Pettitte 102.63 + 8.00 10 22 32
C C Sabathia® 106.53 & 16.24 14 18 32
Justin Verlander® 11249 £13.16 19 16 35
Adam Wainwright® 106.29 + 9.65 17 17 34
Total 297 352 649

Note: ¢Nominated for the prestigious Cy Young pitching award.
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4.2. Experimental framework

We follow the main steps of the CRISP-DM methodology (Shearer, 2000), which provides
a structured way of conducting the data analysis, with the consequent improvement in
the probability of obtaining accurate and reliable results. Figure 3 shows the methodology
used to evaluate the proposed model. First, the pitch-by-pitch dataset is transformed into
time series by means of our LRPP-based model. Then, the dataset is partitioned into two
independent sets: training and testing sets. The training set is composed by entire time
series of pitchers’ games and it is used by the learning algorithm to derive the model,
whose performance is estimated using the testing set of time series.

Once the training and testing partitions of the dataset have been properly defined, we
reduced the length of the testing time series in order to evaluate the predictive performance
of the model. That is, we sequentially decreased the number of pitches in the testing time
series, from last to first, for validation purposes. According to this assessment method, the
class value of the reduced testing series is maintained the same as the class membership of
the full testing time series.

For a more general evaluation, and in order to avoid a possible over-fitting, we decided
to use the stratified 10-fold cross-validation methodology (Han, Pei, & Kamber, 2011). This
is a popular statistical technique widely used for comparing the predictive capabilities of
data mining methods, which has become the standard in practical terms (Witten, Frank, &
Hall, 2011). During the 10-fold cross-validation, the complete dataset is randomly split into
10 mutually exclusive partitions or “folds” of approximately equal size. The classification
method is trained and tested 10 times, each time it is trained on all but one-fold and tested
on the remaining single-fold. That is, in iteration 7, partition Tj is reserved as the testing set,
and the remaining partitions are collectively used to train the model. The cross-validation
estimate of the overall performance is calculated as the average of the 10 individual results
according to some statistical measure of accuracy. Since the cross-validation results depend
on the random assignment of the individual samples to distinct folds, a common practice
is to stratify the folds themselves. This stratification ensures that each fold has the same
proportion of each class value (HP or LP). Empirical studies have shown that stratified 10-
fold cross-validation is a recommended method for estimating model performance (even
if computation power allows using more folds) due to its relatively low bias and variance
(Zeng & Martinez, 2000).

7 N

Learning algorithm Predicting performance
Pre-processing Model assessment
Modelling and labelling — Tabulat It
Pitch-by-pitch data as time series using [—| Training set | abulate results
dataset LRPP scores L

N

Figure 3. Graphical representation of the methodology used to validate the predictive model proposed.
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4.3. Evaluation criteria

We are more interested in predicting when a starting pitcher is about to falter, which is
directly reflected by the decreasing of his LPPR score. Accordingly, we selected Precision,
Recall and F1 as the statistics criteria to test the performance of the model. The first
measures the fraction of time series predicted as LP that are actually labelled as LP, the
latter measures the fraction of time series predicted as LP from the total time series labelled
as LP. A high value of Precision means that our algorithm returned substantially more
relevant results than irrelevant ones, while high Recall means that our algorithm returned
most of the relevant results. Equations (5) and (6) present this statistics. In the binary
classification context, TP, TN, FP and FN denote true positive (accurate prediction of
low pitch performance), true negative (accurate prediction of high pitch performance),
false positive (inaccurate prediction of low pitch performance as high) and false negative
(inaccurate prediction of high pitch performance as low), respectively.

TP

Precision = ——— (5)
TP + FP
TP
Recall = ——— (6)
TP + FN

Precision and Recall give information about the proportion of correctly and incorrectly
classified pitch time series. However, we have decided to add a single measure for char-
acterising the model performance in a more general way. For this aim, we selected the F1
statistic (Equation (7)) as our general evaluative criterion, because combines both Precision
and Recall into a single measure of prediction performance.

2-TP

F1 =
2-TP + FP + FN

(7)

5. Results

In this section, we present the results obtained by our predictive model for the 20 starting
pitchers selected as study case. We used the methodology presented in Section 4.2 during
the experiments and the evaluation criteria of Section 4.3. The aim is comparing the
predictions of performance when less information about the outcomes of future pitches is
known.

First, we conducted experiments in order to assess the performance of the prediction for
each pitcher individually. This validation procedure involves sequentially removing time
series of one pitcher from the dataset, training with the rest of pitchers’ time series and
then evaluating the quality of the prediction using the time series of the removed pitcher.
We selected data of games played by each particular pitcher for testing and then use the
rest of pitchers’ data for training the model. Figure 4 shows the results of Precision, Recall
and F1 obtained for each pitcher in the dataset following this procedure.

