2005.11315v1 [cs.SE] 21 May 2020

arXiv

Java Decompiler Diversity and its Application to Meta-decompilation

Nicolas Harrand*, César Soto-Valero, Martin Monperrus and Benoit Baudry

KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

ARTICLE INFO

Keywords:

Java bytecode
decompilation
reverse engineering
source code analysis

ABSTRACT

During compilation from Java source code to bytecode, some information is irreversibly lost. In other
words, compilation and decompilation of Java code is not symmetric. Consequently, decompilation,
which aims at producing source code from bytecode, relies on strategies to reconstruct the information
that has been lost. Different Java decompilers use distinct strategies to achieve proper decompilation.
In this work, we hypothesize that the diverse ways in which bytecode can be decompiled has a direct
impact on the quality of the source code produced by decompilers.

In this paper, we assess the strategies of eight Java decompilers with respect to three quality indica-
tors: syntactic correctness, syntactic distortion and semantic equivalence modulo inputs. Our results
show that no single modern decompiler is able to correctly handle the variety of bytecode structures
coming from real-world programs. The highest ranking decompiler in this study produces syntacti-
cally correct, and semantically equivalent code output for 84%, respectively 78%, of the classes in our
dataset. Our results demonstrate that each decompiler correctly handles a different set of bytecode
classes.

We propose a new decompiler called Arlecchino that leverages the diversity of existing decompil-
ers. To do so, we merge partial decompilation into a new one based on compilation errors. Arlecchino
handles 37.6% of bytecode classes that were previously handled by no decompiler. We publish the

sources of this new bytecode decompiler.

1. Introduction

In the Java programming language, source code is com-
piled into an intermediate stack-based representation known
as bytecode, which is interpreted by the Java Virtual Ma-
chine JVM). In the process of translating source code to
bytecode, the compiler performs various analyses. Even if
most optimizations are typically performed at runtime by the
just-in-time (JIT) compiler, several pieces of information re-
siding in the original source code are already not present in
the bytecode anymore due to compiler optimization [28, 27].
For example the structure of loops is altered and local vari-
able names may be modified [17].

Decompilation is the inverse process, it consists in trans-
forming the bytecode instructions into source code [31]. De-
compilation can be done with several goals in mind. First,
it can be used to help developers understand the code of the
libraries they use. This is why Java IDEs such as IntelliJ
and Eclipse include built-in decompilers to help developers
analyze the third-party classes for which the source code is
not available. In this case, the readability of the decompiled
code is paramount. Second, decompilation may be a pre-
liminary step before another compilation pass, for example
with a different compiler. In this case, the main goal is that
the decompiled code is syntactically correct and can be re-
compiled. Some other applications of decompilation with
slightly different criteria include clone detection [34], mal-
ware analysis [46, 7] and software archaeology [35].

*Corresponding author
%9 harrand@kth.se (N. Harrand); cesarsv@kth.se (C.
Soto-Valero); martin.monperrus@csc.kth.se (M. Monperrus);
baudry@kth.se (B. Baudry)
ORCID(s): 0000-0002-2491-2771 (N. Harrand);
0000-0003-0541-6411 (C. Soto-Valero); 0000-0003-3505-3383 (M.
Monperrus); 0000-0002-4015-4640 (B. Baudry)

Overall, the ideal decompiler is one that transforms all
inputs into source code that faithfully reflects the original
code: the decompiled code 1) can be recompiled with a Java
compiler and 2) behaves the same as the original program.
However, previous studies that compared Java decompilers
[15, 23] found that this ideal Java decompiler does not ex-
ist, because of the irreversible data loss that happens dur-
ing compilation. In this paper, we perform a comprehensive
assessment of three aspects of decompilation: the syntactic
correctness of the decompiled code (the decompiled code
can recompile); the semantic equivalence with the original
source (the decompiled code passes all tests); the syntac-
tic similarity to the original source (the decompiled source
looks like the original). We evaluate eight recent and notable
decompilers on 2041 Java classes, making this study one or-
der of magnitude larger than the related work [15, 23].

Next, we isolate a subset of 157 Java classes that no state-
of-the-art decompiler can correctly handle. The presence
of generics and wildcards is a major challenge that prevents
successful decompilation. Meanwhile, we note that different
decompilers fail for diverse reasons. This raises the oppor-
tunity to merge the results of several incorrect decompiled
sources to produce a version that can be recompiled. We call
this process meta-decompilation. Meta-decompilation is a
novel approach for decompilation: 1) it leverages the natu-
ral diversity of existing decompilers by merging the results
of different decompilers 2) it is able to provide decompiled
sources for classes that no decompiler in isolation can han-
dle. We implement this approach in a novel meta-decompiler
called Arlecchino.

Our results have important implications: 1) for all users
of decompilation, our paper shows significant differences be-
tween decompilers and provide well-founded empirical evi-
dence to choose the best ones; 2) for researchers in decom-

Harrand et al.: Preprint submitted to Elsevier

Page 1 of 19

Java Decompiler Diversity and its Application to Meta-decompilation

pilation, our results show that the problem is not solved;
3) for authors of decompilers, our experiments have iden-
tified bugs in their decompilers (3 have already been fixed,
and counting) and our methodology of semantic equivalence
modulo inputs can be embedded in the QA process of all de-
compilers in the world.

In summary, this paper makes the following contribu-
tions:

e an empirical comparison of eight Java decompilers ba-
sed on 2041 real-world Java classes, tested by 25019
test cases, identifying the key strengths and limitations
of Java bytecode decompilation;

e meta-decompilation, a novel approach to decompila-
tion that leverages decompilers diversity to improve
decompilation effectiveness;

e atool and a dataset for future research on Java decom-
pilers publicly available at https://github.com/
castor-software/decompilercmp

2. Background

In this section, we present an example drawn from
the Apache commons-codec library. We wish to illus-
trate information loss during compilation of Java source
code, as well as the different strategies that byte-
code decompilers adopt to cope with this loss when
they generate source code from bytecode. Listing 1
shows the original source code of the utility class
org.apache.commons.codec.net.Utils, while List-
ing 2 shows an excerpt of the bytecode produced by the stan-
dard javac compiler.! Here, we omit the constant pool as
well as the table of local variables and replace references to-
wards these tables with comments to save space and make
the bytecode more human readable.

As mentioned, the key challenge of decompilation re-
sides in the many ways in which information is lost dur-
ing compilation. Consequently, Java decompilers need to
make several assumptions when interpreting bytecode in-
structions, which can also be generated in different ways.
To illustrate this phenomenon, Listing 3 and Listing 4 show
the Java sources produced by the Fernflower and Dava de-
compilers when interpreting the bytecode of Listing 2. In
both cases, the decompilation produces correct Java code
(i.e., recompilable) with the same functionality as the in-
put bytecode. Notice that Fernflower guesses that the series
of StringBuilder (bytecode instruction 23 to 27) calls is
the compiler’s way of translating string concatenation and is
able to revert it. On the contrary, the Dava decompiler does
not reverse this transformation.

As we notice, the decompiled sources are different
from the original in at least three points: 1) In the orig-
inal sources, the local variable i was final, but javac

IThere are various Java compilers available, notably Oracle javac and
Eclipse ecj, which can produce different bytecode for the same Java input.

1 class Utils {
private static final int RADIX = 16;
static int digitl6(final byte b) throws
DecoderException {
4 final int i = Character.digit((char) b, RADIX);
5 if (1 == -1) {
6 throw new DecoderException("Invalid URL
encoding: not a valid digit (radix " +

RADIX + "): " + b);
}
8 return i;
9 }
10 }
Listing 1: Source code of Java class correspondig to

org.apache.commons.codec.net.Utils.

1 class org.apache.commons.codec.net.Utils {
static int digitl6(byte) throws
org.apache.commons.codec.DecoderException;
: ILOAD_O //Parameter byte b
I2C
BIPUSH 16
INVOKESTATIC #19 //Character.digit: (CI)I
ISTORE_1 //Variable int i
ILOAD_1
9 9: ICONST_ml
10 10: IF_ICMPNE 37
11 //org/apache/commons/codec/DecoderException
12 13: NEW #17
13 16: DUP
14 17: NEW #25 //java/lang/StringBuilder
15 20: DUP
16 //"Invalid URL encoding: not a valid digit (radix
16):"
17 21: LDC #27
18 //StringBuilder."<init>":(Ljava/lang/String;)V
19 23: INVOKESPECIAL #29
20 26: ILOAD_O
21 //StringBuilder.append: (I)Ljava/lang/StringBuilder;
22 27: INVOKEVIRTUAL #32
23 //StringBuilder.toString: ()Ljava/lang/String;
2 30: INVOKEVIRTUAL #36
»s //DecoderException."<init>":(Ljava/lang/String;)V
2 33: INVOKESPECIAL #40
7 36: ATHROW
28 37: ILOAD_1
29 38: IRETURN
0}

Listing 2: Excerpt of disassembled bytecode from code in
Listing 1.

ONPANRFRO

lost this information during compilation. 2) The if state-
ment had originally no else clause. Indeed, when an ex-
ception is thrown in a method that does not catch it, the
execution of the method is interrupted. Therefore, leav-
ing the return statement outside of the if is equiva-
lent to putting it inside an else clause. 3) In the orig-
inal code the String "Invalid URL encoding: not
a valid digit (radix 16): " was actually com-
puted with "Invalid URL encoding: not a valid
digit (radix " + URLCodec.RADIX + "): ". In
this case, URLCodec.RADIX is actually a final static field
that always contains the value 16 and cannot be changed.
Thus, it is safe for the compiler to perform this optimization,
but the information is lost in the bytecode.

Harrand et al.: Preprint submitted to Elsevier

Page 2 of 19

https://github.com/castor-software/decompilercmp
https://github.com/castor-software/decompilercmp

Java Decompiler Diversity and its Application to Meta-decompilation

1 class Utils {
private static final int RADIX = 16;
static int digitl6(byte b) throws DecoderException
{
4 int i = Character.digit((char)b, 16);
if(i == -1) {
6 throw new DecoderException("Invalid URL
encoding: not a valid digit (radix 16):
"+ b);
} else {
8 return i;
9 }
10 }
o}

Listing 3:
Fernflower.

Decompilation result of Listing 2 with

1 class Utils

> A
static int digitl6(byte b)

4 throws DecoderException

5 {

6 int i = Character.digit((char)b, 16);

if(i == -1)

8 throw new DecoderException((new
StringBuilder()).append("Invalid URL
encoding: not a valid digit (radix
16): ").append(b).toString());

9 else

10 return i;

11 }

12 private static final int RADIX = 16;

3}

Listing 4: Decompilation result of Listing 2 with Dava.

Besides, this does not include the different formatting
choices made by the decompilers such as new lines place-
ment and brackets usage for single instructions such as if
and else.

3. Decompiler evaluation methodology

In this section, we introduce definitions, metrics and re-
search questions. Next, we detail the framework to compare
decompilers and we describe the Java projects that form the
set of case studies for this work.

3.1. Definitions and Metrics

The value of the results produced by decompilation
varies greatly depending on the intended use of the gener-
ated source code. In this work, we evaluate the decompilers’
capacity to produce a faithful retranscription of the original
sources. Therefore, we collect the following metrics.

Definition 1. Syntactic correctness. The output of a de-
compiler is syntactically correct if it contains a valid Java
program, i.e. a Java program that is recompilable with a
Java compiler without any error.

When a bytecode decompiler generates source code that
can be recompiled, this source code can still be syntactically
different from the original. We introduce a metric to measure
the scale of such a difference according to the abstract syn-
tax tree (AST) dissimilarity[9] between the original and the

decompiled results. This metric, called syntactic distortion,
allows to measure the differences that go beyond variable
names. The description of the metric is as follows:

Definition 2. Syntactic distortion. The minimum number
of atomic edits required to transform the AST of the original
source code of a program into the AST of the corresponding
decompiled version of it.

In the general case, determining if two program are se-
mantically equivalent is undecidable. For some cases, the
decompiled sources can be recompiled into bytecode that is
equivalent to the original, modulo reordering of the constant
pool. We call these cases strictly equivalent programs. We
measure this equivalence with a bytecode comparison tool
named Jardiff.?

Inspired by the work of [25] and [47], we check if the de-
compiled and recompiled program are semantically equiva-
lent modulo inputs. This means that for a given set of inputs,
the two programs produce equivalent outputs. In our case,
we select the set of relevant inputs and assess equivalence
based on the existing test suite of the original program.

