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Edltor: Gerard J. Holzmann
NASA/IPL.
gholzmany

Code Inflation

Gerard J. Holzmann

MOST PEOPLE DON'T gt too excited about software.
To them, software applications are like cars: inconspic
uous when they work, and merely annoying when they

over the years, but what about software? It sometimes
seems as if it has just gorten bigger, not safer. Why?

Software tends to grow over time,
whether or not there'’s a need for it.

If you compare the state of today's software devel
opment tools with those used in, say, the 605, you of
course see many signs of improvement. Compilers are
faster and better, we have powerful new integrated pro-
gram development environments, and there are many
effective static-source-code-analysis and_logic-model
checking tools that help us catch bugs. This would have
made a fabulous difference if our software applications
still looked like they

Many of my NASA colleagues are astronomers or cos
mologists. To explain how rapidly things are changing in
software development, I've often been tempted to make
an analogy with their field. One of the first things you
learn in cosmology is the theory of inflation. The details
don't matter too much here, but in a nutshell, this theory
postulates that the universe started expanding exponen.
tially fastin the first few moments after the Big Bang and
continues to expand. The parallel with software develop.
ment is casily made.

did in the '60s. But they don't

The First Law
Software too can grow exponentially fast, especially
after an initial prototype is created. For cxample, each
Mars lander that NASA launched in the past four de.

combined. We can sce the same effect in just about every
other application domain. Software
tends to grow over time, whether or
not a rational need for it exists. We
can call this the “frst law of soft
ware development.”
The history of the rve command
in Unix and Unix-based systems
provides a remas
this phenomenon. Shell scripts often
employ this simple command to en.
ble or disable code fragments or to
build unconditional whis loops—for instance, to perform
a sequence of random tests:

il e
do. /st rond
done

“The /bin/irue and /bi/foke commands first appeared in
January 1979 in the seventh cdition of the Unix distribu.
tion from Bell Labs, They were defined as tiny command

scripts:

§ls-1 /bi/iroe bin/flse
w011 ron o0 Jon 101979 /bin/rue
w11 oo o017 Jon 101979 /bin/flse:

Yes, e was actually defined fully with an empry fle.
How did it work?
Because e contained nothing to execute, it always

10 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOGIETY
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THE HISTORY OF THE true COMMAND

1979

$ 1s -1 /bin/true
-rwxr-xr-x 1 root root 0 Jan 10 1979 /bin/true

Holzmann, G. J.(2015). Code inflation. IEEE Software, 32 (2).



THE HISTORY OF THE true COMMAND

1984

$ 1s -1 /bin/true
-rwxr-xr-x 1 root root 276 May 14 1984 /bin/true

Holzmann, G. J.(2015). Code inflation. IEEE Software, 32 (2). ﬂ



THE HISTORY OF THE true COMMAND

2010

$ 1s -1 /bin/true
-rwxr-xr-x 1 root root 8377 Sep 10 2010 /bin/true

Holzmann, G. J.(2015). Code inflation. IEEE Software, 32 (2). n



THE HISTORY OF THE true COMMAND

TODAY

$ type true
true is a shell builtin

Holzmann, G. J.(2015). Code inflation. IEEE Software, 32 (2).



Holzmann, G. J.(2015). Code inflation. IEEE Software, 32 (2).

10000 8377
1000
100
18
10
0 ?
1
1979 1983 2010 Today

Size (in bytes) of the true command L~
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Code that is packaged in an application
but that is not necessary for building and
running the application.
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Jiang et. al., JRed: Program Customization and Bloatware Mitigation [COMSAC"16] n
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Quian et. al., RAZOR: A Framework for Post-deployment Software Debloating [USENIX'19] n
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Bruce et. al., JShrink: In-depth Investigation into Debloating Modern Java Applications [FSE20]
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Abstract
Build automation tools and package managers have a profound influence on software devel-
opment. They facilitate the reuse of third-party libraries, support a clear separation between
the application’s code and its external ics, and automate several software devel
ment tasks. However, the wide adoption of these tools introduces new challenges related to
dependency management. In this paper, we propose an original study of one such challenge:
the emergence of bloated dependencies. Bloated dependencies are libraries that are pack-
aged with the application’s compiled code but that are actually not necessary to build and run
the application. They artificially grow the size of the built binary and increase maintenance
effort. We propose DEPCLEAN, a tool to determine the presence of bloated dependencies in
Maven artifacts. We analyze 9,639 Java artifacts hosted on Maven Central, which include a
total of 723,444 dependency relationships. Our key result s as follows: 2.7% of the depen-
dencies directly declared are bloated, 15.4% of the inherited dependencies are bloated, and
57% of the transitive dependencies of the studied artifacts are bloated. In other words, it is
feasible to reduce the number of dependencies of Maven artifacts to 1/4 of ts current count.
Our qualitative assessment with 30 notable open-source projects indicates that developers
pay attention to their dependencies when they are notified of the problem. They are willing
to remove bloated dependencies: 21/26 answered pull requests were accepted and merged
by developers, removing 140 dependencies in total: 75 direct and 65 transitive.

