AUTOMATED

SOFTWARE
DEBLOAT

Speaker: César Soto Valero
Supervisor: Benoit Baudry
Co-supervisors: Martin Monperrus, Thomas Durieux

1. INTRODUCTION AND STATE-OF-THE-ART

1. INTRODUCTION AND STATE-OF-THE-ART
2. CONTRIBUTIONS

|. Detecting and removing bloated dependencies
Il. Longitudinal analysis of bloated dependencies
lll. Trace-based debloat for Java bytecode

1. INTRODUCTION AND STATE-OF-THE-ART
2. CONTRIBUTIONS

|. Detecting and removing bloated dependencies
Il. Longitudinal analysis of bloated dependencies
lll. Trace-based debloat for Java bytecode

3. SUMMARY AND FUTURE WORK

1. INTRODUCTION AND STATE-OF-THE-ART
2. CONTRIBUTIONS

|. Detecting and removing bloated dependencies
Il. Longitudinal analysis of bloated dependencies
lll. Trace-based debloat for Java bytecode

3. SUMMARY AND FUTURE WORK
4. PHDPROGRESS

1. INTRODUCTION AND STATE-OF-THE-ART
2. CONTRIBUTIONS

|. Detecting and removing bloated dependencies
Il. Longitudinal analysis of bloated dependencies
lll. Trace-based debloat for Java bytecode

3. SUMMARY AND FUTURE WORK
4. PHDPROGRESS
5. Q&A

n Software tends to
grow over time,
whether or not
there's a need

for it.

RELIABLE CODE

Edltor: Gerard J. Holzmann
NASA/IPL.
gholzmany

Code Inflation

Gerard J. Holzmann

MOST PEOPLE DON'T gt too excited about software.
To them, software applications are like cars: inconspic
uous when they work, and merely annoying when they

over the years, but what about software? It sometimes
seems as if it has just gorten bigger, not safer. Why?

Software tends to grow over time,
whether or not there'’s a need for it.

If you compare the state of today's software devel
opment tools with those used in, say, the 605, you of
course see many signs of improvement. Compilers are
faster and better, we have powerful new integrated pro-
gram development environments, and there are many
effective static-source-code-analysis and_logic-model
checking tools that help us catch bugs. This would have
made a fabulous difference if our software applications
still looked like they

Many of my NASA colleagues are astronomers or cos
mologists. To explain how rapidly things are changing in
software development, I've often been tempted to make
an analogy with their field. One of the first things you
learn in cosmology is the theory of inflation. The details
don't matter too much here, but in a nutshell, this theory
postulates that the universe started expanding exponen.
tially fastin the first few moments after the Big Bang and
continues to expand. The parallel with software develop.
ment is casily made.

did in the '60s. But they don't

The First Law
Software too can grow exponentially fast, especially
after an initial prototype is created. For cxample, each
Mars lander that NASA launched in the past four de.

combined. We can sce the same effect in just about every
other application domain. Software
tends to grow over time, whether or
not a rational need for it exists. We
can call this the “frst law of soft
ware development.”
The history of the rve command
in Unix and Unix-based systems
provides a remas
this phenomenon. Shell scripts often
employ this simple command to en.
ble or disable code fragments or to
build unconditional whis loops—for instance, to perform
a sequence of random tests:

il e
do. /st rond
done

“The /bin/irue and /bi/foke commands first appeared in
January 1979 in the seventh cdition of the Unix distribu.
tion from Bell Labs, They were defined as tiny command

scripts:

§ls-1 /bi/iroe bin/flse
w011 ron o0 Jon 101979 /bin/rue
w11 oo o017 Jon 101979 /bin/flse:

Yes, e was actually defined fully with an empry fle.
How did it work?
Because e contained nothing to execute, it always

10 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOGIETY

n Software tends to
grow over time,
whether or not
there's a need

for it.

THE HISTORY OF THE true COMMAND

1979

$ 1s -1 /bin/true
-rwxr-xr-x 1 root root 0 Jan 10 1979 /bin/true

Holzmann, G. J.(2015). Code inflation. IEEE Software, 32 (2).

THE HISTORY OF THE true COMMAND

1984

$ 1s -1 /bin/true
-rwxr-xr-x 1 root root 276 May 14 1984 /bin/true

Holzmann, G. J.(2015). Code inflation. IEEE Software, 32 (2). ﬂ

THE HISTORY OF THE true COMMAND

2010

$ 1s -1 /bin/true
-rwxr-xr-x 1 root root 8377 Sep 10 2010 /bin/true

Holzmann, G. J.(2015). Code inflation. IEEE Software, 32 (2). n

THE HISTORY OF THE true COMMAND

TODAY

$ type true
true is a shell builtin

Holzmann, G. J.(2015). Code inflation. IEEE Software, 32 (2).

Holzmann, G. J.(2015). Code inflation. IEEE Software, 32 (2).

10000 8377
1000
100
18
10
0 ?
1
1979 1983 2010 Today

Size (in bytes) of the true command L~

SOFTWARE _'i
BLOAT -y

Code that is packaged in an application
but that is not necessary for building and
running the application.

ITISA P
PROBLEM o

o

4

For size

For security

For maintenance
For performance

STATE-OF-THE-ART MATRIX
GENERIC

UNSOUND
aNneos

DOMAIN SPECIFIC

STATE-OF-THE-ART MATRIX
GENERIC

UNSOUND
aNneos

JRed

DOMAIN SPECIFIC

Jiang et. al., JRed: Program Customization and Bloatware Mitigation [COMSAC"16] n

STATE-OF-THE-ART MATRIX
GENERIC

UNSOUND
aNneos

JRed
RAZOR

DOMAIN SPECIFIC

Quian et. al., RAZOR: A Framework for Post-deployment Software Debloating [USENIX'19] n

STATE-OF-THE-ART MATRIX
GENERIC

UNSOUND
aNneos

DOMAIN SPECIFIC

Bruce et. al., JShrink: In-depth Investigation into Debloating Modern Java Applications [FSE20]

STATE-OF-THE-ART MATRIX
GENERIC

UNSOUND
aNneos

JRed
RAZOR

DOMAIN SPECIFIC

THIS WORK!

STATE-OF-THE-ART MATRIX
GENERIC

Static + dynamic
analysis

UNSOUND
aNneos

JRed
RAZOR

DOMAIN SPECIFIC

THIS WORK!