Overall, the results show that the model’s performance improves steadily with the
increase of the testing time series length. This is an expected result because this increase
gives more information to the learning algorithm about the future behaviour of the pitch
sequence during the testing. The reduction of time series length by 10 pitches produced the
better Precision, Recall and F1 values, with means of 0.90, 0.89 and 0.89, respectively. As it
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Figure 4. Results of Precision, Recall and F1 for the 20 starting pitchers included in this study using a
reduced number of throws for testing.

shows, the model performs well even when 30 of the future pitcher’s throws are unknown
(F1 values nearly 0.80). Further, it is noticeable the perfect value of Recall obtained for the
pitcher Tim Lincecum even 40 throws before he left the game.

As an additional comparison, we applied a two-sample Wilcoxon (or Mann-Whitney)
test in order to compare the prediction between elite and non-elite pitchers. Table 4 shows
the results of the test for the five time series lengths reduction used. Overall, the results
show that p-values are similarly distributed, thus, we can accept the null hypothesis that
predictions are the same for elite and non-elite pitchers (significance level of « = 0.05).
This result show that the performance of our predictive model does not differ significantly
for both categories of studied pitchers.

In order to obtain a more general evaluation of the model, we use the stratified 10-fold
cross-validation procedure for the complete dataset of studied pitchers. Table 5 presents
the results obtained. As additional information, we include the classical Accuracy data
mining measure and the confusion matrix of classified pitchers’ games; both assess the
model ability of correctly predicting the class label of a new or previously unseen pitch
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Table 4. Two-sample Wilcoxon test of prediction results to the elite and non-elite pitchers.

Precision Recall F1
Pitchers Throws left p-value p-value p-value
10 0.2853 0.6479 1
Elite 20 0.3614 0.0732 0.4669
Vs. 30 1 0.0096" 0.0680
Non-elite 40 0.7037 0.0077" 0.0521
50 0.3417 0.2236 0.5684

*p»value <0.05.

Table 5. General predictive results for the complete dataset using stratified 10-fold cross-validation.

. . ¥
Confusion matrix

Throws left LP HP Accuracy Precision Recall F1

5 it o > 0.906009 0.924198 0.900568 091223
10 it o A 0.869029 0.889213 0.866477 0.877698
15 it 28 A 0.821264 0.853293 0.809659 0.830904
20 i o o 0.791988 0.835913 0.767046 08

25 it oA o 0.77812 0811377 0.769886 0.790088
30 o 208 ol 0.771957 0.807229 0.761364 0.783626
35 it > o 0.744222 0.783537 0730114 0.755882
40 it p > 0.734977 0.754237 0.758523 0.756374
45 it 2o - 0.730354 0752137 075 0.751067
50 o o o 0.701079 0.717033 0.741477 0.72905

* L
Rows show actual class, columns show predictions.

time series. The results confirm that the model performs better as the length of the testing
time series increases. It is noticeable that all the measures rise over the 0.9 value when only
five of the pitcher’s throws outcomes are unknown.

As an additional comparison and as a benchmark, we evaluate the results of our model
against a naive, but not trivial, baseline approach. Due to the fact that our scoring measure
is constructed as an aggregate summation of pitching events, it is rational to classifying
directly a testing time series as the final result of its LRPP score. Thus, if the LRPP value
of the testing time series, in the moment of the cut-off of the time series, is greater than 0
then it is classified as HP, else the performance of the pitcher is classified as LP. Table 6
shows a comparison between the 10-fold cross-validation results of F1 obtained with both,
this naive approach and our model. The application of the Wilcoxon Signed Rank Test to
these results shows that our model clearly outperforms the baseline approach (p-value =
0.001953).

Figure 5 shows an example of a testing time series composed by 100 pitches. According to
our validation methodology, this time series has been cutting oft by 10 throws from the last
pitch. The first 90 throws were used for testing the prediction of both the proposed model
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Table 6. Comparison of F1 results between the proposed model and a baseline approach.

Throws left 5 10 15 20 25 30 35 40 45 50
Baseline 0.8075  0.79 0.7842  0.7703  0.7645  0.747 0.7411 0.7106  0.7076  0.6819
Our model 0.9122 0.8776  0.8309 0.8 0.79 0.7836  0.7558  0.7563  0.751 0.729
Q|
o -
8 o
n o
o
o -
%o
~ — Legend
! —— Testing
n ---- Remainder
(=] -+ Cut-off :
‘7‘7 I I I I I : I
0 20 40 60 80 100

Number of throws

Figure 5. An example of a time series correctly classified as HP by our model but incorrectly classified as
LP by the baseline approach.

and the baseline approach. The remainder 10 throws represents the pitcher’s performance
that we are trying to predict and were used for validating the quality of the prediction. The
baseline approach classifies this time series as LP because, in the point of the cut-off, its
LRPP value is negative. However, our 1-NN-based model learns from other time series and
predicts a good performance for the remainder 10 pitches. Hence, our method correctly
classifies the performance of the pitcher as HP.