Definition 3. Semantic equivalence modulo inputs. We
call a decompiled program semantically equivalent modulo
inputs to the original if it passes the set of tests from the orig-
inal test suite.

In the case where the decompiled and recompiled pro-
gram produce non-equivalent outputs, that demonstrates that
the sources generated by the decompiler express a differ-
ent behavior than the original. As explained by Hamilton
and colleagues [15], this is particularly problematic as it can
mislead decompiler users in their attempt to understand the
original behavior of the program. We refer to theses cases
as deceptive decompilation results.

Definition 4. Deceptive decompilation: Decompiler output
that is syntactically correct but not semantically equivalent
to the original input.

3.2. Research Questions

We elaborated five research questions to guide our study
on the characteristics of modern Java decompilers.

RQ1: To what extent is decompiled Java code syn-
tactically correct? In this research question, we investigate
the effectiveness of decompilers for producing syntactically
correct and hence recompilable source code from bytecode
produced by the javac and ecj compilers.

RQ2: To what extent is decompiled Java code seman-
tically equivalent modulo inputs? Le and colleagues [25]
propose to use equivalence modulo inputs assessment as a
way to test transformations that are meant to be semantic
preserving (in particular compilation). In this research ques-
tion, we adapt this concept in the context of decompilation
testing. In this paper we rely on the existing test suite instead
of generating inputs.

2https://github.com/scala/jardiff

Harrand et al.: Preprint submitted to Elsevier

Page 3 of 19

https://github.com/scala/jardiff

Java Decompiler Diversity and its Application to Meta-decompilation

Original Decompiled

e
! (= Syntactic distortion g

Syntactic correctness

Source code

Original

Recompiled

q Semantic equivalence modulo inputs |

Figure 1: Java decompiler assessment pipeline with four evalu-
ation layers: syntactic distortion, bytecode difference, syntactic
correctness, and semantic equivalence modulo input.

RQ3: To what extent do decompilers produce decep-
tive decompilation results? In this research question, we
investigate the cases where we observe semantic differences
between the original source code and the outputs of the de-
compilers.

RQ4: What is the syntactic distortion of decompiled
code? Even if decompiled bytecode is ensured to be syntac-
tically and semantically correct, syntactic differences may
remain as an issue when the purpose of decompilation is hu-
man understanding. Keeping the decompiled source code
free of syntactic distortions is essential during program com-
prehension, as many decompilers can produce human un-
readable code structures. In this research question, we com-
pare the syntactic distortions produced by decompilers.

RQ5: To what extent do the successes and failures of
decompilers overlap? In this research question we inves-
tigate the intersection of classes for which each decompiler
produce semantically equivalent modulo input sources.

3.3. Study Protocol

Figure | represents the pipeline of operations conducted
on every Java source file in our dataset. For each triplet <de-
compiler, compiler, project>, we perform the following:

1. Compile the source files with a given compiler.

2. Decompile each class file with a decompiler (there
might be several classes if the source defines internal
classes). If the decompiler does not return any error,
we mark the source file as decompilable. Then, (a) we
measure syntactic distortion by comparing the AST of
the original source with the AST of the decompiled
source.

3. Recompile the class files with the given compiler.
If the compilation is successful, we know that the

decompiler produces (b) syntactically correct code.
Then, we measure (c) the textual difference between
the original and the recompiled bytecode. If there are
none, the decompiler produced semantically equiva-
lent code, otherwise we cannot assess anything in that
regard yet.

4. Run the test cases on the recompiled bytecode. If the
tests are successful, we mark the source as passTests
for the given triplet, showing that the decompiler pro-
duces (d) semantically equivalent code modulo inputs.

If one of these steps fails we do not perform the follow-
ing steps and consider all the resulting metrics not available.
As decompilation can generate a program that does not stop,
we set a 20 minutes timeout for the execution of the test suite
(the original test suites run under a minute on the hardware
used for this experiment, a Core i5-6600K with 16GB of
RAM).

The tests used to assess the semantic equivalence modulo
inputs are those of the original project that cover the given
Java file.> We manually excluded the tests that fail on the
original project (either flaky or because versioning issue).
The list of excluded tests is available as part of our experi-
ments.

3.4. Study Subjects

Decompilers. Table 1 shows the set of decompilers un-
der study. We have selected Java decompilers that are (i)
freely available, and (ii) have been active in the last two
years. We add Jode in order to compare our results with
a legacy decompiler, and because the previous survey by
Hamilton and colleagues considers it to be one of the best
decompilers [15].

The column VERSION shows the version used (some de-
compilers do not follow any versioning scheme). We choose
the latest release if one exists, if not the last commit avail-
able the 09-05-2019. The column STATUS indicates the date
of the last commit or "Active" if the last commit was more
recent than 30 days. The column #COMMITS represents the
number of commits in the decompiler project, in cases where
the decompiler is a submodule of a bigger project (e.g. Dava
and Fernflower) we count only commits affecting the sub-
module. The column #LOC is the number of lines of code in
all Java files (and Python files for Krakatau) of the decompi-
ler, including sources, test sources and resources counted
with cloc.*

Note that different decompilers are developed for dif-
ferent usages and, therefore, are meant to achieve different
goals. CFR [2] for Java 1° to 14, for code compiled with
Jjavac (note that since we performed our first experiments, it
is now tested with ecj generated classes). Procyon [40] from

3Coverage was assessed using yajta https://github.com/
castor-software/yajta

“http://cloc.sourceforge.net/

Shttps://github.com/leibnitz27/cfr/blob/
33216277ae3b61a9d2b3f912d9ed91a3e698d536/src/org/benf/
cfr/reader/entities/attributes/AttributeCode. java#L49

Harrand et al.: Preprint submitted to Elsevier

Page 4 of 19

https://github.com/castor-software/yajta
https://github.com/castor-software/yajta
http://cloc.sourceforge.net/
https://github.com/leibnitz27/cfr/blob/33216277ae3b61a9d2b3f912d9ed91a3e698d536/src/org/benf/cfr/reader/entities/attributes/AttributeCode.java#L49
https://github.com/leibnitz27/cfr/blob/33216277ae3b61a9d2b3f912d9ed91a3e698d536/src/org/benf/cfr/reader/entities/attributes/AttributeCode.java#L49
https://github.com/leibnitz27/cfr/blob/33216277ae3b61a9d2b3f912d9ed91a3e698d536/src/org/benf/cfr/reader/entities/attributes/AttributeCode.java#L49

Java Decompiler Diversity and its Application to Meta-decompilation

Table 1 Table 2

Characteristics of the studied decompilers. Characteristics of the projects used to evaluate decompilers.
Decompiler Version Status #Commits #LOC Project name Java version #Classes #Tests #LOC
CFR [2] 0.141 Active 1433 52098 Bukkit 1.6 642 906 60800
Dava [19] 3.3.0 2018-06-15* 14 22884 Commons-codec 1.6 59 644 15087
Fernflower [20] NA** Active 453 52118 Commons-collections 1.5 301 15067 62077
JADX [38] 0.9.0 Active 970 55335 Commons-imaging 15 329 94 47396
JD-Core [6] 1.0.0 Active NA*** 36730 Commons-lang 1.8 154 2581 79509
Jode [16] 1.1.2-prel 2004-02-25* NAX** 30161 DiskLruCache 1.5 3 61 1206

Krakatau [39] NA** 2018-05-13* 512 11301 JavaPoet* 1.6 2 60 934
Procyon [40] 0.5.34 Active 1080 122147 Joda time 1.5 165 4133 70027
* Jsoup 1.5 54 430 14801

N Date of last update. JUnit4 15 195 867 17167

ot following any versioning scheme. Mimecraft 1.6 4 14 523

*** CVS not available at the date of the present study. Scribe Java 15 89 99 4294

Spark 1.8 34 54 4089

Java 5 and beyond and javac, shares its test suite with CFR. DcTest** 15-138 10 9 211
Total 2041 25019 378121

Fernflower [20] is the decompiler embedded in IntelliJ IDE.
Krakatau [39] up to Java 7 does not currently support Java 8
or invokedynamic. JD-Core [6] is the engine of JD-GUL
It supports Java 1.1.8 to Java 12.0. The version we study
in this work is the first version released since the complete
rewrite of JD-Core. While older versions were based on a
simple bytecode pattern recognition engine, JD-Core now
includes a CFG analysis layer. JADX [38] is a decompiler
that originally targeted dex files (bytecode targeting the an-
droid platform) but can also target class files, as in our exper-
iments. Dava [19] is a decompiler built on top of the Soot
Framework [42]. It does not target Java bytecode produced
by any specific compiler nor from any specific language, but
produces decompiled sources in Java. Soot supports byte-
code and source code up to Java 7. Jode [16] is a legacy
decompiler that handles Java bytecode up to Java 1.4.

Projects. In order to get a set of real world Java projects
to evaluate the eight decompilers, we reuse the set of projects
of Pawlak and colleagues[32]. To these 13 projects we added
a fourteenth one named DcTest made out of examples col-
lected from previous decompiler evaluations [15, 23].% Ta-
ble 2 shows a summary of this dataset: the Java version in
which they are written, the number of Java source files, the
number of unit tests as reported by Apache Maven, and the
number of Java lines of code in their sources.

As different Java compilers may translate the same
sources into different bytecode representations [5]7, we ex-
periment with the two most used Java compilers: javac
and ecj (versions 1.8.0_17 and 13.13.100, respectively).
We compiled all 14 projects with both compilers (except
commons - Lang which failed to build with ecj). Our dataset
includes 3928 bytecode classes, 1887 of which compiled
with ecj, and 2041 compiled with javac. As we study the in-
fluence of the compiler, in RQ1, we limit our datasets to the
1887 classes that compiled with both compilers. As seman-
tic equivalence modulo inputs is based on test suites, for RQ2
and RQ3 we focus on the classes that contain code executed
by test suites: 2397 classes generated by the two compilers.
These classes covered by the test suites exclude interfaces
as they do not contain executable code. Most enum declara-
tions fall under the same category. Test coverage is assessed

Shttp://www.program-transformation.org/Transform/
JavaDecompilerTests

Thttps://www.benf.org/other/cfr/
eclipse-differences.html

(*) Formerly named JavaWriter.
(**) Examples collected from previous decompilers evaluation.

through bytecode instrumentation with a tool named yajta.®

4. Experimental Results

4.1. RQ1: (syntactic correctness) To what extent is
decompiled Java code syntactically correct?

This research question investigates to what extent the
source code produced by the different decompilers is syntac-
tically correct, meaning that the decompiled code compiles.
We also investigate the effect of the compiler that produces
the bytecode on the decompilation results. To do so, in this
section, we focus on the 1887 classes that compile with both
Jjavac and ecj.

Figure 2 shows the ratio of decompiled classes that are
syntactically correct per pair of compiler and decompiler.
The horizontal axis shows the ratio of syntactically correct
output in green, the ratio of syntactically incorrect output in
blue, and the ratio of empty output in red (an empty output
occurs, e.g. when the decompiler crashes). The vertical axis
shows the compiler on the left and decompiler on the right.
For example, Procyon, shown in the last row, is able to pro-
duce syntactically correct source code for 1609 (85.3%) class
files compiled with javac, and produce a non-empty syntacti-
cally incorrect output for 278 (14.7%) of them. On the other
hand, when sources are compiled with ecj, Procyon gener-
ates syntactically correct sources for 1532 (81.2%) of class
files and syntactically incorrect for 355 (18.8%) sources. In
other words, Procyon is slightly more effective when used
against code compiled with javac. It is interesting to notice
that not all decompiler authors have decided to handle er-
ror the same way. Both Procyon and Jode’s developers have
decided to always return source files, even if incomplete (for
our dataset). Additionally, when CFR and Procyon detect a
method that they cannot decompile properly, they may re-
place the body of the method by a single throw statement
and comment explaining the error. This leads to syntacti-
cally correct code, but not semantically equivalent.