Empirical Software Engineering (2021 26:45
https://doi.org/10.1007/510664-020-09914-8

A comprehensive study of bloated dependencies
in the Maven ecosystem

César Soto-Valero' © . Nicolas Harrand' - Martin Monperrus' © . Benoit Baudry'

Accepted: 23 September 2020Published online: 25 March 2021
©The Author(s) 2021

Abstract
Build automation tools and package managers have a profound influence on software devel-
opment. They facilitate the reuse of third-party libraries, support a clear separation between
the application’s code and its external ics, and automate several software devel
ment tasks. However, the wide adoption of these tools introduces new challenges related to
dependency management. In this paper, we propose an original study of one such challenge:
the emergence of bloated dependencies. Bloated dependencies are libraries that are pack-
aged with the application’s compiled code but that are actually not necessary to build and run
the application. They artificially grow the size of the built binary and increase maintenance
effort. We propose DEPCLEAN, a tool to determine the presence of bloated dependencies in
Maven artifacts. We analyze 9,639 Java artifacts hosted on Maven Central, which include a
total of 723,444 dependency relationships. Our key result s as follows: 2.7% of the depen-
dencies directly declared are bloated, 15.4% of the inherited dependencies are bloated, and
57% of the transitive dependencies of the studied artifacts are bloated. In other words, it is
feasible to reduce the number of dependencies of Maven artifacts to 1/4 of ts current count.
Our qualitative assessment with 30 notable open-source projects indicates that developers
pay attention to their dependencies when they are notified of the problem. They are willing
to remove bloated dependencies: 21/26 answered pull requests were accepted and merged
by developers, removing 140 dependencies in total: 75 direct and 65 transitive.

Keywords Dependency management - Software reuse - Debloating - Program analysis

1 Introduction

Software reuse, a long time advocated software engineering practice (Naur and Randell
1969; Krueger 1992), has boomed in the last years thanks to the widespread adoption of
build automation and package managers (Cox 2019; Soto-Valero et al. 2019). Package man-
agers provide both a large pool of reusable packages, ak.a. libraries, and systematic ways to

Communicated by: Gabriele Bavota

César Soto-Valero
cesarsv@kth.se

! KTH Royal Institute of Technology, Stockholm, Sweden

4) Springer

1St CONTRIBUTION ’

DepClean: Automatically detecting and removing
bloated dependencies in Maven projects

)

OVERVIEW

OVERVIEW

OVERVIEW

<dependency>
<groupId>org.A</groupIld>
<artifactId>A</artifactId>

</dependency>

<dependency>
<groupId>org.B</groupIld>
<artifactId>B</artifactId>

</dependency>

<dependency>
<groupId>org.C</groupIld>
<artifactId>C</artifactId>

</dependency>

OVERVIEW

OVERVIEW

OVERVIEW

Direct dependencies

OVERVIEW

OVERVIEW

OVERVIEW

OVERVIEW

OVERVIEW

OVERVIEW

<parent>
<groupId>org.Q</groupld>
<artifactId>Q</artifactId>

</parent>

OVERVIEW

OVERVIEW

OVERVIEW

Inherited dependency

OVERVIEW

__

Direct dependencies

Transitive dependencies

__

PROBLEM

PROBLEM

PROBLEM

PROBLEM

https://qgithub.com/castor-software/depclean

A castor-software /depclean n v

<> Code Issues 7

¥ master -

& cesarsotovalero Config codecov

P 4branches © 5 tags Qo+~

github Fix Codecov (#62)
iimg Move imgs
depclean-core Refactor ProjectDependencyAnalysis (#60)
depcl lugi Merge branch
© gitattributes ref: licence

© gitignore

ED LICENSE.md

README.md
¢ checkstylexml
- codecovyml
< pom.xml

Configure Depclean to run integration tests (#54)
Update LICENSE.md

Add bibtex reference to the companion paper in the README (...
Allow continuous upper case letters as variable names

Config codecov

Replace Travis by GitHub actions

DepClean

+ add2628 3 daysago {® 256 commits

@uUnwatch ~ J Unstar 57 ¥ Fork

Pull requests 1 5 Actions Projects Wiki 9 Security

4 days ago
5 months ago
3 days ago
7 days ago
12 months ago
8 days ago
12 months ago
3 days ago
15 days ago
3 days ago

4 days ago

TR [SR BT EETEE

[s orcose TR - cupteoted tnes TOR] - cechica ot Jei

Insights 15 Settings

DepClean automatically detects
and removes unused
dependencies from Maven projects

java bytecode analysis
dependencies bloatware

lifecycle

&8 MIT License

© Version2.0.0 (Latest
21days ago

Used by 1

owron @castor-software / depclean

Contributors 9

E€¢ d@
8t

Environments 1

% github-pages Active

—————————
® Java1000%

DEPCLEAN TOOL

https://github.com/castor-software/depclean

DEPCLEAN TOOL

https://qgithub.com/castor-software/depclean

U d d static
A castor-software /depclean n v ®uUnwatch ~ J Unstar 67 % Fork °
S B e | G Sl e Gy R byt ecode ana Iys IS TO
. @
P master - P Abranches © 5tags Q ™ - DepClean automatically detects
etect and remove

dependencies from Maven projects

& cesarsotovalero Config codecov v add2628 3daysago (255 commits -+
java bytecode analysis .
github Fix Codecov (#62) 4 days ago) e
img Move imgs 5 months ago lfecycle 0 a e e p e I l e I I C I e S
depclean-core Refactor ProjectDependencyAnalysis (#60) 3days ago 8 MIT License
depcl lugi Merge g branch ‘origin/master 7 days ago © Version2.0.0 (Latest
21 days ago
© gitattributes ref: licence 12 months ago
© gitignore Configure Depclean to run integration tests (#54) 8 days ago
Used by 1
O LICENSE.md Update LICENSE.md 12 months ago
cumon @castor-software | depclean
README.md Add bibtex reference to the companion paper in the README (.. 3 days ago
< checkstyle.xml Allow continuous upper case letters as variable names 16 days ago
~ codecovyml Config codecov SerTeED Contributors o
~n =
< pomxml Replace Travis by GitHub actions 4 days ago S &

