
Detection and Analysis of Behavioral T-patterns
in Debugging Activities

César Soto-Valero
Universidad Central de Las Villas

cesarsotovalero@gmail.com

Johann Bourcier
University of Rennes 1-IRISA

johann.bourcier@irisa.fr

Benoit Baudry
KTH Royal Institute of Technology

baudry@kth.se

ABSTRACT

A growing body of research in empirical software engineering
applies recurrent patterns analysis in order to make sense
of the developers’ behavior during their interactions with
IDEs. However, the exploration of hidden real-time struc-
tures of programming behavior remains a challenging task.
In this paper, we investigate the presence of temporal be-
havioral patterns (T-patterns) in debugging activities using
the THEME software. Our preliminary exploratory results
show that debugging activities are strongly correlated with
code editing, file handling, window interactions and other
general types of programming activities. The validation of
our T-patterns detection approach demonstrates that debug-
ging activities are performed on the basis of repetitive and
well-organized behavioral events. Furthermore, we identify
a large set of T-patterns that associate debugging activities
with build success, which corroborates the positive impact of
debugging practices on software development.

KEYWORDS

Debugging interactions; developers’ behavior; T-patterns
analysis; empirical software engineering

ACM Reference Format:

César Soto-Valero, Johann Bourcier, and Benoit Baudry. 2018.
Detection and Analysis of Behavioral T-patterns in Debugging
Activities. In MSR’18: 15th International Conference on Mining
Software Repositories, May 28–29, 2018, Gothenburg, Sweden.

ACM, Gothenburg, Sweden, 4 pages. https://doi.org/10.1145/
3196398.3196452

1 INTRODUCTION

Debugging is a widely used practice in the software industry,
which facilitates the comprehension and correction of software
failures. When debugging, developers need to understand the
pieces of the software system in order to successfully correct
specific bugs. Modern Integrated Development Environments
(IDEs) incorporate useful tools for facilitating the debugging
process, allowing developers to focus only in their urgent

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

MSR’18, May 28–29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196452

needs during the fixing work. However, debugging is still a
very challenging task that typically involves the interaction
of complex activities through an intense reasoning workflow,
demanding a considerable cost in time and effort [5].

Due to the complex and dynamic nature of the debugging
process, the identification and analysis of repetitive patterns
can benefit IDE designers, researchers, and developers. For
example, IDE designers can build more effective tools to
automate frequent debugging activities, suggesting related
tasks, or designing more advanced code tools, thus improv-
ing the productivity of developers. Furthermore, researchers
can better understand how debugging behavior is related
to developers’ productivity and code quality. Unfortunately,
most of existing studies on debugging activities within IDEs
do not consider the complex temporal structure of develop-
ers’ behavior, thus including only information about a small
subset of possible events in the form of data streams [4].

The detection of temporal behavioral patterns (T-patterns)
is a relevant multivariate data analysis technique used in the
discovery, analysis and description of temporal structures
in behavior and interactions [3]. This technique allows to
determine whether two or more behavioral events occur se-
quentially, within statistically significant time intervals.

In this paper, we perform a T-patterns analysis to study
debugging behavior. More specifically, we examine the rela-
tions of debugging events with other developers’ activities.
Through the analysis of the MSR 2018 Challenge Dataset,
consisting of enriched event streams of developers’ interac-
tions on Visual Studio, we guide our work by the following
research questions:

∙ RQ1: What developing events are the most correlated
with debugging activities?

∙ RQ2: Can we detect behavioral T-patterns in debug-
ging activities?

∙ RQ3: Is the analysis of T-patterns a suitable approach
to show the effect of systematic debugging activities
on software development?

We aim to answer these question by analyzing a set of 300
debugging sessions filtered from the MSR 2018 Challenge
Dataset of event interactions. The objective of our analysis is
twofold: (1) to provide the researchers with useful information
concerning the application of T-patterns analysis in the study
of developers’ behavior; and (2) to present empirical evidence
about the influence of debugging on software development.

Previous studies analyzed debugging behavior using pat-
terns detection methods. For example, in the development
of automated debugging techniques for IDE tools improve-
ment [4]. However, to the best of our knowledge, this is

https://doi.org/10.1145/3196398.3196452
https://doi.org/10.1145/3196398.3196452
https://doi.org/10.1145/3196398.3196452

MSR’18, May 28–29, 2018, Gothenburg, Sweden César Soto-Valero, Johann Bourcier, and Benoit Baudry

the first attempt of using T-patterns analysis to investigate
debugging session data.