The ratio of syntactically correct decompiled code
ranges from 85.7% for Procyon on javac inputs (the best),
down to 44% for Krakatau on ecj (the worst). All decom-

8https://github.com/castor-software/yajta

Harrand et al.: Preprint submitted to Elsevier

Page 5 of 19

http://www.program-transformation.org/Transform/JavaDecompilerTests
http://www.program-transformation.org/Transform/JavaDecompilerTests
https://www.benf.org/other/cfr/eclipse-differences.html
https://www.benf.org/other/cfr/eclipse-differences.html
https://github.com/castor-software/yajta

Java Decompiler Diversity and its Application to Meta-decompilation

Category . Recompile . Doesn't recompile . Empty

g\
ui0 |

javac

javac

ecj

javac

quaon‘ nezexm){H apor ‘amo—(]r ‘ Xavr ’amouma: eAeq

ecj

mpiler
@
8

Q
3
N
a
=
a
3
2
~
a
2
=]
3
=

Figure 2: Outcome of the decompilation for each pair of com-
piler and decompiler for the 1887 classes compilable by both ecj
and javac. From left to right are presented the percentages of
classes that were syntactically correct (in green), syntactically
incorrect (in blue), and empty (in red)

1 public interface Bag<E> extends Collection<E> {

> + @Override

3 + public boolean add(E varl);

4+ - public boolean add(E Object);

5 [...]

6 }

Listing 5: Excerpt of differences in Bag original (in red
marked with a -) and decompiled with CFR (in green
marked with a +).

pilers failed to produce syntactically correct output for 137
classes. Overall, no decompiler is capable of correctly han-
dling the complete dataset. This illustrates the challenges of
Java bytecode decompilation, even for bytecode that has not
been obfuscated.

We note that syntactically incorrect decompilation can
still be useful for reverse engineering. However, an empty
output is useless: the ratio of class files for which the de-
compilation completely fails is never higher than 8.6% for
Dava on javac bytecode.

In the following paragraphs we investigate the impact
of the compiler on decompilation effectiveness. Over the
10912 syntactically incorrect decompilation (over all de-
compilers), 712 can be attributed to compiler differences
because the decompiler produces syntactically incorrect
sources for one compiler and not for the other. These cases
break down as follows: 596 failures occur only on ecj byte-
code and 116 cases only on javac code.

Listing 5 shows an excerpt of the differences be-
tween the original source code of the Bag interface from
commons-collections and its decompiled sources pro-
duced by CFR. This is an example where both javac and ecj
produce the same bytecode, yet recompilation of the sources
produced by CFR succeed with javac and fail with ecj. The
commons-collections library is compiled targeting Java

1 //Bytecode

2 NEW Lang$LangRule

3 DUP

4 ALOAD 10 //pattern

5 NEW HashSet

6 DUP

7 ALOAD 11 //langs

8 INVOKESTATIC Arrays.aslList

9 invokespecial HashSet.<init>

10 ILOAD 12 // accept

1" ACONST_NULL

INVOKESPECIAL Lang$LangRule.<init>
13 - (LPattern;LSet;Z LLang$1)V
INVOKESPECIAL Lang$LangRule.<init>
5 + (LPattern;LSet;Z LLang$LangRule)V

=}
'

=
+

17 //Decompiled sources

s //Usage of private static inner class LangRule
constructor's wrapper generated by the compiler

19 - new LangRule(pattern, new HashSet<String>(

20 - Arrays.asList(langs)), accept)

21 + new LangRule(pattern, new HashSet(

o+ Arrays.asList(langs)), accept, null)

Listing 6: Excerpt

of differences when compiling org/apache/commons/

codec/language/bm/Lang with javac (in red marked

with a -) and with ecj (in green marked with a +). Top

part of listing illustrates differences in bytecode, while

bottom part shows differences in source code decompiled

by Procyon.

1.5, in our experiment. In these conditions, ecj fails in the
presence of the @verride annotation to override a method
inherited from an interface such as Collection. It is only
accepted for inheritance from a class (abstract or concrete).
Meanwhile, javac compiles the decompiled sources without
any error. Note that specifying Java 1.6 as target solves the
error with ecj. This illustrates how the notion of syntactic
correctness depends on the actual compiler as well as on the
targeted Java version.

Listing 6 shows an excerpt of the bytecode generated
by javac and ecj for class org/apache/commons/codec/
language/bm/Lang as well as the corresponding decom-
piled sources generated by Procyon in both cases. The ex-
cerpt shows a call to the private constructor of aprivate
static nested class of Lang called LangRule. Since the
nested class is static the outer class and the inner class
interact as if both were top-level classes’ in the bytecode.
But as the constructor of the nested class is private, the
enclosing class cannot access it. To bypass this problem,
both javac and ecj create a synthetic public wrapper for
this constructor. In Java bytecode, a synthetic element is an
element created by the compiler that does not correspond
to any element present in the original sources (implicitly or
not). This wrapper is a public constructor for the nested class
LangRule. As the signature for this wrapper cannot be the
same as the private constructor, it must have different param-
eters. javac and ecj handle this case differently. javac creates
a synthetic anonymous class Lang$1 and adds an additional
parameter typed with this anonymous class to the wrapper

9https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

Harrand et al.: Preprint submitted to Elsevier

Page 6 of 19

Java Decompiler Diversity and its Application to Meta-decompilation

parameters. Since the value of this parameter is never used,
null is passed as additional parameter when the wrapper is
called. ecj does almost the same thing, but the additional
parameter is of type Lang$LangRule. Procyon is able to
reverse the javac transformation correctly, but not the ecj
one. It decompiles the ecj version literally, conserving the
null parameter. Yet, the synthetic wrapper does not exist in
the decompiled sources. Consequently, the decompiled code
that refers to an absent constructor is syntactically incorrect.
This example illustrates the decompilation challenge intro-
duced by synthetic elements that are generated by a com-
piler. Note that synthetic elements in bytecode do carry a
flag indicating their nature. But, (i) it does not change the
difficulty of reversing an unforeseen pattern and (ii) this flag
could be abused by an obfuscator as it does not change the
semantic of the bytecode but rather gives indication to drive
potential tools modifying the bytecode. In the case of Pro-
cyon and CFR, their common test suite did not include code
generated by ecj at the time of this experiment. Since then,
the author of CFR has updated the test suite common to CFR
and Procyon with test covering bytecode from ecj'’

We have shown that the compiler impact decompilation
effectiveness for two reasons: (i) it changes the oracle for
syntactic correctness; (ii) it produces different bytecode
structure that decompilers might not expect.

To assess the significance of this impact, we use a y? test
on the ratio of classfiles decompiled into syntactically cor-
rect source code depending on the compiler, javac versus ec;.
The compiler variable has an impact for three decompilers
and no impact for the remaining five, with 99% confidence
level. The test rejects that the compiler has no impact on the
decompilation syntactic correctness ratio for CFR, Procyon
and JD-Core (p-value 10~'4, 0.00027 and 0.006444). For
the five other decompilers we do not observe a significant
difference between javac and ecj (p-values: Dava 0.15, Fer-
nflower 0.47, JADX 0.17, Jode 0.50, and Krakatau 0.09).
Note that beyond syntactic correctness, the compiler may
impact the correctness of the decompiled code, this is dis-
cussed in more details in Section 4.3.

To sum up, Procyon and CFR are the decompilers
that score the highest on syntactic correctness. The three
decompilers ranking the lowest are Jode, Krakatau and
Dava. It is interesting to note that those three are no longer
actively maintained.

' N

Answer to RQ1: No single decompiler is able to produce
syntactically correct sources for more than 85.7% of class
files in our dataset. The implication for decompiler users
is that decompilation of Java bytecode cannot be blindly
applied and does require some additional manual effort.
Only few cases make all decompilers fail, which suggests
that using several decompilers in conjunction could help

to achieve better results.
\ J

10Commit: https://github.com/leibnitz27/cfr_tests/
commit/b4fOb0le34a953alfd57e52f508c9c02c58e6dee Discus-
sion: https://github.com/leibnitz27/cfr/issues/50

IFEQ L2
IFNE L2
GOTO LO
L2
ALOAD 5
6 INVOKESTATIC Lang$LangRule.access$100
(LLang$LangRule;)Z
IFEQ L3
8 ALOAD 3
9 ALOAD 5
10 INVOKESTATIC Lang$LangRule.access$200
(Lang$LangRule;)Ljava/util/Set;
o= INVOKEINTERFACE Set.retainAll (LCollection;)Z
2+ INVOKEVIRTUAL HashSet.retainAll (LCollection;)Z
13 (itf)
14 POP
15 - GOTO L2
6 + GOTO LO

+ + +

Listing 7: Excerpt of bytecode from class org/apache/
commons/codec/language/bm/Lang.class,
compiled with javac and decompiled with CFR: Lines in
red, marked with a -, are in the original bytecode, while
lines in green, marked with a +, are from the recompiled
sources.

4.2. RQ2: (semantic equivalence) To what extent
is decompiled Java code semantically
equivalent modulo inputs?

To answer this research question, we focus on the 2397
class files, regrouping bytecode generated by both javac and
ecj, that are covered by at least one test case. This ex-
cludes all types which contain no executable code, such as
interfaces. When decompilers produce sources that compile,
we investigate the semantic equivalence of the decompiled
source and their original. To do so, we split recompilable
outputs in three categories: (i) semantically equivalent: the
code is recompiled into bytecode that is strictly identical to
the original (modulo reordering of the constant pool, as ex-
plained in Section 3.1), (ii) semantically equivalent modulo
inputs: the output is recompilable and passes the original
project’s test suite (i.e. we cannot prove that the decom-
piled code is semantically different), and (iii) semantically
different: the output is recompilable but it does not pass the
original test suite (deceptive decompilation, as explained in
Definition 4).

Let us first discuss an example of semantic equivalence
of decompiled code. Listing 7 shows an example of bytecode
that is different when decompiled-recompiled but equivalent
modulo inputs to the original. Indeed, we can spot two dif-
ferences: the control flow blocks are not written in the same
order (L2 becomes LO) and the condition evaluated is re-
versed (IFEQ becomes IFNEQ), which leads to an equivalent
control flow graph. The second difference is that the type of
a variable originally typed as a Set and instantiated with an
HashSet has been transformed into a variable typed as an
HashSet, hence once remainAl1lisinvoked on the variable
INVOKEINTERFACE becomes directly INVOKEVIRTUAL.
This example illustrates how bytecode may be changed (here
with a slightly different but equivalent control flow graph and
a change in the precision of the type information) yet still be

Harrand et al.: Preprint submitted to Elsevier

Page 7 of 19

https://github.com/leibnitz27/cfr_tests/commit/b4f0b01e34a953a1fd57e52f508c9c02c58e6dee
https://github.com/leibnitz27/cfr_tests/commit/b4f0b01e34a953a1fd57e52f508c9c02c58e6dee
https://github.com/leibnitz27/cfr/issues/50

Java Decompiler Diversity and its Application to Meta-decompilation

Equivalence Modulo Input . Strict
2307 fm == - - - - - ———— == =y = = = = = ===
2000 o \
% Total # of classes
8 60% 59% 57%
8 327 48%
© 1000 853 835
565 32% 30%
- - - - -
0 s [e
& e & S @ & @ N
@do & Q\\"“A &Y‘Q < ¥ * 5@%
N & § &

Decompiler

Figure 3: Equivalence results for each decompiler on all the
2397 classes of the studied projects covered by at least one
test, (both compilers combined).

Table 3
Cause of non-equivalence for each decompiler.

Procyon
R
ADX
JD-Core
Jode
Dava
Krakatau

#Deceptive 33 22 78 44 142 36 97
#!Recompile 495 662 911 994 1094 1599 1576
#Failures 528 684 962 989 1038 1236 1635 1673

F
[(e)
= N Fernflower

semantically equivalent modulo inputs.

Now we discuss the results globally. Figure 3 shows the
recompilation outcomes of decompilation regarding seman-
tic equivalence for the 2397 classes under study. The hori-
zontal axis shows the eight different decompilers. The ver-
tical axis shows the number of classes decompiled success-
fully. Strictly equivalent output is shown in blue, equiva-
lent classes modulo input are shown in orange. For example,
CFR (second bar) is able to correctly decompile 1713 out of
2397 classes (71%), including 1114 classes that are recom-
pilable into strictly equivalent bytecode, and 599 that are re-
compilable into equivalent bytecode modulo inputs. When
the decompiler fails to produce an output that is semantically
equivalent modulo inputs, it is either because the decompiled
sources were not syntactically correct and did not recompile,
or because they did recompile but did not pass the original
test suite (deceptive decompilation). Table 3 gives this in-
formation for each decompiler.