6. Discussion

The analysis of the experimental results shows that the in-play performance of a starting
pitcher is not a homogeneous process. We demonstrate that modelling and visualising
these non-homogeneous parts of the game as time series data, using some reasonable cri-
terion of performance, could significantly improve our comprehensibility about pitching.
Furthermore, we show that the application of time series classification methods could be a
suitable tool for the particular problem of predicting the future performance of a baseball
pitcher.

Although our time series classification model proved to be a suitable predictor of
performance for a margin of 10 throws of anticipation, it is evident that managers do
not dispose of an a-priori knowledge of the total number of throws that a starting pitcher
will make during the game. They do not need a model that tells that a pitcher is more likely
to falter deeper in the game. Hence, it could be unclear for a manager when is the exact
moment for applying this model. However, we believe that the model should perform well
when starting pitchers exceed the throw 50, given that the average number of throws per
game of the 20 studied pitchers is equal to 101.

It is important to note that predicting the outcome of a single pitch is of dubious value.
Managers never pull pitchers after a particular pitch because they are always willing to
allow the pitcher to finish the at-bat. Trying to predict a single pitch is irrelevant to their
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decision-making process, which is otherwise focused on outcomes of plate appearances and
its corresponding pitches sequences. The graphical representation of pitching performance
as time series could tell us much about this decision point.

Determining thresholds at the individual pitch level could be more useful in identifying
what criteria should be considered for taking the pitcher out. As an example, if they have
performed extremely positive in all game, but have a run of 10 consecutive hits and are
still with a positive LRPP, how would we decide to take them out or not based on this
procedure? Or perhaps at other known points (innings changes, etc.). Once more, the
graphical time series representation of performance could be a good starting point for
tackling with this particular issue.

Another significant concern is that pitchers, especially when they are tiring late in
games, will often “waste” pitches (i.e. throw an unhittable pitch with a remote possibility
that the batter will swing). As a consequence of this behaviour, the majority of these
“waste” pitches will show up as negative values for our model, when they are in fact part
of an intentional strategy. Furthermore, it is not clear what a high performance would be
here. That depends on the counter-factual of the outcome for the given pitcher removal
decision, and the outcome absent in the decision. Of course, this also depends on bullpen
availability and expectations for the given game, which complicates things considerably.
The decision of managers always will be based on their knowledge about pitchers and the
dynamic of the game. We believe that a threshold of the performance should be considered
relative to some average expectation of bullpen performance when replaced.

On the other hand, the proposed predictive approach on this paper could be easily
extended to other sports where play-by-play data of individual players are available, such
as basketball (Vracar, Strumbelj, & Kononenko, 2016) or cricket (Iyer & Sharda, 2009). The
model makes feasible its inclusion into any expert system and decision-making process
that requires the ranking and evaluation of players. In addition, the scoring system could
be tested for predictive ability of run scoring and game outcomes.

In our opinion, further research on this predictive model should consider the following
lines:

e Compare the predictive performance of the 1-NN algorithm with other state-of-the-
art time series classification methods (e.g. support vector machines, artificial neural
networks or decision trees).

e Estimate empirically the necessary number of throws that must be known for achiev-
ing a competitive prediction of performance.

e Assess the feasibility of using this model in other sports domains, especially in those
producing large amount of play-by-play data.

7. Conclusion

In this paper, we presented a time series classification model for analysing the performance
of a starting pitcher and predicting when he should be removed from the game and
replaced by a reliever. We transformed and labelled pitch-by-pitch data, obtained from the
PITCH{/x system, into time series using an accumulative metric of pitcher’s performance,
which is based on the well-known linear runs baseball metric. The k-NN algorithm, in
conjunction with the dissimilarity measure DTW, was used for classifying pitch time
series data and predicting the future performance during the game. In order to validate the
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model, 20 MLB starting pitchers were selected for model analysis. The experimental results
show that the model performs significantly accurate (with mean values of Precision, Recall
and F1 near to 0.9) when the 10 last pitcher’s throws outcomes are unknown. Furthermore,
the results of the model show no predictive differences between elite and normal pitchers.
The development and application of this model is of interest, not only because it attempts
to answer one of the most difficult questions in baseball, but also, as a novel approach for
modelling, analysis and predicting performance in baseball using time series classification
and data mining methods.

Notes

1. http://www.fangraphs.com/guts.aspx?type=cn
2. http://gd2.mlb.com/components/game/mlb/
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