2 DATA MANAGEMENT

The dataset for the 2018 MSR Challenge, released on March
2017 by the KaVE Project1, contains over 11M enriched
events that correspond to 15K hours of working time, origi-
nating from a diverse group of 81 developers [6]. The data was
collected using FeedBaG, an interaction tracker for Visual
Studio, which was designed with the purpose of capturing
a large set of different in-IDE interactions during software
developing in the shape of enriched event streams [1].

The THEME software2 supports the detection, visual-
ization and analysis of T-patterns. It has been successfully
applied in many different areas, from behavioral interaction
between human subjects and animals to neural interactions
within living brains [2]. Due to the data transferred by con-
tributors is anonymous, we base our T-patterns analysis on
the session Id that identifies developers’ work during each
calendar day. Our filtering routine removes duplicate events
and generates individual session files with a structure ap-
propriate for THEME. Date-time information of triggered
events is converted to epoch-second values, which is an inte-
ger representing the number of elapsed seconds from 1970-
01-01T00:00:00Z. Only sessions with debugging interactions
where retained for further analysis. Our resulting dataset
contains 300 sessions and more than 662K events. Figure 1
shows an example of the data inputs: the variable vs. value
correspondence table with the debugging-related event types
filtered (“vvt.vvt”) and a data file of debugging interactions
(“DebuggingSession.txt”).

“vvt.vvt” “DebuggingSession.txt”

Figure 1: Data input structure for THEME software.

We are mostly interested in debugging events triggered
using commands, such as “Debug.Start” or “Debug.StepInto”,
which represent the user’s invocation of a direct debugging
action in the IDE. We decide to keep other related event types
that can bring additional information about the program-
mer’s debugging behavior (e.g., “EditEvent”, “TestEvent” or
“BuildEvent”). To do so, we append onto each event type
string its respective descriptor. For instance, we retain in-
formation about the amount of editing according to the size

1Available at http://www.kave.cc/datasets
2For more information see http://patternvision.com

of changes made in the file (e.g., “Large” or “Short”), the
result of tests (e.g., “Successful” or “Failed”), or the build
result (e.g., “Successful” or “Unsuccessful”).

Our analysis goes beyond the discovery of events’ associa-
tions. We are more interested in explaining those connections
in terms of developers’ behaviour by means of T-patterns
analysis. In the following, we perform the events analysis
using THEME software. First, we show how interesting T-
patterns can be detected and visualized through the fine-
grained inspection of interactions in individual debugging
sessions. Next, we aim to find general behavioral patterns
that occur within statistical significance time thresholds for
all the debugging sessions studied.

3 T-PATTERNS ANALYSIS

In this section, we summarize the main concepts regarding
the detection and analysis of T-patterns [3]. Through the use
of an active debugging session as case study, we illustrate the
benefits of using THEME software as a tool for exploring hid-
den real-time structures of programming behaviour in IDEs.
Our general approach consists of 3 phases: (1) visualization
of debugging interactions in the form of T-data; (2) detection
of T-patterns in debugging sessions; and (3) validation and
analysis of the detected T-patterns.

T-data. A T-data consists in a collection of one or more
T-series, where each T-series represents the occurrence points
𝑝1, ..., 𝑝𝑖, ..., 𝑝𝑛 of a specific type of event during some obser-
vation interval [1, 𝑇]. Figure 2a shows an example of T-data
coded from a debugging session with 166 squared data points
(events occurrences), 25 T-series (event types), and a duration
of 823 units. Each T-series in the Y-axis represents an event
activity triggered in the IDE during the session, while the
X-axis is the time in which each specific event was invoked.
For the search parameters used, the blue squares represent
detected T-patters, while the red ones did not.

T-pattern. A T-pattern is composed of 𝑚 ordered com-
ponents 𝑋1 . . . 𝑋𝑖 . . . 𝑋𝑚, any of which may be occurrence
points or T-patterns, on a single dimension (time in this
case), such that, over the occurrences of the pattern the dis-
tances 𝑋𝑖 �𝑋𝑖+1, with 𝑖 . . .𝑚− 1, varies within a significant
small interval [𝑑1, 𝑑2]𝑖, called a critical interval (CI). Hence,
a T-pattern 𝑄 can be expressed as:

𝑄 = 𝑋1[𝑑1, 𝑑2]1 . . . 𝑋𝑖[𝑑1, 𝑑2]𝑖𝑋𝑖+1 . . . 𝑋𝑚−1[𝑑1, 𝑑2]𝑚−1𝑋𝑚

where 𝑚 is the length of 𝑄 and 𝑋𝑖[𝑑1, 𝑑2]𝑋𝑖+1 means that
within all occurrences of the pattern in T-data, after an
occurrence of 𝑋𝑖 at the instant 𝑡, there is a time window
[𝑡+ 𝑑1, 𝑡+ 𝑑2]𝑖 within which 𝑋𝑖+1 will occur. Any T-pattern
𝑄 can be divided into at least one pair of shorter ones related
by a corresponding CI: 𝑄𝑙𝑒𝑓𝑡[𝑑1, 𝑑2]𝑄𝑟𝑖𝑔ℎ𝑡. Recursively, 𝑄𝑙𝑒𝑓𝑡

and 𝑄𝑟𝑖𝑔ℎ𝑡 can thus each be split until the pattern 𝑋1 . . . 𝑋𝑚

is expressed as the 1 to 𝑚 terminals (occurrence points or
event types) of a binary-tree.

T-patterns detection. The T-patterns detection algo-
rithm consists in a set of routines for CI detection, pattern
construction and pattern completeness competition. The algo-
rithm works bottom-up, level-by-level and uses competition

http://www.kave.cc/datasets
http://patternvision.com

Detection and Analysis of Behavioral T-patterns in Debugging Activities MSR’18, May 28–29, 2018, Gothenburg, Sweden

(a) T-data representation. (b) T-pattern visualization.

Figure 2: T-patterns analysis of a debugging session, both figures were created with THEME.

and evolution to deal with redundant detections, where par-
tial and equivalent patterns are removed. THEME provides
statistical validation features, global and per pattern, using
randomization or Monte Carlo repeated simulation [2].

T-patterns visualization. A T-pattern can be viewed
as a hierarchical and self-similar pseudo fractal pattern, char-
acterized by significant translation symmetry between their
occurrences. Figure 2b shows the binary detection tree of a
complex T-pattern of length 7 found in the debugging session
of Figure 2a. The large vertical lines connecting event points
indicate the occurrence time of the T-pattern. The node
marked in green indicates an event that can be predicted from
the earlier parts of the pattern (also called T-retrodictor).

4 GENERAL FINDINGS

We perform an exploratory data analysis to examine the
association among events. We use the phi coefficient of cor-
relation, a common measure for binary correlation, and the
tidytext R package in order to visualize how often events ap-
pear together relative to how often they appear separately [7].
Figure 3 shows the 10 developers’ activities that we find more
correlated with debugging (𝜑 > 0.5).

Figure 3: Pairwise correlation between events related to

debugging activities.

From the figure, we observe that debugging activities are
strongly correlated with code editing, window interactions,
document saving, and activity events. In addition, we found
that code completion, keyboard navigation and short code
editing events are not directly correlated with debugging
activities. Based on the observation of Figure 3, we derive
the answer to the RQ1 as follows:

Answer to RQ1: Debugging activities are more correlated
with editing, file handling, window interactions and activity
events than with other general commands or event types.

We are mostly interested in analyzing general patterns
of events that occur within the debugging workflow. Such
patterns allow for insights into the dynamic nature of devel-
oper’s behavior while debugging software. Accordingly, all
debugging sessions were ordered and concatenated in time
to conform a single dataset for global analysis with THEME.
Thus, the 300 debugging sessions were merged, resulting in a
dataset with 263 different event types and more than 460K
events’ occurrences.

The following search parameters were fit in THEME via
grid search: (a) detection algorithm = FREE; (b) minimum
number of occurrences of pattern = 10; (c) significance level
= 0.0005 (0.05% probability of any CI relationship to occur
by chance); (d) maximum number of hierarchical search levels
= 10; (e) exclusion of frequent event types occurring above
the mean number of occurrences of ±1 standard deviations.

For the above parameters, more than of 12K of T-patterns
were detected. We run the algorithm on 10 randomized ver-
sions of the data, using the same search parameters, to check
if the set of detected T-patterns differentiate significantly
from those obtained randomly. Figure 4 shows the compari-
son between the distributions of the detected patterns on the
original data and the average number of patterns detected af-
ter the randomization procedure. The incidence of T-patterns
in real data was significantly greater than in its randomized
versions. Accordingly, it is clear that the T-patterns detected
in the original dataset were not obtained by chance. This
result demonstrates that debugging activities are organized
on the basis of behavioral events, which occur sequentially

MSR’18, May 28–29, 2018, Gothenburg, Sweden César Soto-Valero, Johann Bourcier, and Benoit Baudry

Table 1: Summary of T-patterns detected which reflect the relation of debugging activities with build results.