The three decompilers that are not actively maintained
any more (Jode, Dava and Krakatau) handle less than 50%
of the cases correctly (recompilable and pass tests). On the
other hand, Procyon and CFR have the highest ratio of equiv-
alence modulo inputs of 78% and 71%, respectively.

' N

Answer to RQ2: The number of classes for which the
decompiler produces equivalent sources modulo input
varies significantly from one decompiler to another. The
result of decompilation is usually not strictly identical
to the original source code. Five decompilers generate
equivalent modulo input source code for more than 50%
of the classes. For end users, it means that the state of
the art of Java decompilation does not guarantee seman-
tically correct decompilation, and care must be taken not

ecj . both

Compiler - javac

Jode -|

Krakatau -|

JADX -

JD-Core -|

Procyon |

Decompiler

Dava -|

CFR-|

Fernflower -|

20 40 60 80

o.

Figure 4: Deceptive decompilation results per decompiler.
From left to right, deceptive decompilation occurring after
Jjavac compilation, ecj and both.

L to blindly trust the behavior of decompiled code. J

4.3. RQ3: (bug finding) To what extent do
decompilers produce deceptive decompilation
results?

As explained by Hamilton and colleagues [15], while
a syntactically incorrect decompilation output may still be
useful to the user, syntactically correct but semantically dif-
ferent output is more problematic. Indeed, this may mis-
lead the user by making her believe in a different behaviour
than the original program has. We call this case deceptive
decompilation (as explained in Definition 4). When such
cases occur, since the decompiler produces an output that is
semantically different from what is expected, they may be
considered decompilation bugs.

Figure 4 shows the distribution of bytecode classes that
are deceptively decompiled. Each horizontal bar groups de-
ceptive decompilation per decompiler. The color indicates
which compiler was used to produce the class file triggering
the error. In blue is the number of classes leading to a de-
compilation error only when compiled with javac, in green
only when compiled with ecj, and in pink is the number of
classes triggering a decompilation error with both compil-
ers. The sum of these classes is indicated by the total on the
right side of each bar. Note that the bars in Figure 4 represent
the number of bug manifestations, which are not necessarily
distinct bugs: the same decompiler bug can be triggered by
different class files from our benchmark. Also, Figure 4 plots
the same classes referred as Deceptive in Table 3, but in
Table 3 classes leading to a deceptive decompilation for both
compilers are counted twice.

Overall, Jode is the least reliable decompiler, with 83
decompilation bug instances in our benchmark. While Fer-
nflower produces the least deceptive decompilations on our
benchmark (13), it is interesting to note that CFR produces
only one more deceptive decompilation (14) but that cor-
responds to fewer bugs per successful decompilation. This
makes CFR the most reliable decompiler on our benchmark.

We manually inspected 10 of these bug manifestations.

Harrand et al.: Preprint submitted to Elsevier

Page 8 of 19

Java Decompiler Diversity and its Application to Meta-decompilation

i public final class Bukkit {
private static Server server;

[...]

public static void setServer(Server server) {

if (Bukkit.server != null) {
6 + if (server != null) {
7 throw new UnsupportedOperationException(
8 "Cannot redefine singleton Server");
N }
0 - Bukkit.server = server;
o+ server = server;

12 [...]

13 }

Listing 8: Exerpt of differences in org.bukkit.Bukkit
original (in red marked with a -) and decompiled with
JADX sources (in green marked with a +).

2 of them were already reported by other users. We reported
the other 8 to the authors of decompilers.!! The sources
of errors include incorrect cast operation, incorrect control-
flow restitution, auto unboxing errors, and incorrect refer-
ence resolution. Below we detail two of these bugs.

4.3.1. Case study: incorrect reference resolution

We analyze the class org.bukkit.Bukkit from the
Bukkit project. An excerpt of the original Java source code
is given in Listing 8. The method setServer implements
a setter of the static field Bukkit.server. This is an im-
plementation of the common Singleton design pattern. In
the context of method setServer, server refers to the pa-
rameter of the method, while Bukkit.server refers to the
static field of the class Bukkit.

When this source file is compiled with javac, it pro-
duces a file org/bukkit/Bukkit.class containing the
bytecode translation of the original source. Listing 9 shows
an excerpt of this bytecode corresponding to the setServer
method (including lines are filled in red, while excluding
lines are filled in green)

When using the JADX decompiler on org/bukkit/ -
Bukkit.class it produces decompiled sources, of which
an excerpt is shown in Listing 8. In this example, the de-
compiled code is not semantically equivalent to the origi-
nal version. Indeed, inside the setServer method the ref-
erences to the static field Bukkit.server have been sim-
plified into server which is incorrect in this scope as the
parameter server overrides the local scope. In the byte-
code of the recompiled version (Listing 9, including lines are
filled in green), we can observe that instructions accessing
and writing the static field (GETSTATIC, PUTSTATIC) have
been replaced by instructions accessing and writing the local
variable instead (ALOAD, ASTORE).

When the test suite of Bukkit runs on the recompiled
bytecode, the 11 test cases covering this code fail, as the first
access to setServer will throw an exception instead of nor-
mally initializing the static field Bukkit.server. This is
clearly a bug in JADX.

https://github.com/castor-software/decompilercmp/
tree/master/funfacts

public static setServer(Lorg/bukkit/Server;)V

> - GETSTATIC org/bukkit/Bukkit.server :

3 - Lorg/bukkit/Server;

L+ ALOAD ©

5 IFNULL LO

6 NEW java/lang/UnsupportedOperationException

7 DUP

8 ATHROW

9 LO

10 ALOAD 0

- PUTSTATIC org/bukkit/Bukkit.server :

o - Lorg/bukkit/Server;

13 + ASTORE 0

14 ALOAD 0

15 INVOKEINTERFACE org/bukkit/Server.getLogger
()Ljava/util/logging/Logger; (itf)

16 NEW java/lang/StringBuilder

Listing 9: Exerpt of bytecode from class org/bukkit/

Bukkit.class compiled with javac: Lines in red,

marked with a -, are in the original bytecode, while lines in

green, marked with a +, are from the recompiled sources

(decompiled with JADX).

protected StringBuffer applyRules(final Calendar
calendar, final StringBuffer buf) {
) - return (StringBuffer) applyRules(calendar,
3 - (Appendable) buf);
L+ return this.applyRules(calendar, buf);
}

private <B extends Appendable> B applyRules(final
Calendar calendar, final B buf) {...}
Listing 10: Excerpt of differences in FastDatePrinter
original (in red marked with a -) and decompiled with
Procyon sources (in green marked with a +).

4.3.2. Case study: Down cast error

Listing 10 illustrates the differences between the orig-
inal sources of org/apache/commons/lang3/time/
FastDatePrinter and the decompiled sources produced
by Procyon. The line in red is part of the original, while the
line in green is from the decompiled version. In this exam-
ple, method applyRules is overloaded, i.e. it has two im-
plementations: one for a StringBuffer parameter and one
for a generic Appendab'le parameter (Appendableis anin-
terface that StringBuffer implements). The implementa-
tion for StringBuffer down casts buf into Appendable,
calls the method handling Appendable and casts the result
back to StringBuffer. In a non-ambiguous context, it is
perfectly valid to call a method which takes Appendable
arguments on an instance of a class that implements that
interface. But in this context, without the down cast to
Appendable, the Java compiler will resolve the method call
applyRules to the most concrete method. In this case, this
will lead applyRules for StringBuffer to call itself in-
stead of the other method. When executed, this will lead to
an infinite recursion ending in a StackOverflowError. There-
fore, in this example, Procyon changes the behaviour of the
decompiled program and introduces a bug in it.

Harrand et al.: Preprint submitted to Elsevier

Page 9 of 19

https://github.com/castor-software/decompilercmp/tree/master/funfacts
https://github.com/castor-software/decompilercmp/tree/master/funfacts

Java Decompiler Diversity and its Application to Meta-decompilation

Procyon -
Krakatau -

Jode - C&

JD-Core -

JADX - L%

Fernflower -

Dava| e

CFR- %

Decompiler

OTO 011 0.2 Oj3 014 015
distanceToOriginal/nbNodesOriginal
Figure 5: Distribution of differences between the original and
the decompiled source code ASTs. Green diamonds indicate
average.

(A
Answer to RQ3: Our empirical results indicate that no

decompiler is free of deceptive decompilation bugs. The
developers of decompilers may benefit from the equiva-
lent modulo input concept to find bugs in the wild and
extend their test base. Two bugs found during our study
have already been fixed by the decompiler authors, and
three others have been acknowledged.

4.4. RQ4: (ASTs difference) What is the syntactic
distortion of decompiled code?

The quality of decompilation depends not only on its
syntactic correctness and semantic equivalence but also on
how well a human can understand the behaviour of the de-
compiled program. The code produced by a decompiler may
be syntactically and semantically correct but yet hard to read
for a human. In this research question, we evaluate how far
the decompiled sources are from the original code. We mea-
sure the syntactic distortion between the original and the de-
compiled sources as captured by AST differences (Definition
2).

Figure 5 shows the distribution of syntactic distortion
present in syntactically correct decompiled code, with one
violin plot per decompiler. The green diamond marks the
average syntactic distortion. For example, the syntactic dis-
tortion values of the Jode decompiler have a median of 0.05,
average of 0.09, 1st-Q and 3rd-Q of 0.01 and 0.11, respec-
tively. In this figure, lower is better: a lower syntactic dis-
tortion means that the decompiled sources are more similar
to their original counterparts.

CFR and JD-Core introduce the least syntactic distor-
tion, with high proportion of cases with no syntactic dis-
tortion at all (as we exclude renaming). Their median and
average syntactic distortion are close to 0.05, which corre-
sponds to 5 edits every 100 nodes in the AST of the source
program. On the other extreme, Dava and Krakatau intro-
duce the most syntactic distortion with average of 16 (resp.
15) edits per 100 nodes. They also have almost no cases for
which they produce sources with no syntactic distortion. It
is interesting to note that Dava makes no assumptions on the

I public class Foo {

public int foo(int i, int j) {

while (true) {
4 try {
while (i < j) i = j++ / i;
6 + return j;
} catch (RuntimeException re) {

8 i= 10;
9 - continue;

10 }
o= break;

12 }

13 - return j;

Listing 11: Excerpt of differences in Foo original (in red
marked with a -) and decompiled with Fernflower (in green
marked with a +) sources.

source language nor the compiler used to produce the byte-
code it decompiles. [28] This partly explains the choice of
its author to not reverse some optimizations made by Java
compilers (See example introduced in Section 2.).

Listing 11 shows the differences on the resulting source
code after decompiling the Foo class from DcTest with Fer-
nflower. As we can observe, both Java programs represent
a semantically equivalent program. Yet, their ASTs contain
substantial differences. For this example, the edit distance is
3/104 as it contains three tree edits: MOVE the return node,
and DELETE the break node and the continue node (the
original source’s AST contained 104 nodes).

Note that some decompilers perform some transforma-
tions on the sources they produce on purpose to increase
readability. Therefore, it is perfectly normal to observe
some minimal syntactic distortion, even for decompilers
producing readable sources. But as our benchmark is
composed of non obfuscated sources, it is expected that a
readable output will not fall too far from the original.

Answer to RQ4: All decompilers present various de-

grees of syntactic distortion between the original source
code and the decompiled bytecode. This reveals that
all decompilers adopt different strategies to craft source
code from bytecode. We propose a novel metric to quan-
tify the distance between the original source code and its
decompiled counterpart. Also, decompiler users can use

this analysis when deciding which decompiler to employ.

4.5. RQS: (Decompiler Diversity) To what extent
do the successes and failures of decompilers
overlap?

In the previous research questions, we observe that dif-
ferent decompilers produce source code that varies in terms
of syntactic correctness, semantic equivalence and syntac-
tic distortion. Now, we investigate the overlap in successes
and failures of the different decompilers considered for this
study.

Figure 6 shows a Venn Diagram of semantically equiv-

Harrand et al.: Preprint submitted to Elsevier

Page 10 of 19

Java Decompiler Diversity and its Application to Meta-decompilation

Procyon

Fernflower

Figure 6: Venn diagram of syntactically and semantically
equivalent modulo inputs decompilation results.