8t

Environments 1

DepClean @ github-pages Active

——
auptcsted tres TR & techice oex I

https://github.com/castor-software/depclean

DEPCLEAN TOOL

https://qgithub.com/castor-software/depclean

Uses advanced static

A castor-software /depclean n v ®uUnwatch ~ J Unstar 67 % Fork | °
<> Code Issues 7 Pull requests 1 > Actions Projects Wiki Security Insights Settings b y t e C O d e a I l a y S I S t O
. @
P master - P Abranches © 5tags Q ™ - DepClean automatically detects
etectandremove
= . dependencies from Maven projects
& cesarsotovalero Config codecov + add2628 3 daysago ® 256 commits -
java bytecode analysis .
github Fix Codecov (#62) 4 days ago) e
img Move imgs 5 months ago lifecycle
depclean-core Refactor ProjectDependencyAnalysis (#60) 3 days ago % MIT License
depcl lugi Merge g branch ‘origin/master' 7 days ago © Version2.0.0 (Latest ° °
21days ago
. Automatic generation o
© _gitignore Configure Depclean to run integration tests (#54) 8 days ago
Used by 1
GO LICENSE.md Update LICENSE.md 12 months ago)
cumon @castor-software | depclean
README.md Add bibtex reference to the companion paper in the README (... 3 days ago
< checkstyle.xml Allow continuous upper case letters as variable names 15 days ago
¢ codecovyml Config codecov 3 days ago Contributors @
~n e
< pomxml Replace Travis by GitHub actions 4 days ago S &

8t

iii
Y

Environments 1
DepClean @ github-pages Active

—
Gupicated nes TOR] . technical deot 16

https://github.com/castor-software/depclean

DEPCLEAN TOOL

https://qgithub.com/castor-software/depclean

[]
Uses advanced static
A castor-software /depclean n v ®uUnwatch ~ J Unstar 67 % Fork °
bytecode analysis to

8
P master - P Abranches © 5tags Q - om - DepClean automatically detects
etectandremove
- . dependencies from Maven projects
& cesarsotovalero Config codecov v add2628 3daysago © 265 commits -3
java bytecode analysis .
github Fix Codecov (#62) 4.days ago e G
img Move imgs 5 months ago litecycle
depclean-core Refactor ProjectDependencyAnalysis (#60) 3 days ago &5 MIT License
depcl ugi Merge g branch ‘origin/master 7 days ago © Version2.0.0 (Latest . .
21days ago
T — Automatic generation o
© gitignore Configure Depclean to run integration tests (#54) 8 days ago
Used by 1
0 LICENSE.md Update LICENSE.md 12 months ago .
owron @castor-software / depclean
README.md Add bibtex reference to the companion paper in the README (... 3 days ago
¢ checkstylexml Allow continuous upper case letters as variable names 16 days ago
~ codecovyml Config codecov 3 days ago Contributors @
” : M
< pom.xml Replace Travis by GitHub actions 4 days ago & ‘. & & & M a V e n p | l I g I n e a Sy t O
= 7

DepClean B integrate in a Cl pipeline

——
s of cote T &> cptcated e T, cecoricat ot IR

https://github.com/castor-software/depclean

Dependencies

28 1 25

direct inherited transitive

D._, X a
: o

O a
(o]]

O

Example: maven-core project (v3.7.0)

https://qithub.com/castor-software/depclean-web

https://github.com/castor-software/depclean-web

Dependencies Dependencies Bloated

28 1 25 wicio> 261 5 0 0

direct inherited transitive direct inherited transitive direct transitive

Example: maven-core project (v3.7.0)

https://qithub.com/castor-software/depclean-web

https://github.com/castor-software/depclean-web

HOW MUCH DEPENDENCY BLOAT EXISTS?

HOW MUCH DEPENDENCY BLOAT EXISTS?

9K artifacts and 723K dependencies

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Dependencies

Direct Inherited Transitive

m Bloated m Used

HOW MUCH DEPENDENCY BLOAT EXISTS?

Dependencies

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

9K artifacts and 723K dependencies

Direct

Inherited

m Bloated m Used

Q 2.7% of direct
dependencies are bloated

Q 15.1% of inherited
dependencies are bloated

Q 57% of transitive
dependencies are bloated

Transitive

ARE DEVOPERS WILLING TO REMOVE BLOAT?

ARE DEVOPERS WILLING TO REMOVE BLOAT?

USER STUDY ON 30 PROJECTS

* Jenkins

* Neo4j

°* Flink

°* Spoon

* Checkstyle
* CoreNLP
* jHiccup

* Alluxio

* TeaVM

24
Full list: https://tinyurl.com/depclean-experiments .

https://tinyurl.com/depclean-experiments

ARE DEVOPERS WILLING TO REMOVE BLOAT?

30 pull requests in 30 notable open source projects

®m Accepted & Merged mRejected = NA

ARE DEVOPERS WILLING TO REMOVE BLOAT?

30 pull requests in 30 notable open source projects

Removed 140 bloated
dependenciesin 21
projects thanks to

DepClean

®m Accepted & Merged mRejected = NA

SUMMARY OF 1t CONTRIBUTION

SUMMARY OF 1t CONTRIBUTION

" Thereis alot of code bloat in Maven Central
* (Caused by the induced transitive dependencies
* (Caused by the heritage mechanism of multi-module projects
* (Caused by software development practices

SUMMARY OF 1t CONTRIBUTION

" Thereis alot of code bloat in Maven Central
* (Caused by the induced transitive dependencies
* (Caused by the heritage mechanism of multi-module projects
* (Caused by software development practices

" Software developers care

* Theyare willing to remove bloated dependencies

SUMMARY OF 1t CONTRIBUTION

" Thereis alot of code bloat in Maven Central
* (Caused by the induced transitive dependencies
* (Caused by the heritage mechanism of multi-module projects
* (Caused by software development practices

" Software developers care
* Theyare willing to remove bloated dependencies

" DepClean

°* |tisuseful to automatically detect and remove bloated
dependencies

Al itudinal Analysis of Bloated Java Depend i

8! y

César Soto-Valero

‘Thomas Durieux

Benoit Baudry

KTH Royal Institute of Technology, KTH Royal Institute of Technology, KTH Royal Institute of Technology,
de

Sweden
cesarsv@kth.se
ABSTRACT

Motivated by the negative impact of software bloat on security,
performance,and maienanee svers woks e propoed tch-
niques to remove bloat. However, no work has m\ma how bloat

Sweden
thomas@duricux.me

Sweden

baudry@kthse

software projects, .., when the dependency is removed from the

proj ill builds successfully. Soto-Valero et al. [21] show that

the Maver tem s p d

that they are present even in well maintained Java projects. They
that

cvales vertime ot how it emerges in In partic-
lar, a concen when removing bloated code s to know i i might
be useful in subsequent versions of the application. I this work, we
study the evolution and emergence of bloated Java dependencies.
“These are third-party libaries that are packaged in the application
binary but are not needed to run the application. We analyze the
history of 435 Java projects. This historical data includes 48,469 dis-
tinct dependencies, which we study across a total of 31,515 versions
of Maven dependency trees. We empirically demonstrate the con-
sant s of heamount ofbosted ependenciesovr tne. A
2%

thatare oot ey ot mbxcquunl versions of the

bloated dependencies, but that removing code i a complex socio-
technical decision, which benefits from solid evidence about the
actual benefits of debloating.