Build Result Occurrence Length Duration T-pattern Example

Successful 735 4.87±0.72 580.09±232.51 (Debug.Start((Debug.StepOver Debug.StopDebugging)BuildEvent.Successful))
Unsuccessful 67 2.25±0.25 120.71±35.91 (Debug.Start(Edit.Delete(DocumentEvent.Saved BuildEvent.Unsuccessful)))

and within significant constraints on the time intervals that
separates them. Based on this result, we derive the answer
to the RQ2 as follows:

Answer to RQ2: The validation of the T-patterns detected
using THEME provides meaningful evidence about the
presence of behavioral patterns in debugging activities.

Figure 4: Distribution of T-patterns lengths detected in

real and randomized data.

Once T-patterns have been detected, the next challenge
is to select relevant T-patterns for subsequent analysis. We
are interested in study T-patterns that associate debugging
activities with build results. To this end, we used the filters
available in THEME, which allow to search for the presence
of desired event types in patterns. We found a total of 735
T-patterns that directly associate debugging activities with
successful builds, whereas only 67 T-patterns were found for
unsuccessful builds. This result shows that, after a methodical
sequence of debugging activities, generally the developers
have much more chances to achieve successful builds.

Table 1 present a global comparison between the T-patterns
found in debugging sessions that are directly related with
successful and unsuccessful build results. From the table, we
can see that T-patterns related to successful builds occurs
more frequently and have a more complex structure, with
higher values of patterns’ length and duration. On the other
hand, T-patterns associated with unsuccessful builds present
a more simple structure, with a mean length value of nearly
2 events only and a duration that is almost five times smaller
than T-patterns associated with successful builds. This result
show that more complex debugging sessions (e.g., those in
which developers utilize more specialized debugging tools or
invert more time to complete) are more likely to pass the
builds and correct software failures.

By analyzing the T-patterns of sessions with unsuccessful
builds, we find that their contain mostly events that intro-
duce minor changes in code (e.g., “Edit.Delete, “Edit.Paste”).
We hypothesize that this type of debugging sessions were
used to quick trace the effect of these changes. Table 1 also
shows representative examples of T-patterns occurrences for
both types of build results. Based on the T-patterns analysis
performed, we derive the answer to the RQ3 as follows:

Answer to RQ3: The quantitative analysis of detected
T-patterns in debugging sessions shows that, in general,
complex debugging activities achieve successful builds.

5 CONCLUSION

In this paper, we introduced T-patterns analysis as a useful
approach to better understand developer’s behavior during
in-IDE activities. Through the analysis of 300 sessions with de-
bugging interactions, the results obtained using the THEME
software bring evidences about the presence of common T-
patterns during debugging. In particular, our analysis show a
strong connection between debugging activities and successful
builds. We believe that the study of the developers’ activities
using T-patterns analysis can advance the understanding
about the complex behavioral mechanism that meddle dur-
ing the process of software developing, which can benefit to
both practitioners and IDE designers. In order to aid in fu-
ture replication of our results, we make our THEME project,
filtered dataset and R scripts publicly available online3.

REFERENCES
[1] S. Amann, S. Proksch, and S. Nadi. 2016. FeedBaG: An interac-

tion tracker for Visual Studio. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). 1–3.

[2] Magnus Magnusson, Judee Burgoon, and Maurizio Casarrubea.
2016. Discovering hidden temporal patterns in behavior and
interaction: T-pattern detection and analysis with THEME�.
Springer-Verlag New York.

[3] Magnus S. Magnusson. 2000. Discovering hidden time patterns
in behavior: T-patterns and their detection. Behavior Research
Methods, Instruments, & Computers 32, 1 (2000), 93–110.

[4] Chris Parnin and Alessandro Orso. 2011. Are Automated Debug-
ging Techniques Actually Helping Programmers?. In Proceedings
of the 2011 International Symposium on Software Testing and
Analysis (ISSTA ’11). ACM, New York, NY, USA, 199–209.

[5] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and
Robert Hirschfeld. 2017. Studying the advancement in debug-
ging practice of professional software developers. Software Quality
Journal 25, 1 (2017), 83–110.

[6] Sebastian Proksch, Sven Amann, and Sarah Nadi. 2018. Enriched
Event Streams: A General Dataset For Empirical Studies On In-
IDE Activities Of Software Developers. In Proceedings of the
International Conference on Mining Software Repositories.

[7] Julia Silge and David Robinson. 2016. tidytext: Text Mining and
Analysis Using Tidy Data Principles in R. The Journal of Open
Source Software 1, 3 (2016).

3https://github.com/cesarsotovalero/msr-challenge2018

https://github.com/cesarsotovalero/msr-challenge2018

	Abstract
	1 Introduction
	2 Data Management
	3 T-patterns Analysis
	4 General Findings
	5 Conclusion
	References