I protected static class KeySetIterator<K> extends
HashIterator<K, Object> implements Iterator<K> {
> - @SuppressWarnings("unchecked")
protected KeySetIterator(final
AbstractHashedMap<K, ?> parent) {

4 - super((AbstractHashedMap<K, Object>) parent);
5+ super(parent);

6 }

s }

Listing 12:

Excerpt of differences in AbstractHashedMap original
(in red marked with a -) and decompiled with Procyon (in
green marked with a +).

alent classes modulo inputs for decompiled/recompiled
classes. We exclude Dava and Krakatau because they do
not handle correctly any class file unique to them. We see
that 6/8 decompilers have cases for which they are the only
decompiler able to handle it properly. These cases represent
276/2397 classes. Only 589/2397 classes are handled cor-
rectly by all of these 6 decompilers. Furthermore, 157/2397
classes are not correctly handled by any of the considered
decompilers.

Listing 12 is an excerpt of AbstractHashedMap, which
is incorrectly decompiled by all decompilers. While the
complete set of syntactic errors for the decompiled sources is
different for each decompiler, it always includes one call of
the constructor of the super class of KeySetIterator<K>.
Either a constructor with the correct signature is not resolved
or the cast in front of parent is missing. The fundamental
problem behind this decompilation lies in the fact that the
JVM does not directly support generics[1]. While bytecode
do keep meta information about types in signatures, the ac-
tual type manipulated in this example for ? is an Object.
Therefore, contrarily to the original sources, no CHECKCAST
instruction is required in the bytecode. This does not make
the task of decompilation impossible to perform in theory, as

Table 4

Summary results of the studied decompilers
Decompiler #Recompilable #PassTest #Deceptive
CFR 3097 (0.79) 1713 (0.71) 2
Dava 1747 (0.44) 762 (0.32) 36
Fernflower 2663 (0.68) 1435 (0.60) 21
JADX 2736 (0.70) 1408 (0.59) 78
JD-Core 2726 (0.69) 1375 (0.57) 44
Jode 2569 (0.65) 1161 (0.48) 142
Krakatau 1746 (0.44) 724 (0.30) 97
Procyon 3281 (0.84) 1869 (0.78) 33
Union 3734 (0.95) 2240 (0.93) 342
Total 3928 (1.00) 2397 (1.00) .

both the type of parent and the type required by the super
constructor can be resolved, but, it does make it more chal-
lenging to decompilers in practice.

A manual analysis of these classes shows common is-
sues among the studied decompilers. (i) Generics is a fea-
ture that causes many decompilers to fail in particular when
combined with ternary operators, wildcards or type bounds.
Another example of such a case is detailed in Section 5. (ii)
As mentioned in Section 4.1 and Section 4.3, compilers pro-
ducing the bytecode do play a role. In particular, synthetic
elements created by a compiler, which the decompiler does
not expect. (iii) Overall, the diversity of independent corner
cases cannot be completely captured under one concise ex-
planation. Even for Procyon, the best performing decompi-
ler in our study, among the 528 classes for which it does
not produce semantically equivalent modulo inputs sources,
only 157 are also not decompilable by any other decompiler.

Table 4 summarizes the quantitative results obtained
from the previous research questions. Each line corre-
sponds to a decompiler. Column #Recompilable shows
the number of cases (and ratio) for which the decompi-
ler produced a recompilable output among all classes of
our dataset (3928 in total: 2041 for javac and 1887 for
ecj). Column #PassTest shows the number of cases where
the decompiled code passes those tests among the 2397
classes covered by tests and regrouping both compiler. Col-
umn #Deceptive indicates the number of cases that were
recompilable but did not pass the test suite (i.e. a de-
compilation bug). The line ‘Union‘ shows the number of
classes for which at least 1 decompiler succeeds to produce
Recompilable sources and respectively sources that pass
tests. The column #Deceptive indicates the number of
classes for which at least 1 decompiler produced a decep-
tive decompilation. This means that for 2240 classes out of
the 2397 (93%), there is at least 1 decompiler that produces
semantically equivalent sources modulo inputs. This num-
ber must be taken with a grain of salt, as it does not mean
that someone who looks for a successful decompilation of
one of these classes could find one trivially. Overall, 342
out of 2397 classes have at least 1 decompiler that produce
a deceptive decompilation. Assuming that one can merge
the successful decompilation results together, we would ob-
tain a better decompiler overall, this is what we explore in
Section 5.

Harrand et al.: Preprint submitted to Elsevier

Page 11 of 19

Java Decompiler Diversity and its Application to Meta-decompilation

(A

Answer to RQS5: The classes for which each decompi-
ler produce semantically equivalent source code modulo
input do not overlap completely. For 6 out of 8§ decompil-
ers, there exists at least 1 class for which the decompiler
is the only one to produce semantic equivalence modulo
inputs sources. In theory, a union of the best features of
each decompiler would cover 2240 out of the 2397 (93%)
classes of the dataset. This suggests to combine multiple
decompilers to improve decompilation results.

5. Meta Decompilation

In this section, we present an original concept for decom-
pilation.

5.1. Overview

In 1995, Selberg et al. [37] noticed that different web
search engines produced different results for the same in-
put query. They exploited this finding in a tool called
METACRAWLER, which delegates a user query to various
search engines and merges the results. This idea of combin-
ing diverse tools that have the same goal has been explored
since then. For example, Blair and Somayaji [11] explore
how a genetic algorithm can recombine related programs at
the object file level to produce correct variants of C pro-
grams. Persaud et al. [33] combines cryptographic libraries
together for software security. Chen et al. [4] rely on vari-
ous fuzzers to build an ensemble based fuzzer that gets better
performance and generalization ability than that of any con-
stituent fuzzer alone.

In this paper, we apply a similar approach to improve
Java decompilation. Each decompiler has its strengths and
weaknesses, and the subset of JVM bytecode sequences they
correctly handle is diverse (cf Section 4.5). Therefore, our
idea is to combine decompilers in a meta-decompiler.

In this paper, we propose a tool called Arlecchino, that
implements such a ‘meta-decompilation’ approach. Ar-
lecchino merges partially incorrect decompilation results
from diverse decompilers in order to produce a correct one.

5.2. Example

The «class org.bukkit.configuration.file.
YamlConfiguration of the project Bukkit is an example
of a class file that is incorrectly handled by both JADX
and Dava. While both decompilers produce syntactically
incorrect Java code for this class, the error that prevents
successful recompilation is not located at the same place in
both decompiled classes.

Listing 13 shows an excerpt of the decompiled sources
produced by Dava for YamlConfiguration. The static
field BLANK_CONFIG is initialized with an incorrect string
literal that contains a non escaped line return. When attempt-
ing to recompile these sources, javac produces an unclosed
string literal error for both line 3 and 4.

Listing 14 shows an excerpt of the decompiled
sources produced by JADX for the same class. The

o)

I public class YamlConfiguration extends
FileConfiguration {
protected static final String COMMENT_PREFIX = "#

’

protected static final String BLANK_CONFIG = "{}

private final DumperOptions yamlOptions;
6 private final Representer yamlRepresenter;
private final Yaml yaml;

9 public YamlConfiguration()

10 {

1 DumperOptions r7;

12 YamlRepresenter r8;

13 YamlConstructor r9;

14 Yaml rl0;

15 BaseConstructor rll;

16 r7 = new DumperOptions();
17 yamlOptions = r7;

18 r8 = new YamlRepresenter();
19 yamlRepresenter = r8;

20 r9 = new YamlConstructor();

21 rll = (BaseConstructor) r9;
rl® = new Yaml(rll, yamlRepresenter,
yamlOptions);
yaml = rlo;
}
[...]

Listing 13: Excerpt of org.bukkit.configuration.
file.YamlConfiguration decompiled with Dava.

I public class YamlConfiguration extends
FileConfiguration {
protected static final String BLANK_CONFIG =
"{I\n";
protected static final String COMMENT_PREFIX = "#

4 private final Yaml yaml =
new Yaml(new YamlConstructor(),
6 this.yamlRepresenter, this.yamlOptions);
private final DumperOptions yamlOptions = new

DumperOptions();

8 private final Representer yamlRepresenter = new
YamlRepresenter();

o [...]

0}

Listing 14: Excerpt of org.bukkit.configuration.

file.YamlConfiguration decompiled with JADX.

static field BLANK_CONFIG is correctly initialized with
"{}\n", but the initialization of yaml, yamlOptions
and yamlRepresenter are conducted out of order,
which lead to a compilation error as yamlOptions and
yamlRepresenter are still null when yaml is initialized.
Intuitively, one can see that Dava’s solution could be fixed
by replacing lines 3 and 4 with line 2 from JADX’s solu-
tion. This is an example of successful meta-decompilation,
merging the output of two decompilers.

Figure 7 illustrates how two erroneous decompilations
can be merged into one that is correct, when the error is not
located at the same place. This figure represents different
versions of the abstract syntax tree (AST) of a Java class.
The root node corresponds to the class itself, while its chil-

Harrand et al.: Preprint submitted to Elsevier

Page 12 of 19

Java Decompiler Diversity and its Application to Meta-decompilation

Decompilation #1

®» e © © Q’@A’

Meta Decompilation

&

Decompilation #2

Fragment Store

Signature | Fragment

®
()
©
® () © ©

O Q 0 w »

©

Figure 7: Meta decompilation: Merger of different partial de-
compilation. Node in blue with plain border originates from
Decompiler #1, nodes in yellow with dashed border originate
from Decompiler #2. Borderless nodes in red contains compi-
lation errors.

dren represent type members of the class. A type member
is either a method, a field, a nested type (class, or enum),
or a static initialization block. Decompilation #1 rep-
resents the AST of the sources produced by one decompi-
ler, it includes 4 type members (A,B,C and D), and one
compilation error located in B. Decompilation #2 rep-
resents the sources produced by a different decompiler for
the same class. It contains only 3 type members (A,B an
C’) and one compilation error located in C’. The fragment
store is a dictionary containing an error free AST fragment
for each type member when such a fragment exists. Meta
Decompilation shows an example of error free AST that
can be built based on Decompilation #1 and the store that
combines AST fragments from both decompilations. Note
that different decompilers may produce sources that do not
exactly contain the same type members. This is illustrated
here by Decompilation #2 not having a type member D
and having a different signature for C.

5.3. Algorithm

Algorithm 1 describes the process of meta decompila-
tion as implemented by Arlecchino. Arlecchino takes as in-
put a bytecode file, and an ordered list of bytecode decom-
pilers. The process starts with an empty set of solutions and
an empty fragment store of correct fragments. This fragment
store is a dictionary that associates a type member signature
to a fragment of AST free of compilation error correspond-
ing to the type member in question.

For each decompiler, the meta-decompilation goes
through the following steps.

Data: bytecode A bytecode file,
Decompilers A set of decompilers
Result: The decompiled java sources corresponding

1 Solutions « {}
2 FragmentStore < {}
3 foreach dc € Decompilers do
4 solution < AST (decompile(dc, bytecode))
5 Fragments « fragmentsO f(solution)
6 foreach f € Fragments do
7 if —problem(f) A signature(f) & Store then
8 FragmentStore <
FragmentStore U {signature(f) - f}
9 end
10 end
1 Solutions « Solutions U {solution}
12 foreach s € Solutions do
13 if completable(s, Fragment Store) then
14 if
recompile(complete(s, Fragment Store))
then
15 | return print(s);
16 else
17 ‘ remove(s, FragmentStore)
18 end
19 end
20 end
21 end

Algorithm 1: Meta decompilation procedure.

The bytecode file is passed to the decompiler d. An AST
is built from the decompiled sources (line 4). While build-
ing the AST, the compilation errors and their location are
gathered (if any) and the type members containing errors
are annotated as such. A class abstract syntax tree includes
a node for the class itself as the root, as well as children
representing class information (super class, super interfaces,
formal type parameters) and type members. Type members
include fields, methods, constructors, inner classes, enum
values, and static blocks. These type members’ source lo-
cations are recorded and compared with the compiler er-
ror locations. If an error is located between a type member
start and end location, the type member is annotated as er-
rored. For example, the element corresponding to the field
BLANK_CONFIG is annotated as errored in Dava’s solution
for YamlConfiguration. This annotated AST, that we call
solution, is added to the set of remaining solutions.

Additionally, for all type members in the current solu-
tion, if the fragment store does not already contain an er-
ror free fragment with the same signature, the type mem-
ber is added to the fragment store (line 8). The signa-
ture of a type member is a character string that identi-
fies it uniquely. For example, the signature of the field
BLANK_CONFIGisorg.bukkit.configuration.file.
YamlConfiguration#BLANK_CONFIG and the signature
of YamlConfiguration’s constructor is org.bukkit.
configuration.file.YamlConfiguration().