Motivated by these observations about bloated dependencies,
e condct 4 large ale el iy about the evltin of

a projects.

blost, e voltion of he dependencis satuss, nd the impact of
bloat on maintenance. We have collected a unique dataset of 31,515
Versions of dependency trees from 435 open-source Java projects
Each version of a tree is a snapshot of one project’s dependencies,
for which we determine a status, i bloated or used. We rely on

d
can umy emove bonted dependency. We aher report vl

DerCrean,’
in Maven pmjech We analyze the evolution of 48,469 distinct

insights regarding the unnecessary
by bloat, we identify that 22.% of dependency updates are v
bloated dependencics.

ACM Reference Format:

ACM, New

a b
il Asis ofBoted Jov Dependencien I
York, NY, USA, 11 pages. itpss/doLorg/nnnnnnn.nnnnnn

1 INTRODUCTION

ofthem ae bloatedat one point in time, i out datasct
Our f bloated e

gt ot e evltion o ot o will e slon between
bloat and regular maintenance activities such as dependency up-
dates. We present original quantitative results regarding the evolu-
tion of We first

in the number of boated dependencies. Next, we investigate how
the usage status of dependencies evolves over time. This analysis
is a key contribution of our work where we demonstrate that a

[15), most applications embed a part of code that is unnecessary
to their correct operation. Several debloating tools have emerged
i recent years [7, 14, 15, 17, 19, 21] to address the security and
maintenance issues posed by excessive code at various granular-
ity levels. However, these works do not analyze the evolution of
blost ves . Detin o bos I the perpetive o
ucial to
lare devcloper. n o, devloper when proposed to
adapt a debloating tool, wonder i a picce of bloated code might be
needed in coming releases, or what s the actual issue with bloat.
“This work proposes the first longitudinal analysis of software
blot We focus an on spcif typeofbout: blosted dmpundﬂl—
cies [21]. The

per s bloated is very likely to remain bloated over
subsequent versions of a project. We present the first observations
about the impact of regular maintenance activities on software
bloat. Besides, we analyze the impact of Dependabot, a popular
dependency management bt on thse actviie. W show that
i e ey D Pohermorene

the
hat 84.3 of the bloated dependencie are loted a5 soun s they
are added in the dependency tree of a project

" summarie, the contriutions o his paper are

+ Alongtudinal iy of sfwre dependences’vange in

 resuls con-
o bloated depend d

Forll kb cs,contatthe owner ot
ESECISE'21, gt 23-27, 2021, Athens,Gree, Vil Event
© 2021 Copyrght el by the owner/uthors)

'ACM ISBN nannan.nnnanmn.

over time.
. lysis of the stablity of
cies: 89.27% of dircct dependencies remain bloated. This s a
concrete insight that motivates debloating dependencics.

[T ——————

2"d CONTRIBUTION ’

Longitudinal Analysis of Bloated Java Dependencies

)

PROBLEM

PROBLEM

SOFTWARE EVOLVES OVER TIME n
- O

Time

PROBLEM

SOFTWARE EVOLVES OVER TIME n
- O

Time

PROBLEM
569
-

SOFTWARE EVOLVES OVER TIME m

Time

PROBLEM

SOFTWARE EVOLVES OVER TIME n
- O

Time

PROBLEM

SOFTWARE EVOLVES OVER TIME o
- O

Time

HOW DOES THE USAGE STATUS EVOLVES?

HOW DOES THE USAGE STATUS EVOLVES?

Usage status ® U ¢ B

commons-lang { @ [0e® o o ®
> h2 @ ”w o e o
c
15
p= hitpmime{ e @ © ©¢ © o o o0 0 o oo
[
o
@) json - * e o000 o @
guava - ®e 0B 00 0O ©
A ® o N
N A N QN
P » » 2

HOW DOES THE USAGE STATUS EVOLVES?

Usage status ® U ¢ B

commons-lang { @ [0e® o o ®
o h2 . *” o * o
c
15
p= hitpmime{ e @ © ©¢ © o o o0 0 o oo
[
&
@) json - * e o000 o @
guava A ®e 00D 00 OO O
A ® o N
N A N YV
P » » 2

HOW DOES THE USAGE STATUS EVOLVES?

commons-lang

1
2 h2
: ——————————————
)
p= httpmime
)
Q
) i
a Jjson
guava

Usage status ® U ¢ B

L R 2 *6 00D ® @&
o 00D oo e O
A S Y Q
N N N O
P > > P

HOW DOES THE USAGE STATUS EVOLVES?

Usage status ® U ¢ B

commons-lang { ® ° o®m o o o | [U]
> h2 XS * o oo o | [B]
R I NSRS SR [SV PRI NS S AN S
1
g: httpmime, es0 @@ © ¢ © © o000 © oo [UB]
% ———
@) json 4 ¢ e o000 0o ®
guava - @ 0B 00 OO O
A g o o
X Q N A
> > > >

HOW DOES THE USAGE STATUS EVOLVES?

Usage status ® U ¢ B

commons-lang { ® ® sseem o o o | [U]
; h2 . “w o oo o | [B]

'%J httpmime{ es® @@ © ©¢ © o o o0 0 o oo [UB]
& jon{ e eeeem o @ || [(BUT:
guava - ®e o0 0 wo ©

& S & o

HOW DOES THE USAGE STATUS EVOLVES?

Usage status ® U ¢ B

commons-lang { @ @ 0 o® o © ® [U]
; h2 - . *w o oo o | [B]
(]
g httpmime{ es®0 @ o © @ e o000 o oo [UB]
o :
& json - ¢e sooem o @ [BU]

guava ®s 0B o0 0O O [fluctuating]
r&'(\ q,Q\% %Q\o, %@9

HOW DOES THE USAGE STATUS EVOLVES?

HOW DOES THE USAGE STATUS EVOLVES?

Pattern |" B [/ u] BU [uB [fluctuating

(3]

Q.

>~

)

O]

c

(5]

S

(@

o T T T T T
a 0% 25% 50% 75% 100%

Percentage of occurrence

HOW DOES THE USAGE STATUS EVOLVES?

Transitive 1

Dependency type

0% 25% 50% 75% 100%
Percentage of occurrence

HOW DOES THE USAGE STATUS EVOLVES?

Pattern |" B [/ u] BU [uB [fluctuating

(3]

Q.

>~

)

O]

c

(5]

S

(@

o T T T T T
a 0% 25% 50% 75% 100%

Percentage of occurrence

HOW DOES THE USAGE STATUS EVOLVES?

0% 25% 50% 75% 100%
Percentage of occurrence

DO DEVELOPERS UPDATE BLOATED DEPENDENCIES?

DO DEVELOPERS UPDATE BLOATED DEPENDENCIES?

Developer updates on used dependencies [l Developer updates on bloated dependencies

B Dependabot updates on used dependencies || Dependabot updates on bloated dependencies

9,403 (61.74%)
2,659 (17.46%)
2,452 (16.1%)
716 (4.7%)

0 2,000 4,000 6,000 8,000 10,000

DO DEVELOPERS UPDATE BLOATED DEPENDENCIES?

Developer updates on used dependencies [l Developer updates on bloated dependencies

B Dependabot updates on used dependencies || Dependabot updates on bloated dependencies

9,403 (61.74%)

2,659 (17.46%) !

2,452 (16.1%)

716 (4.7%)
0 2,000 4,000 6,000 8,000 10,000

DO DEVELOPERS UPDATE BLOATED DEPENDENCIES?

Developer updates on used dependencies [l Developer updates on bloated dependencies

B Dependabot updates on used dependencies || Dependabot updates on bloated dependencies

9,403 (61.74%)
2,659 (17.46%)
2,452 (16.1%)
716 (4.7%)

0 2,000 4,000 6,000 8,000 10,000

DO DEVELOPERS UPDATE BLOATED DEPENDENCIES?

Developer updates on used dependencies [l Developer updates on bloated dependencies

B Dependabot updates on used dependencies || Dependabot updates on bloated dependencies

9,403 (61.74%)

2,659 (17.46%)
2,452 (16.1%)

0 2,000 4,000 6,000 8,000 10,000

SUMMARY OF 2" CONTRIBUTION

SUMMARY OF 2" CONTRIBUTION

" The usage status of dependencies is mostly constant over
time
* |tissafeto debloat dependencies(>90% of dependencies do not
change)

SUMMARY OF 2" CONTRIBUTION

" The usage status of dependencies is mostly constant over
time
* |tissafeto debloat dependencies(>90% of dependencies do not
change)

" Developers often update bloated dependencies

* Anunnecessary maintenance effort due to the lack of tools

SUMMARY OF 2" CONTRIBUTION

" The usage status of dependencies is mostly constant over
time
* |tissafeto debloat dependencies(>90% of dependencies do not
change)

" Developers often update bloated dependencies

* Anunnecessary maintenance effort due to the lack of tools

" Some dependency updates are suggested by Dependabot

* First empirical evidence of false alarms related to dependency
management caused by bots

19 Aug 2020

[cs SE]

2008.08401v1

iv:

arX

Trace-based Debloat for Java Bytecode

César Soto-Valero ©, urieux
KTH Rnyu sttt o e

Nicolas Harrand ©, and Benoit Baudry

Stockholm,
Email: {cesarsv, tdurieux, harand, baudry}@kh se

it
o
5 ot
ndex
+
1 INTRODUCTION Destoat tool designed to debloat Java projcts configured to
build with Maven
o frow et ADBL i the it softvare ol 1 debont o by

Sm TWARE systems have a natural tenden
time.bot i fems of sze and complesy oA

plr(cllms rowth comes with the addition of new features or

e & e Ty

that combincs race collecton bytecoe removal, and build
Cadonon DB oot First,
JDBL addresses the challenge of spotting unnecessary code

Wwhile kecping the program cohesive. It everages diverse cods
software bloat, is e prevalent with coverage tools to collect a set of aces for

d'm cmﬂgeme of large mllwmm rameorks 141, 15, 16, ma debloaing This procss mvnh‘es executing the Maven project
of code reuse [7], [5]. ¢ run-

consiots ofautomatialy emoving scemary code P Thi l|me e through dymamic o mx,m Second, JDBL mifes he
poses several challenges for code analysis code that has not

Getermi
2],
e 2 ebloated version of the system that can sl run

rovide usefl features.In this contex,the problem of ef-
Tectively and sacly

inc the bloated parts of the software Sy 0L [ul,

e e i e e phace B umae removal is performed
on e project as well a5 on he whole e of hird-pary
dependencies. Third, JDBL validates the debloat by executing
the workload and v aniymglh t the debloated project preserves

a long:standing software enginecring endeavor.
us works on software debloat have proposed differ-
echniques, each of them tailored to a specific language.
Significant efforts have been devoted to software debloat for
Clce+ cmeusbi inatin In i ot dbkou s e
a program in which dependencies are cor and linked
Suticaty T3], 14, 12). ebloat approaches ot s o e
e literature, and rely on static analysis to deect unreach-
able code [15], (16}, These techniques are challenged by the
dy as juced de-

lass loading [18], and reflection [19]
In addition,satc analysis techniques re conservatve and do
the

Tt <o e enc staticay bt e ot exected i,

nique to remove unused Java bytecode: trace-based debloat. The.

core novelty consists of steering the debloat process with in-

run JDBL on a curated benchmark of 395 open-source
Java libraris, to evaluate its correctness and effetiveness
Our results show that JDBL is capable of automatically de-
louting 311 (170 reaweldJva baries, and preserving
the cor 1220 (1077 of thse i, We provide
uantiaive evidence of the caasive peesence of Uneecesary
e i oo anoct: 0235 of e e Moy o
bloated. The removal of this bloated code sgnificantly reduces
bytecode sz JOBL saves 683 of the lbrare’ ik
which represents a mean reducti lbrary