Harrand et al.: Preprint submitted to Elsevier

Page 13 of 19

Java Decompiler Diversity and its Application to Meta-decompilation

Table 5
Arlecchino results on classes with no correct decompilation
from state of the art decompilers.

ARLECCHINO Union
#PassTest 59 (37.6%) 0 (0%)
#Deceptive 11 (7.0%) 23 (14.6%)
#!Recompile 87 (55.4%) 134 (85.4%)
Total 157 (100%) 157 (100%)

Each solution in the set of solutions is checked for com-
pletion with the current store (line 12). A solution is “com-
pletable” with the members in a given fragment store, if
all the solution’s type members annotated with an error are
present in the fragment store. Indeed, these type members’
AST can be replaced with an error free variant present in the
fragment store. If a solution is completable with the current
fragment store, all its type members annotated as errored are
replaced with a fragment from the fragment store. The so-
lution is then passed to the compiler to check if it compiles.
If it does, it is printed, and the meta decompilation stops. If
not, the solution is removed from the set of solutions. As the
first solution that satisfies the oracle (syntactic correctness)
stops the process, and this oracle is imperfect, the order of
the decompilers matters. More details are given in the fol-
lowing section.

By attempting to repair each solution and its given set
of type members with a minimum of transplanted fragments
from those available in the fragment store, Arlecchino does
not favour any type member set. This allows Arlecchino to
deal with cases where the different solutions do not contain
the same type members. This occurs with implicit construc-
tor declarations such as the one present in Listing 14 with
YamlConfiguration. It also makes it possible to handle
cases where element signatures might differ depending on
how type erasure is dealt with by each decompiler. And fi-
nally, it handles cases where elements might not be in the
same order (and the order of type members is meaningful as
seen in Listing 14).

5.4. Experimental results about
meta-decompilation

The following section evaluates the effectiveness of Ar-
lecchino. It is organized as follows. First, we gather the 157
classes of our dataset for which no decompilers produced se-
mantically equivalent modulo input sources and assess the
results produced by Arlecchino. Second, we run Arlecchino
on the complete dataset of classes in this study. We then
evaluate the results with regards to semantic equivalence
modulo inputs. Finally, we study the origin of fragments
produced by Arlecchino and discuss the consequences on the
number of deceptive decompilations.

Table 5 shows the results of meta decompilation on the
157 classes of our dataset that led to decompilation errors for
all decompilers in the study and were covered by at least one
test'2. Arlecchino produces semantically equivalent results

123 of the 137 classes that led to syntactically incorrect outputs for all
decompilers are not covered by any tests.

Table 6
Comparison of Arlecchino results with state of the art.
g
Q o S
§ 5 & §
& & & N
<& Q Q 2
Decompiler ¥ ¥ X <
CFR 3007 (79%) 1713 (71%) 22 (127%) _ 0.05
Procyon 3281 (84%) 1869 (78%) 33 (1.74%) 0.08
Arlecchino 3479 (89%) 2087 (87%) 30 (1.42%) 0.06
Total 3928 (100%) 2397 (100%) . .

for 59 out of 157 (37.6%) classes. It produces deceptive de-
compilation for 11 (7.0%) classes and fails to produce recom-
pilable results for 87 out of 157 (55.4%) classes. The success
case where Arlecchino produces correct output is when: 1)
at least one compiler is able to read the correct signature for
all type members of a class and, 2) an error free decompila-
tion exists for all of these type members. However, when no
decompiler is able to decompile a specific type member or
that no decompiler reads correctly the signature of all type
members, no meta decompilation can be successful. These
results demonstrate that successful decompilation (in terms
of both syntactic correctness and semantic equivalence mod-
ulo inputs) can be found by Arlecchino for classes where no
other decompilers can.

Table 6 shows the results obtained when running Ar-
lecchino on the whole dataset presented in Section 3 and
compares it with Procyon and CFR. Procyon is the de-
compiler that scores the highest in terms of syntactic correct-
ness as well as semantic equivalence modulo inputs, while
CFR scores the lowest in deceptive decompilation rate and
syntactic distortion. The first column indicates the num-
ber of classes for which each decompiler produced syntac-
tically correct sources, among the 3928 from the dataset.
The second column shows the number of classes for which
each decompiler produced semantically correct modulo in-
puts sources among the 2397 classes covered by tests. The
third column indicates the number of deceptive decompi-
lations produced by each decompiler. The percentage of
deceptive decompilation is computed with #Deceptive /
(#Deceptive + #PassTests). The last column shows the
median syntactic distortion in number of edits per nodes in
the original AST.

Arlecchino produced syntactically correct sources for
3479 classes (89%). It produces semantically equivalent
modulo inputs sources for 2087 (87%) classes, and 30 decep-
tive decompilations. Compared with Procyon, Arlecchino
produces syntactically correct sources for 198 more classes,
semantically correct modulo inputs sources for 218 more.
It also produces 3 less deceptive decompilations, and has
a lower syntactic distortion. Compared with CFR, Ar-
lecchino produces 8 more deceptive decompilations but it
produces semantically correct modulo inputs sources for
374 more classes. In percentage of deceptive decompi-
lation among recompilable decompilation, Arlecchino pro-
duces 1.42% of deceptive decompilation which is lower than
Procyon’s 1.74% but slightly higher than CFR’s 1.27%.

Harrand et al.: Preprint submitted to Elsevier

Page 14 of 19

Java Decompiler Diversity and its Application to Meta-decompilation

1004
1922
7514 Main Decompiler
| R
(%]
8 . Fernflower (13)
8 504 B ocoe
o\?’ Jode (2)
None (166)
254 . Procyon (2171)
287
166
;-
0
0 1 2 3 4

#Decompilers

Figure 8: Distribution of the number of decompilers used by
Arlecchino.

100+
5
= 754 252
IS
<
o 504
a
8
i 25+ 55
= 0- _ 1 9 10 __ 6
Cl':R Fernﬁower JAbX JD*E:DVS Jolde Pro(‘:yon
Decompiler

Figure 9: Distribution of the origin of transplanted fragments
in Arlecchino results.

Overall, Arlecchino scores higher than all studied de-
compilers in terms of semantic correctness as well as seman-
tic equivalence modulo inputs, and ranks second in decep-
tive decompilation rate by a small margin. The rate of se-
mantically equivalent decompilation modulo inputs is higher
because Arlecchino produces, by design, more syntactically
correct decompilations. On the other hand, the rate of de-
ceptive decompilation is slightly higher than CFR, as Ar-
lecchino aggregates some of the deceptive decompilations
from all used decompilers. This is, to our knowledge, the
first implementation of this meta-decompilation approach.
It demonstrates the validity of the approach and adds a new
state of the art tool that practitioners can use to decompile
Java bytecode.

Note that Arlecchino also has its implementation flaws
and may fail where other decompilers may succeed. In par-
ticular, not all AST nodes transplantation produce syntac-
tically correct code. But it may be used in conjunction of
other decompilers. The union of classes for which at least
one decompiler (including Arlecchino) produces semanti-
cally equivalent modulo inputs sources, presented in RQS3,
now covers 2299 out of 2397 classes (96%) of our dataset.

5.4.1. Remaining deceptive decompilations

In order to investigate deceptive decompilations pro-
duced by Arlecchino, we need to investigate the origins of
the AST fragments used in each decompilation.

Figure 8 shows the distribution of the number of decom-
pilers used by Arlecchino for each of the 2397 classes of our
dataset for which we have tests. Arlecchino finds no solution
for 166 classes. For 1922 classes, only one decompiler was

used, meaning that there is no need for meta-decompilation.
For 287 classes, Arlecchino combines the output of 2 de-
compilers. It uses 3 and 4 decompilers for 20 classes and 2
classes respectively. The color indicates which decompiler’s
base solution was used. In the overwhelming majority, the
Procyon solution is used.

Figure 9 shows the distribution of transplanted frag-
ments’ origin for the 309 classes where several decompil-
ers are used. For 252 classes, one or more fragments from
CFR’s solution were transplanted to build Arlecchino’s so-
lution. 55 classes have fragments coming from Fernflower,
and the rest of the distribution is negligible. Note that Ar-
lecchino stops as soon as it finds an admissible solution.
Thus, the order of decompilers when building a solution
largely impacts this distribution.

Arlecchino produces a deceptive decompilation either
when the first recompilable solution of a given type mem-
ber is a deceptive one, or the assembly of different fragments
introduces an error.

In order to minimize these problems, Arlecchino uses
Procyon as the first decompiler and orders the other decom-
pilers by their deceptive decompilation rate.

Therefore, most of the decompilers’ deceptive decompi-
lations are for the same classes as Procyon’s one. In a lesser
way, deceptive decompilation originating from type mem-
bers decompiled with CFR affect Arlecchino when those
type member are decompiled with syntactic errors by Pro-
cyon. Note that, as no software is free of bugs, the imple-
mentation of Arlecchino could also add new sources of er-
ror. In practice, as shown by Table 6, the number of decep-
tive decompilations (30) corresponds to a better deceptive
decompilation rate than all decompilers of this study except

CFR.

5.4.2. Case studies
Here we discuss two examples in details: one successful
and one failed meta decompilation.

Success: Request. Listing 15 shows the decompiled
sources for org.junit.runner.Request produced
by Procyon. In this example, there are ambiguous

references because two types share the same simply
qualified name: both org.junit.runners.model and
org.junit.internal.runners contain a type named
InitializationError, therefore the decompiled sources
generated by Procyon lead to a compilation error.

Listing 16 shows the decompiled sources for org.
junit.runner.Request produced by CFR. These
sources contain an error in the body of the static method
runner(Runner). Since this method contains an anony-
mous class, when the original sources are compiled, a syn-
thetic field runner is created, by the compiler, for the
anonymous class. This field contains the parameter runner
from the enclosing method. When CFR decompiles the byte-
code, itincorrectly replaces the statement that returns the pa-
rameter of the enclosing method by a statement that returns a

Harrand et al.: Preprint submitted to Elsevier

Page 15 of 19

Java Decompiler Diversity and its Application to Meta-decompilation

| import org.junit.runners.model. *;

> import org.junit.internal.runners.x;
; public abstract class Request {

4 [...]

5 public static Request classes(final Computer
computer, final Class<?>... classes) {
6 try {

7 final AllDefaultPossibilitiesBuilder
builder = new
AllDefaultPossibilitiesBuilder(true);

8 final Runner suite =
computer.getSuite(builder, classes);

9 return runner(suite);

10 }

1 catch (InitializationError e) {

12 throw new RuntimeException("Bug in saff's
brain: Suite constructor, called as
above, should always complete");

13 }

14 }

15

16 public static Request runner(final Runner runner)
{

17 return new Request() {

18 @Override

19 public Runner getRunner() {
20 return runner;

21 }

2 };

Listing 15: Excerpt of org.junit.runner.Request
decompiled with Procyon.

1 import org.junit.runners.model.InitializationError;

: public abstract class Request {

6 public static Request classes(Computer computer,

Class<?> ... classes) {
7 try {
8 AllDefaultPossibilitiesBuilder builder =
new

AllDefaultPossibilitiesBuilder(true);

9 Runner suite = computer.getSuite(builder,
classes);

10 return Request.runner(suite);

1 }

12 catch (InitializationError e) {

13 throw new RuntimeException("Bug in saff's
brain: Suite constructor, called as
above, should always complete");

15 }

17 public static Request runner(Runner runner) {
18 return new Request(){

20 public Runner getRunner() {
21 return Runner.this;

2 }

2 +i

.}
Listing 16: Excerpt of org.junit.runner.Request
decompiled with CFR.

private final Closure<? super E> iDefault;

private SwitchClosure(final boolean clone,

4 final Predicate<? super E>[] predicates,

5 final Closure<? super E>[] closures,

6 final Closure<? super E> defaultClosure) {

7 super();

8 iPredicates = clone ?
FunctorUtils.copy(predicates)
predicates;

9 iClosures = clone ?
FunctorUtils.copy(closures) : closures;

0 - iDefault = (Closure<? super E>) (defaultClosure

o= == null ? NOPClosure.<E>nopClosure()

1 - defaultClosure);

13+ this.iDefault = (defaultClosure == null ?

14+ NOPClosure.nopClosure() : defaultClosure);
15 }

Listing 17: Excerpt of org.apache.commons.

collections4. functors.SwitchClosure, original
(in red marked with a -) and decompiled (in green marked
with a +).

field that does not exist in the sources. This leads to a compi-
lation error when attempting to recompile. Since our report,
CFR’s author has fixed this bug.'?

While both Procyon and CFR’s solutions contain
an error, these errors are not located on the same
type member. Hence, CFR’s fragment for the method
classes(Computer, Class<?>[]) is transplanted on
Procyon’s solution. Since the pretty printer used by Ar-
lecchino only lists imports at a type granularity, and CFR’s
fragment contains references that are non-ambiguous, the
combined solution is recompilable and semantically equiva-
lent modulo input.

Failure: SwitchClosure. There are Java constructs for
which all decompilers struggle. In these cases, all decom-
pilers may produce an error on the same type member, and
this leads to a failed meta-decompilation. The following ex-
ample illustrates the problem of generic type lower bounds,
which challenges all decompilers.

Listing 17 shows an excerpt of the original sources
for org.apache.commons.collections4. functors.
SwitchClosure. The line highlighted in red is the orig-
inal line. The line highlighted in green is the correspond-
ing line as decompiled by Procyon, CFR and JD-Core.
None of them is able to correctly reproduce the cast to
Closure<? super E>. This leads to a compilation er-
ror as the method NOPClosure.<E>nopClosure() return
type is Closure<E>, which is not a subtype of Closure<?
super E>in the general case.

As the decompiled sources for SwitchClosure pro-
duced by all decompilers contain at least one error on this
constructor, no solution is completable with the fragment
store at the end of Algorithm 1. Therefore, the meta decom-
pilation fails to produce recompilable sources.

Bhttps://github.com/leibnitz27/cfr/issues/50

Harrand et al.: Preprint submitted to Elsevier

Page 16 of 19

https://github.com/leibnitz27/cfr/issues/50

Java Decompiler Diversity and its Application to Meta-decompilation

5.5. Discussion

In this section we discuss how alternative design deci-
sions might be applied for meta decompilation. In particu-
lar, we discuss the use of different oracles to choose among
decompiled fragments and the order of decompilers in Al-
gorithm 1.

A benefit of embedding a compiler in the meta decompi-
ler is that it allows to use many different oracles to pick
among the decompiled (and optionally recompiled) frag-
ments. In this paper, we use the syntactic correctness assess-
ment done by the compiler. But it would be possible to use
other oracles. For certain decompilation use cases, such as
source recovery, tests covering the original bytecode could
be available. In the case of reverse engineering, it is realistic
to assume that one has access to a set of inputs with known
outputs for the reversed program. They may be used as a test
suite. The challenge with this approach is the granularity of
the oracle provided by test cases. For meta decompilation to
work, the granularity of the oracle needs to be finer or equal
to the one of transplantation. In this work, we use ecj errors
as we are able to map them to code fragments. This allows
us to label a fragment as correct and incorrect.

Another oracle can be based on the bytecode distance
between the decompiled-then-recompiled fragment and its
original bytecode counterpart. This could be considered as a
heuristic to minimize the likelihood of semantic differences
between both fragments. In this work we measure bytecode
distance with JarDiff, but SootDiff [5] could also be
used, as its authors announce that it tolerates some control
flow graph equivalent transformation.

Furthermore, depending on the metric that a decompi-
ler user favours, the order of the decompilers used through
meta decompilation may change. In this work we rank de-
compilers according to the number of classes for which they
produce semantically equivalent modulo inputs sources. If
a user favours the rate of deceptive decompilation to be as
low as possible, CFR could be put first. Inverting the order
of Procyon and CFR for Arlecchino, on the 157 classes pre-
sented in Section 4.5, yields only 38 decompiled classes that
are semantically equivalent modulo inputs. But it produces
only 4 deceptive decompilations.

' N

Highlights about meta-decompilation: To summarize,
we have devised and implemented a novel approach to
merge results from different decompilers, called meta-
decompilation. This tool handles 59 of the 157 cases
(37.6%) previously not handled by any decompiler.
Meta-decompilation is, to our knowledge, a radically new
idea that has never been explored before. Our experi-
ments demonstrate the feasibility and effectiveness of the
idea.

6. Threats to Validity

In this section, we report about internal, external and re-
liability threats against the validity of our results.

Internal validity. The internal threats are related to the
metrics employed, especially those used to compare the syn-
tactic distortion and semantic equivalence modulo inputs be-
tween the original and decompiled source code. Moreover,
the coverage and quality of the test suite of the projects under
study influences our observations about the semantic equiv-
alence of the decompiled bytecode. To mitigate this threat,
we select a set of mature open-source projects with good test
suites as study subjects, and rely on state-of-the-art AST and
bytecode differencing tools.

External validity. The external threats refer to what extent
the results obtained with the studied decompilers can be
generalized to other Java projects. To mitigate this threat,
we reuse an existing dataset of Java programs which we
believe is representative of the Java world. Moreover, we
added a handmade project which is a collection of classes
used in previous decompilers evaluations as a baseline for
further comparisons.

Reliability validity. Our results are reproducible, the
experimental pipeline presented in this study is publicly
available online. We provide all necessary code to repli-
cate our analysis, including AST metric calculations and
statistical analysis via R notebooks.'*

7. Related work

This paper is related to previous works on bytecode
analysis, decompilation and program transformations. In
this section, we present the related work on Java bytecode
decompilers along these lines.

Kerbedroid [18] is the closest related work. The work fo-
cuses on decompilers for Android and starts from the same
observation as ours: decompilers perform differently with
varying applications due to the various strategies to han-
dle information lost in compilation. Kerbedroid is a meta-
decompiler that stitches together results from multiple de-
compilers. Our current work shares the same observation,
while contributing two key novel points. We perform an in-
depth assessment of the different strategies implemented in
8 decompilers, with respect to three quality attributes, in-
cluding equivalence modulo-input to compare the behavior
of decompiled bytecode. Arlecchino leverages the partial re-
sults from 8 decompilers instead of 3 for Kerbedroid, which
increases the coverage of various corner cases in the byte-
code.

The evaluation of decompilers is closely related to the as-
sessment of compilers. In particular, Le et al. [25] introduce
the concept of semantic equivalence modulo inputs to vali-
date compilers by analyzing the interplay between dynamic
execution on a subset of inputs and statically compiling a
program to work on all kind of inputs. Blackburn et al. [3]
propose a set of benchmarking selection and evaluation
methodologies, and introduces the DaCapo benchmarks, a

4https://github.com/castor-software/decompilercmp/
tree/master/notebooks

Harrand et al.: Preprint submitted to Elsevier

Page 17 of 19

https://github.com/castor-software/decompilercmp/tree/master/notebooks
https://github.com/castor-software/decompilercmp/tree/master/notebooks

Java Decompiler Diversity and its Application to Meta-decompilation

set of open source, client-side Java benchmarks. Naeem et
al. [30] propose a set of software quality metrics aimed at
measuring the effectiveness of decompilers and obfuscators.
In 2009, Hamilton et al. [15] show that decompilation is pos-
sible for Java, though not perfect. In 2017, Kostelansky et
al. [23] perform a similar study on updated decompilers. In
2018, Gusarovs [14] performed a study on five Java decom-
pilers by analyzing their performance according to different
handcrafted test cases. All those works demonstrate that
Java bytecode decompilation is far from perfect.

Decompilers are disassemblers are closely related, and
each pair of binary format, target language poses specific
challenges (see Vinciguerra et al. [44] for C++4, Khadra et
al. [22] for ThumbISA, Grech et al. [13] for Ethereum byte-
code). With dissassembling, types must be reconstructing
[41], as well as assignment chains [43]. As we do in this pa-
per, some researchers focus on reassembling disassembled
binary code [45, 8, 10].

A recent trend in decompilation is to use neural networks
[21, 26, 12]. Forexample, Katz et al. [21] present a technique
for decompiling binary code snippets using a model based
on Recurrent Neural Networks, which produces source code
that is more similar to human-written code and therefore
more easy for humans to understand. This a remarkable at-
tempt at driving decompilation towards a specific goal. La-
comis et al. [24] propose a probabilistic technique for vari-
able name recovery. Schulte et al. [36] use evolutionary
search to improve and recombine a large population of candi-
date decompilations by applying source-to-source transfor-
mations gathered from a database of human-written sources.
Miller and colleagues [29] model the uncertainty due to the
information loss during compilation using probabilities and
propose a novel disassembly technique, which computes a
probability for each address in the code space, indicating its
likelihood of being a true positive instruction.

8. Conclusion

In this work, we presented a fully automated pipeline to
assess Java bytecode decompilers with respect to their ca-
pacity to produce compilable, equivalent modulo-input, and
readable code. We assessed eight decompilers with a set of
2041 classes from 14 open-source projects compiled with
two different compilers. The results of our analysis show
that bytecode decompilation is a non-trivial task that still re-
quires human work. Indeed, even the highest ranking de-
compiler in this study produces syntactically correct output
for 84% of classes of our dataset and semantically equiva-
lent modulo inputs output for 78%. We extract 157 classes
for which no decompiler produces semantically equivalent
sources. These classes illustrate how generics and, in partic-
ular, generic with wildcards and type bounds are challenging
for all decompilers. Yet the Java language with its diver-
sity of compilers and versions makes room for many corner
cases that require extensive testing and development effort
from decompilers authors. Meanwhile, the diversity of im-
plementation of these decompilers allows to merge their dif-

ferent results to bypass the shortcomings of single decompil-
ers. We called this approach ‘meta decompilation‘ and im-
plemented it in a tool called Arlecchino. Our experimental
results show that Arlecchino can produce semantic equiva-
lence modulo inputs sources for 37.6% of classes for which,
previously, no single decompiler could.

Acknowledgments

This work has been partially supported by the Wallen-
berg Autonomous Systems and Software Program (WASP)
funded by Knut and Alice Wallenberg Foundation and by
the TrustFull project funded by the Swedish Foundation for
Strategic Research.

References

[1] Amin, N., Tate, R., 2016. Java and scala’s type systems are unsound:
The existential crisis of null pointers, in: Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, Association for
Computing Machinery, New York, NY, USA. p. 838-848. URL:
https://doi.org/10.1145/2983990.2984004, doi:10.1145/
2983990.2984004.

[2] Benfield, L., 2019. CFR. https://www.benf.org/other/cfr/.
[Online; accessed 19-July-2019].

[3] Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKin-
ley, K.S., Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer,
S.Z., Hirzel, M., Hosking, A., Jump, M., Lee, H., Moss, J.E.B.,
Phansalkar, A., Stefanovié, D., VanDrunen, T., von Dincklage, D.,
Wiedermann, B., 2006. The dacapo benchmarks: Java benchmarking
development and analysis, in: Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications, Association for Computing Machinery,
New York, NY, USA. p. 169-190. URL: https://doi.org/10.
1145/1167473.1167488, doi:10.1145/1167473.1167488.

[4] Chen, Y., Jiang, Y., Ma, F., Liang, J., Wang, M., Zhou, C.,
Su, Z., Jiao, X., 2018. EnFuzz: Ensemble Fuzzing with
Seed Synchronization among Diverse Fuzzers. arXiv e-prints ,
arXiv:1807.00182arXiv:1807.00182.

[5] Dann, A., Hermann, B., Bodden, E., 2019. Sootdiff: Bytecode
comparison across different java compilers, in: Proceedings of the
8th ACM SIGPLAN International Workshop on State Of the Art
in Program Analysis, Association for Computing Machinery, New
York, NY, USA. p. 14-19. URL: https://doi.org/10.1145/
3315568.3329966, doi:10.1145/3315568.3329966.

[6] Dupuy, E., 2019. Java Decompiler. https://http://
java-decompiler.github.io/. [Online; accessed 19-July-
2019].

[7] Durﬁna, L., Kroustek, J., Zemek, P., 2013. PsybOt Malware: A Step-
By-Step Decompilation Case Study, in: 20th Working Conference on
Reverse Engineering (WCRE), pp. 449-456. doi:10.1109/WCRE.
2013.6671321.

[8] Emamdoost, N., Sharma, V., Byun, T., McCamant, S., 2019. Binary
mutation analysis of tests using reassembleable disassembly. doi:10.
14722/bar.2019.23058.