T onger o furter valdatethe relevance f race based de-
bloat, e perform a second setof experiments with projects that
use the librarics that we debloated with JDBL. Thisis the first

y pec
to the debloated subjects, but also on their clients. The goal
is to demonstrate that JDBL produces debloated artifacts that
stll provide relevant functionalities. Our experiment shows
firstly that the compilation of 957/1,001 (95.6 %) clients are not

This
techniq

of ¢ 229/283 (80.9%) clients is preserved.

toring the dynamic behavior of the system. Iis automatable
nature allows us to scale the debloat technique to large and

We implement this approach in a tool called JDBL, the Java

In summary, this paper makes the following contributions

~ The concepua oundaton of rscobased doblost o v

& practical pproach o debloe software Gough the co-
Jebtion of exeeution

3'9 CONTRIBUTION

JDBL: Trace-based Debloat for Java Bytecode

PROBLEM

PROBLEM

PROBLEM

PROBLEM

PROBLEM

PROBLEM

Octotree v

https://github.com/castor-software/jdbl

A castor-software /jdbl = v @ Unwatch + # Unstar 7 % Fork
<> Code Issues 3 Pull requests 1) Actions [Projects) Security |~ Insights @ Settings
. @
¥ master - ¥ 3branches ©1tag Q + - n @ © JDBL automatically removes

& cesarsotovalero et up GitHub actions

v 40aacef 10 hoursago {® 215 commits -3

unnecessary code from Java
applications through dynamic debloat

& www.cesarsotovalero.net/2020-06...

github Remove windows os from the pipeline 10 hours ago
maven-plugin bytecode-manipulation
idbl-agent Fix Travis build 17 hours ago debloating
dbl-a Fix Travis build 17 hours ago
joerape ¢ &8 MIT License
jdbl-core Fix Travis build 17 hours ago

idbl-maven-plugin

Roll back jar-with-dependencies manipulation

8 months ago

© 1tags

. h loat 8 month: .
[gitignore Show debloated jars months ago Contributors @
[opddyml feat: add PDD 14 months ago ~
& cesarsotovalero César Soto Valero
[LICENSE Update LICENSE 12 months ago
a tdurieux Thomas Durieux
README.md Add Codecov badge in the README.md 10 hours ago
. E dependabot{bot]
logo.svg doc: add gh contrib templates 12 months ago
5 pomxml Update to Java 11 17 hours ago
[wasp.svg Update README.md 9 months ago Environments 1

% github-pages Active

———————
® Java892% © HTMLG3%
JavaScript 25% @ CSS19%

JDBL TOOL

JDBL s S SR T ST
Guptcoted Ines TOBH_ techncalceot |SA]_ covecov 125

https://github.com/castor-software/jdbl

Octotree

JDBL TOOL

https://github.com/castor-software/jdbl

Relies on dynamic

A castor-software /jdbl ' v @ Unwatch ~ # Unstar 7 % Fork | [t | | t
<> Code © Issues 3 Pull requests 1 ») Actions [Projects 0 wiki) Security Insights Settings a I l a y S I S 0 C 0 e C
:] .
P master = | 1 Sbranches 112 [+) (mlew JDBL automaticaly removes
e o o v e X e C u I O I I ra C e S a
= applications through dynamic debloat
& Ccesarsotovalero Set up GitHub actions v 40aacef 10 hoursago {® 215 commits -3
@ www.cesarsotovalero.net/2020-06. .
github Remove windows os from the pipeline 10 hours ago
maven-plugin bytecode-manipulation r l I n I m e
jdbl-agent Fix Travis build 17 hours ago e
jdbl-a Fix Travis build 17 hours ago
e . &8 MIT License
jdbl-core Fix Travis build 17 hours ago
© 1tags
jdbl-maven-plugin Roll back jar-with-dependencies manipulation 8 months ago
[gitignore Show debloated jars 8 months ago Contributors @
5 Opddyml feat: add PDD 14 months ago ~
% cesarsotovalero César Soto Valero
[) LICENSE Update LICENSE 12 months ago
a tdurieux Thomas Durieux
README.md Add Codecov badge in the README.md 10 hours ago
E dependabot{bot]
logo.svg doc: add gh contrib templates 12 months ago
5 pomxml Update to Java 11 17 hours ago
[wasp.svg Update README.md 9 months ago Environments 1

% github-pages Active

———
JDBL s S T ST ST
BT BT ST BT

https://github.com/castor-software/jdbl

Octotree

https://github.com/castor-software/jdbl

@ castor-software /jdbl v ©Umwatch + o Unstar 7 Y Fork
<>Code (D Issues 3 Pull requests 1 » Actions [Projects 0 Wiki Security Insights Settings
. @
P master = | 1 Sbranches 112 [+) (mlew JDBL automaticaly removes
unnecessary code from Java
= applications through dynamic debloat
& Ccesarsotovalero Set up GitHub actions v 40aacef 10 hoursago {® 215 commits -3

github Remove windows os from the pipeline 10 hours ago
idbl-agent Fix Travis build 17 hours ago
idbl-app Fix Travis build 17 hours ago
idbl-core Fix Travis build 17 hours ago

jdbl-maven-plugin Roll back jar-with-dependencies manipulation 8 months ago

gitignore Show debloated jars 8 months ago
Opddym! feat: add PDD 14 months ago
LICENSE Update LICENSE 12 months ago
README.md Add Codecov badge in the README.md 10 hours ago
logo.svg doc: add gh contrib templates 12 months ago
pom.xml Update to Java 11 17 hours ago
wasp.svg Update README.md 9 months ago

s posg
JDBL [oo] e oo)
o TSR] — oo (5] oo o]

@ www.cesarsotovalero.net/2020-06.

maven-plugin bytecode-manipulation

debloating
8 MIT License

© 1tags

Contributors 3
g cesarsotovalero César Soto Valero

3 tdurieux Thomas Durieux

E dependabot[bot]

Environments 1

% github-pages Active

———————
® Java892% @ HTML63%
JavaScript 25% @ C€SS19%
Shell 0.1%

JDBL TOOL

Relies on dynamic
analysis to collect
execution traces at
runtime

Automatically remove
unused classes and
methods

https://github.com/castor-software/jdbl

Octotree

https://github.com/castor-software/jdbl

A castor-software /jdbl ' v

<> Code Issues 3 Pull requests

¥ master v P 3branches ©1tag

& cesarsotovalero et up GitHub actions

github
idbl-agent
idbl-app
idbl-core
jdbl-maven-plugin
gitignore

Opdd.ym!