[9] Falleri, J.R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.,
2014. Fine-grained and Accurate Source Code Differencing, in: 29th
International Conference on Automated Software Engineering (ASE),
ACM, New York, NY, USA. pp. 313-324. URL: http://doi.
acm.org/10.1145/2642937.2642982,doi:10.1145/2642937.
2642982.

[10] Flores-Montoya, A., Schulte, E.M., 2019. Datalog disassembly.
CoRR abs/1906.03969. URL: http://arxiv.org/abs/1906.
03969, arXiv:1906.03969.

Harrand et al.: Preprint submitted to Elsevier

Page 18 of 19

https://doi.org/10.1145/2983990.2984004
http://dx.doi.org/10.1145/2983990.2984004
http://dx.doi.org/10.1145/2983990.2984004
https://www.benf.org/other/cfr/
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1145/1167473.1167488
http://arxiv.org/abs/1807.00182
https://doi.org/10.1145/3315568.3329966
https://doi.org/10.1145/3315568.3329966
http://dx.doi.org/10.1145/3315568.3329966
https://http://java-decompiler.github.io/
https://http://java-decompiler.github.io/
http://dx.doi.org/10.1109/WCRE.2013.6671321
http://dx.doi.org/10.1109/WCRE.2013.6671321
http://dx.doi.org/10.14722/bar.2019.23058
http://dx.doi.org/10.14722/bar.2019.23058
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
http://dx.doi.org/10.1145/2642937.2642982
http://dx.doi.org/10.1145/2642937.2642982
http://arxiv.org/abs/1906.03969
http://arxiv.org/abs/1906.03969
http://arxiv.org/abs/1906.03969

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]

(25]

[26]

[27]

[28]

[29]

(30]

Java Decompiler Diversity and its Application to Meta-decompilation

Foster, B., Somayaji, A., 2010. Object-level recombination of com-
modity applications, in: Proceedings of the 12th annual conference
on Genetic and evolutionary computation, pp. 957-964.

Fu, C., Chen, H., Liu, H., Chen, X., Tian, Y., Koushanfar, F., Zhao, J.,
2019. Coda: An end-to-end neural program decompiler, in: Advances
in Neural Information Processing Systems, pp. 3703-3714.

Grech, N., Brent, L., Scholz, B., Smaragdakis, Y., 2019. Gigahorse:
thorough, declarative decompilation of smart contracts, in: Interna-
tional Conference on Software Engineering, IEEE. pp. 1176-1186.
Gusarovs, K., 2018. An Analysis on Java Programming Language
Decompiler Capabilities. Applied Computer Systems 23, 109-117.
Hamilton, J., Danicic, S., 2009. An Evaluation of Current Java Byte-
code Decompilers, in: 9th IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM), pp. 129-136.
doi:10.1109/SCAM. 2009. 24.

Hoenicke, J., 2019. JODE. http://jode.sourceforge.net/.
[Online; accessed 19-July-2019].

Jaffe, A., Lacomis, J., Schwartz, E.J., Goues, C.L., Vasilescu,
B., 2018. Meaningful Variable Names for Decompiled Code:
A Machine Translation Approach, in: 26th Conference on Pro-
gram Comprehension (ICPC), ACM, New York, NY, USA. pp. 20-
30. URL: http://doi.acm.org/10.1145/3196321.3196330,
doi:10.1145/3196321.3196330.

Jang, H., Jin, B., Hyun, S., Kim, H., 2019. Kerberoid: A practi-
cal android app decompilation system with multiple decompilers, in:
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pp. 2557-2559.

Jerome Miecznikowski, Nomair A. Naeem, L.J.H., 2019. Dava.
http://www.sable.mcgill.ca/dava/. [Online; accessed 19-
July-2019].

JetBrains, 2019. Fernflower. https://github.com/
JetBrains/intellij-community/tree/master/plugins/
java-decompiler/engine. [Online; accessed 19-July-2019].
Katz, D.S., Ruchti, J., Schulte, E., 2018. Using Recurrent Neural
Networks for Decompilation, in: 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 346—
356. doi:10.1109/SANER.2018.8330222.

Khadra, M.A.B., Stoffel, D., Kunz, W., 2016. Speculative disassem-
bly of binary code, in: International Conference on Compliers, Ar-
chitectures, and Sythesis of Embedded Systems (CASES), pp. 1-10.
doi:10.1145/2968455.2968505.

Kostelansky, J., Dedera, L., 2017. An Evaluation of Output from Cur-
rent Java Bytecode Decompilers: Is it Android Which is Responsible
for Such Quality Boost?, in: Communication and Information Tech-
nologies (KIT), pp. 1-6. doi:10.23919/KIT.2017.8109451.
Lacomis, J., Yin, P., Schwartz, E.J., Allamanis, M., Goues, C.L., Neu-
big, G., Vasilescu, B., 2019. Dire: A neural approach to decompiled
identifier naming. arXiv:1909.09029.

Le, V., Afshari, M., Su, Z., 2014. Compiler Validation via Equiva-
lence Modulo Inputs, in: 35th Conference on Programming Language
Design and Implementation (PLDI), ACM, New York, NY, USA.
pp. 216-226. URL: http://doi.acm.org/10.1145/2594291.
2594334, doi:10.1145/2594291.2594334.

Li, Z., Wu, Q., Qian, K., 2019. Adabot: Fault-Tolerant Java Decompi-
ler. Technical Report 1908.06748. arXiv.

Lindholm, T., Yellin, F., Bracha, G., Buckley, A., 2014. The Java
Virtual Machine Specification. Pearson Education.

Miecznikowski, J., Hendren, L., 2002. Decompiling Java Bytecode:
Problems, Traps and Pitfalls, in: Horspool, R.N. (Ed.), Compiler Con-
struction, Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 111—
127.

Miller, K., Kwon, Y., Sun, Y., Zhang, Z., Zhang, X., Lin, Z., 2019.
Probabilistic disassembly, in: 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), IEEE. pp. 1187-1198.
Naeem, N.A., Batchelder, M., Hendren, L., 2007. Metrics for Mea-
suring the Effectiveness of Decompilers and Obfuscators, in: 15th
IEEE International Conference on Program Comprehension (ICPC),
pp- 253-258. doi:10.1109/ICPC.2007.27.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Nolan, G., 2004. Decompiler Design. Apress, Berkeley, CA. pp. 121—
157. URL: https://doi.org/10.1007/978-1-4302-0739-9_
5,doi:10.1007/978-1-4302-0739-9_5.

Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier,
L., 2015. Spoon: A Library for Implementing Analyses and Trans-
formations of Java Source Code. Software: Practice and Experience
46, 1155-1179. URL: https://hal.archives-ouvertes.fr/
hal-01078532/document, doi:10.1002/spe.2346.

Persaud, B., Obada-Obieh, B., Mansourzadeh, N., Moni, A., So-
mayaji, A., 2016. Frankenssl: Recombining cryptographic libraries
for software diversity, in: Proceedings of the 11th Annual Symposium
On Information Assurance., pp. 19-25.

Ragkhitwetsagul, C., Krinke, J., 2017. Using Compilation/Decompi-
lation to Enhance Clone Detection, in: 11th International Workshop
on Software Clones (IWSC), pp. 1-7. doi:10.1109/IWSC.2017.
7880502.

Robles, G., Gonzalez-Barahona, J.M., Herraiz, I., 2005. An Empirical
Approach to Software Archaeology, in: 21st International Conference
on Software Maintenance (ICSM), pp. 47-50.

Schulte, E., Ruchti, J., Noonan, M., Ciarletta, D., Loginov, A., 2018.
Evolving exact decompilation, in: Shoshitaishvili, Y., Wang, R.F.
(Eds.), Workshop on Binary Analysis Research, San Diego, CA, USA.
URL: http://www.cs.unm.edu/~eschulte/data/bed.pdf.
Selberg, E., Etzioni, O., 1997. The metacrawler architecture for re-
source aggregation on the web. IEEE Expert 12, 11-14. doi:10.
1109/64.577468.

skylot, 2019. JADX. https://github.com/skylot/jadx. [On-
line; accessed 19-July-2019].

Storyyeller, 2019. Krakatau. https://github.com/
Storyyeller/Krakatau. [Online; accessed 19-July-2019].
Strobel, M., 2019. Procyon. https://bitbucket.org/
mstrobel/procyon. [Online; accessed 19-July-2019].

Troshina, K., Derevenets, Y., Chernov, A., 2010. Reconstruction of
Composite Types for Decompilation, in: 10th IEEE Working Confer-
ence on Source Code Analysis and Manipulation (SCAM), pp. 179—
188. doi:10.1109/SCAM. 2010.24.

Vallée-Rai, R., Co, P, Gagnon, E., Hendren, L., Lam, P., Sundaresan,
V., 1999. Soot - a java bytecode optimization framework, in: Pro-
ceedings of the 1999 Conference of the Centre for Advanced Studies
on Collaborative Research, IBM Press. p. 13.

Van Emmerik, M.J., 2007. Static Single Assignment for Decompila-
tion. University of Queensland.

Vinciguerra, L., Wills, L., Kejriwal, N., Martino, P., Vinciguerra,
R., 2003. An Experimentation Framework for Evaluating Disassem-
bly and Decompilation Tools for C++ and Java, in: 10th Working
Conference on Reverse Engineering (WCRE), IEEE Computer Soci-
ety, Washington, DC, USA. pp. 14—. URL: http://dl.acm.org/
citation.cfm?id=950792.951361.

Wang, S., Wang, P., Wu, D., 2015. Reassembleable disassembling, in:
24th USENIX Security Symposium (USENIX Security 15), USENIX
Association, Washington, D.C.. pp. 627-642. URL: https:
//www.usenix.org/conference/usenixsecurityl15/
technical-sessions/presentation/wang-shuai.

Yakdan, K., Dechand, S., Gerhards-Padilla, E., Smith, M., 2016.
Helping Johnny to Analyze Malware: A Usability-Optimized De-
compiler and Malware Analysis User Study, in: IEEE Symposium on
Security and Privacy (SP), pp. 158-177. doi:10.1109/SP.2016. 18.
Yang, Y., Zhou, Y., Sun, H., Su, Z., Zuo, Z., Xu, L., Xu, B., 2019.
Hunting for Bugs in Code Coverage Tools via Randomized Differen-
tial Testing, in: 41st International Conference on Software Engineer-
ing (ICSE), ACM.

Harrand et al.: Preprint submitted to Elsevier

Page 19 of 19

http://dx.doi.org/10.1109/SCAM.2009.24
http://jode.sourceforge.net/
http://doi.acm.org/10.1145/3196321.3196330
http://dx.doi.org/10.1145/3196321.3196330
http://www.sable.mcgill.ca/dava/
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine
http://dx.doi.org/10.1109/SANER.2018.8330222
http://dx.doi.org/10.1145/2968455.2968505
http://dx.doi.org/10.23919/KIT.2017.8109451
http://arxiv.org/abs/1909.09029
http://doi.acm.org/10.1145/2594291.2594334
http://doi.acm.org/10.1145/2594291.2594334
http://dx.doi.org/10.1145/2594291.2594334
http://dx.doi.org/10.1109/ICPC.2007.27
https://doi.org/10.1007/978-1-4302-0739-9_5
https://doi.org/10.1007/978-1-4302-0739-9_5
http://dx.doi.org/10.1007/978-1-4302-0739-9_5
https://hal.archives-ouvertes.fr/hal-01078532/document
https://hal.archives-ouvertes.fr/hal-01078532/document
http://dx.doi.org/10.1002/spe.2346
http://dx.doi.org/10.1109/IWSC.2017.7880502
http://dx.doi.org/10.1109/IWSC.2017.7880502
http://www.cs.unm.edu/~eschulte/data/bed.pdf
http://dx.doi.org/10.1109/64.577468
http://dx.doi.org/10.1109/64.577468
https://github.com/skylot/jadx
https://github.com/Storyyeller/Krakatau
https://github.com/Storyyeller/Krakatau
https://bitbucket.org/mstrobel/procyon
https://bitbucket.org/mstrobel/procyon
http://dx.doi.org/10.1109/SCAM.2010.24
http://dl.acm.org/citation.cfm?id=950792.951361
http://dl.acm.org/citation.cfm?id=950792.951361
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-shuai
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-shuai
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-shuai
http://dx.doi.org/10.1109/SP.2016.18