LICENSE

README.md

logo.svg
pom.xmi

wasp.svg

Actions Projects

Q

v 40aacef 10 hours ago

Remove windows os from the pipeline
Fix Travis build

Fix Travis build

Fix Travis build

Roll back jar-with-dependencies manipulation
Show debloated jars

feat: add PDD

Update LICENSE

Add Codecov badge in the README.md

doc: add gh contrib templates

Update to Java 11

Update README.md

© 215 commits

Insights

10 hours ago
17 hours ago
17 hours ago
17 hours ago

8 months ago

8 months ago

14 months ago

12 months ago
10 hours ago

12 months ago
17 hours ago

9 months ago

© s 10
JDBL 0 ST
o TSR] — oo (5] oo o]

Oumatch - H unstar 7 ok

Settings

@

JDBL automatically removes
unnecessary code from Java
applications through dynamic debloat

& www.cesarsotovalero.net/2020-06.

maven-plugin bytecode-manipulation

debloating
8 MIT License

© 1tags

Contributors 3
:;: cesarsotovalero César Soto Valero

3 tdurieux Thomas Durieux

E dependabot[bot]

Environments 1

% github-pages Active

® Java892% © HTMLG3%
JavaScript 25% @ CSS19%
Shell 0.1%

JDBL TOOL

Relies on dynamic
analysis to collect
execution traces at
runtime

Automatically remove
unused classes and
methods

Package the debloate
application

https://github.com/castor-software/jdbl

APPROACH

APPROACH

Input

()

Project

\ J

()

Workload

\ J

APPROACH

Input

Project \\\\\\$1
Trace

Workload ’”////;7

APPROACH

Input

Vs

\

Project

.

Vs

\

Workload

~N

\1
Trace

J

2
Remove

APPROACH

Input

Vs

\

Project

.

Vs

\

Workload

~N

\1
Trace

J

2
Remove

3
Validate

APPROACH

Input

Vs

\

Project

.

Vs

\

Workload

~N

\1
Trace

J

2
Remove

3
Validate

Output

JAR

CAN JDBL DEBLOAT AUTOMATICALLY?

CAN JDBL DEBLOAT AUTOMATICALLY?

M Success [l Not compiled [l Crash [Timeout [l Validation error
311 (78.73%)

41 (10.38%)
28 (7.09%)
13 (3.29%)
2 (0.51%)
0 50 100 150 200 250 300 350

Libraries

IS THE BEHAVIOUR PRESERVED?

IS THE BEHAVIOUR PRESERVED?

M All pass [" Not executed [l Not all Pass

220 (70.74%)
61 (19.61%)
30 (9.65%)

0 50 100 150 200 250
Libraries

WHAT IS THE BENEFIT?

WHAT IS THE BENEFIT?

Bloated (%)
Dependencies 52/254 (20.5%) 1
Classes 75,273/121,055 (62.2 %) Il
Methods 505,268/829,015 (60.9 %) Il

ARE THE CLIENTS AFFECTED?

ARE THE CLIENTS AFFECTED?

M All tests pass [l Not all tests pass

229 (80.92%)
54 (19.08%)

0 50 100 150 200 250
Clients

SUMMARY OF 3"1 CONTRIBUTION

SUMMARY OF 3"1 CONTRIBUTION

" Trace-based debloat is doable

>78% successfully debloated libraries

SUMMARY OF 3"1 CONTRIBUTION

" Trace-based debloat is doable

* >78% successfully debloated libraries

" Debloated libraries preserve the original behaviour

* >70% libraries are not affected

SUMMARY OF 3"1 CONTRIBUTION

" Trace-based debloat is doable

* >78% successfully debloated libraries

" Debloated libraries preserve the original behaviour

* >70% libraries are not affected

= Debloated libraries are

* >50% smaller than the original

SUMMARY OF 3"1 CONTRIBUTION

" Trace-based debloat is doable

* >78% successfully debloated libraries

" Debloated libraries preserve the original behaviour

* >70%libraries are not affected
= Debloated libraries are

* >50% smaller than the original

" Library clients preserve the original behaviour

* >80% clients are not affected

e LESSONS LEARNED

LESSONS LEARNED

LESSONS LEARNED

" Debloatis hard in practice
* Determining what is actually used is not trivial
* Static + Dynamic analysis may help

LESSONS LEARNED

" Debloatis hard in practice
* Determining what is actually used is not trivial
* Static + Dynamic analysis may help

" Debloat is relevant
* Package ecosystems are bloated

* Developers are willing to debloat software
°* Moretools are needed for this purpose

FUTURE WORK

FUTURE WORK

® End-to-end software debloat

FUTURE WORK

® End-to-end software debloat
® Debloat containers

FUTURE WORK

® End-to-end software debloat
® Debloat containers
" Debloat specific features

FUTURE WORK

" End-to-end software debloat
" Debloat containers

" Debloat specific features

" Debloat test suites

PHD PROGRESS

PAPERS DIRECTLY RELATED

1. Ceésar Soto-Valero, Thomas Durieux, Nicolas Harrand, Benoit Baudry. Trace-based
Debloat for Java Bytecode [Submitted to TSE]

2. César Soto-Valero, Thomas Durieux, Benoit Baudry. A Longitudinal Analysis of
Bloated Java Dependencies [Submitted to FSE]

3. Thomas Durieux, César Soto-Valero, Benoit Baudry. DUETS: A Dataset of
Reproducible Pairs of Java Library-Clients [MSR21]

4. César Soto-Valero, Nicolas Harrand, Martin Monperrus, Benoit Baudry. A
Comprehensive Study of Bloated Dependencies in the Maven Ecosystem [EMSE20]

5. César Soto-Valero, Amine Benelallam, Nicolas Harrand, Olivier Barais, Benoit Baudry.
The Emergence of Software Diversity in Maven Central [MSR'19]

Full list: https://www.cesarsotovalero.net/publications

https://arxiv.org/abs/2008.08401
TODO
https://arxiv.org/pdf/2103.09672.pdf
https://arxiv.org/abs/2001.07808
https://dl.acm.org/doi/10.1109/MSR.2019.00059
https://www.cesarsotovalero.net/publications

OTHER PAPERS

1. Nicolas Harrand, Amine Benelallam, César Soto-Valero, Olivier Barais, Benoit Baudry. Analyzing 2.3 Million
Maven Dependencies to Reveal an Essential Core in APIs [Submitted to JSS]

2. Gustaf Halvardsson, Johanna Peterson, César Soto-Valero, Benoit Baudry. Interpretation of Swedish Sign
Language using Convolutional Neural Networks and Transfer Learning [SNCS21]

3. Nicolas Harrand, César Soto-Valero, Martin Monperrus, Benoit Baudry. Java Decompiler Diversity and its
Application to Meta-decompilation [JSS'20]

4., Raul Reina, David Barbado, César Soto-Valero, José M. Sarabia and Alba Roldan. Evaluation of the Bilateral
Function in Para-athletes with Spastic Hemiplegia: a Model-based Clustering Approach [JSAMS20]

5. Amine Benelallam, Nicolas Harrand, César Soto-Valero, Benoit Baudry, Olivier Barais. The Maven

Dependency Graph: a Temporal Graph-based Representation of Maven Central [MSR19]

6. Nicolas Harrand, César Soto-Valero, Martin Monperrus, Benoit Baudry. The Strengths and Behavioral
Quirks of Java Bytecode Decompilers [SCAM19]

7. César Soto-Valero, Miguel Pic. Assessing the Causal Impact of the 3-point Per Victory Scoring System in
the Competitive Balance of LaLiga [|JCSS19]

Debugging Activities [MSR18]

8. César Soto-Valero, Yohan Bourcier, Benoit Baudry. Detection and Analysis of Behavioral T-patterns in n

Full list: https://www.cesarsotovalero.net/publications

https://arxiv.org/abs/2010.07827
https://www.sciencedirect.com/science/article/pii/S0164121220301151
https://www.sciencedirect.com/science/article/pii/S1440244019306620
https://dl.acm.org/doi/10.1109/MSR.2019.00060
https://ieeexplore.ieee.org/document/8930870
https://content.sciendo.com/view/journals/ijcss/18/3/article-p69.xml
https://ieeexplore-ieee-org.focus.lib.kth.se/document/8595192
https://www.cesarsotovalero.net/publications

TEACHER ASSISTANT

N

@ oo

~

9.

10.

DD2482 Automated Software Testing and DevOps, worked with Martin Monperrus & Benoit Baudry at KTH,

Spring 2021
WASP Software Engineering and Cloud Computing, worked with Martin Monperrus & Benoit Baudry at KTH,
Spring 2021

DD2480 Software Engineering Fundamentals, worked with Cyrille Artho at KTH, Spring 2021

DD1369 Software Engineering in Project Form, worked with Dena Hussain at KTH, Fall 2020

DD2460 Software Safety and Security, worked with Cyrille Artho at KTH, Spring 2020

DD2482 Automated Software Testing and DevOps, worked with Martin Monperrus & Benoit Baudry at KTH,
Spring 2020

DM1590 Machine Learning for Media Technology, worked with Bob Sturm at KTH, Spring 2020

DA2210 Introduction to the Philosophy of Science and Research Methodology for Computer Scientists,
worked with Linda Kann at KTH, Fall 2019

WASP Software Engineering and Cloud Computing, worked with Martin Monperrus & Benoit Baudry at KTH,
Spring 2019

ID2211 Data Mining, Basic Course, worked with Sarunas Girdzijauskas at KTH, Spring 2019

Full list: https://www.cesarsotovalero.net/service

https://www.kth.se/student/kurser/kurs/DD2482
https://www.monperrus.net/martin
https://softwarediversity.eu/
https://wasp-sweden.org/graduate-school/courses/software-engineering-and-cloud-computing
https://www.monperrus.net/martin
https://softwarediversity.eu/
https://www.kth.se/student/kurser/kurs/DD2480?l=en
https://www.kth.se/profile/artho
https://www.kth.se/social/course/DD1369/
https://www.kth.se/profile/denah/
https://www.kth.se/social/course/DD2460
https://www.kth.se/profile/artho
https://www.kth.se/student/kurser/kurs/DD2482
https://www.monperrus.net/martin
https://softwarediversity.eu/
https://www.kth.se/student/kurser/kurs/DM1590
http://www.eecs.qmul.ac.uk/~sturm/
https://www.kth.se/social/course/DA2210
http://www.csc.kth.se/~lk
https://wasp-sweden.org/graduate-school/courses/software-engineering-and-cloud-computing
https://www.monperrus.net/martin
https://softwarediversity.eu/
https://www.kth.se/student/kurser/kurs/ID2211?l=en
https://scholar-google-se.focus.lib.kth.se/citations?user=mhqpsO4AAAAJ&hl=en
https://www.cesarsotovalero.net/service

57 CREDITS

10 courses completed

57 CREDITS

10 courses completed

3 SUPERVISIONS

2BSc+1MSc

57 CREDITS

10 courses completed

3 SUPERVISIONS

2BSc+1MSc

8 PAPERS REVIEWED

3 as primary reviewer + 5 as sub-reviewer

57 CREDITS

10 courses completed

3 SUPERVISIONS

2BSc+1MSc

8 PAPERS REVIEWED

3 as primary reviewer + 5 as sub-reviewer

99 CITATIONS

Slow and steady wins the race

3 PROJECTS

DepAnalyzer + DepClean + JDBL

3 PROJECTS

DepAnalyzer + DepClean + JDBL

10+ TRIPS

4 Countries

=8 3 PROJECTS

DepAnalyzer + DepClean + JDBL

10+ TRIPS

4 Countries

A“"lﬁ

3 PROJECTS

DepAnalyzer + DepClean + JDBL

10+ TRIPS

4 Countries

50+ MERGED PRs

Still low, more to come!

3 PROJECTS

DepAnalyzer + DepClean + JDBL

10+ TRIPS

4 Countries

50+ MERGED PRs

Still low, more to come!

12 PRESENTATIONS

e.g., SL, FOSDEM'21

1BABY

The greatest challenge!

THANKS!

Any questions?
You can find me at:

cesarsv@kth.se

https://www.cesarsotovalero.net

mailto:cesarsv@kth.se
https://www.cesarsotovalero.net/