Keywords Dependency management - Software reuse - Debloating - Program analysis

1 Introduction

Software reuse, a long time advocated software engineering practice (Naur and Randell
1969; Krueger 1992), has boomed in the last years thanks to the widespread adoption of
build automation and package managers (Cox 2019; Soto-Valero et al. 2019). Package man-
agers provide both a large pool of reusable packages, ak.a. libraries, and systematic ways to

Communicated by: Gabriele Bavota

César Soto-Valero
cesarsv@kth.se

! KTH Royal Institute of Technology, Stockholm, Sweden

4) Springer

1St CONTRIBUTION ’

DepClean: Automatically detecting and removing
bloated dependencies in Maven projects
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<dependency>
<groupId>org.A</groupIld>
<artifactId>A</artifactId>

</dependency>

<dependency>
<groupId>org.B</groupIld>
<artifactId>B</artifactId>

</dependency>

<dependency>
<groupId>org.C</groupIld>
<artifactId>C</artifactId>

</dependency>
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Direct dependencies
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OVERVIEW

<parent>
<groupId>org.Q</groupld>
<artifactId>Q</artifactId>

</parent>
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Direct dependencies

Transitive dependencies
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https://qgithub.com/castor-software/depclean

A castor-software /depclean n v

<> Code Issues 7

¥ master -

& cesarsotovalero Config codecov
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github Fix Codecov (#62)
iimg Move imgs
depclean-core Refactor ProjectDependencyAnalysis (#60)
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Update LICENSE.md
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DepClean automatically detects
and removes unused
dependencies from Maven projects
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dependencies  bloatware
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&8 MIT License

© Version2.0.0 (Latest
21days ago

Used by 1

owron @castor-software / depclean

Contributors 9
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Environments 1

% github-pages  Active
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® Java1000%

DEPCLEAN TOOL
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DEPCLEAN TOOL
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DEPCLEAN TOOL

https://qgithub.com/castor-software/depclean
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Dependencies
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Example: maven-core project (v3.7.0)

https://qithub.com/castor-software/depclean-web
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Dependencies Dependencies Bloated
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Example: maven-core project (v3.7.0)

https://qithub.com/castor-software/depclean-web
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HOW MUCH DEPENDENCY BLOAT EXISTS?

Dependencies

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

9K artifacts and 723K dependencies

Direct

Inherited

m Bloated m Used

Q 2.7% of direct
dependencies are bloated

Q 15.1% of inherited
dependencies are bloated

Q 57% of transitive
dependencies are bloated

Transitive
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ARE DEVOPERS WILLING TO REMOVE BLOAT?

USER STUDY ON 30 PROJECTS

* Jenkins

* Neo4j

°* Flink

°* Spoon

* Checkstyle
* CoreNLP
* jHiccup

* Alluxio

* TeaVM

24
Full list: https://tinyurl.com/depclean-experiments .
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ARE DEVOPERS WILLING TO REMOVE BLOAT?

30 pull requests in 30 notable open source projects

Removed 140 bloated
dependenciesin 21
projects thanks to

DepClean

®m Accepted & Merged mRejected = NA
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SUMMARY OF 1t CONTRIBUTION

" Thereis alot of code bloat in Maven Central
* (Caused by the induced transitive dependencies
* (Caused by the heritage mechanism of multi-module projects
* (Caused by software development practices

" Software developers care
* Theyare willing to remove bloated dependencies

" DepClean

°* |tisuseful to automatically detect and remove bloated
dependencies
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ABSTRACT

Motivated by the negative impact of software bloat on security,
performance,and maienanee svers woks e propoed tch-
niques to remove bloat. However, no work has m\ma how bloat

Sweden
thomas@duricux.me

Sweden

baudry@kthse

software projects, .., when the dependency is removed from the

proj ill builds successfully. Soto-Valero et al. [21] show that

the Maver tem s p d

that they are present even in well maintained Java projects. They
that

cvales vertime ot how it emerges in In partic-
lar, a concen when removing bloated code s to know i i might
be useful in subsequent versions of the application. I this work, we
study the evolution and emergence of bloated Java dependencies.
“These are third-party libaries that are packaged in the application
binary but are not needed to run the application. We analyze the
history of 435 Java projects. This historical data includes 48,469 dis-
tinct dependencies, which we study across a total of 31,515 versions
of Maven dependency trees. We empirically demonstrate the con-
sant s of heamount ofbosted ependenciesovr tne. A
2%

thatare oot ey ot mbxcquunl versions of the

bloated dependencies, but that removing code i a complex socio-
technical decision, which benefits from solid evidence about the
actual benefits of debloating.

Motivated by these observations about bloated dependencies,
e condct 4 large ale el iy about the evltin of

a projects.

blost, e voltion of he dependencis satuss, nd the impact of
bloat on maintenance. We have collected a unique dataset of 31,515
Versions of dependency trees from 435 open-source Java projects
Each version of a tree is a snapshot of one project’s dependencies,
for which we determine a status, i bloated or used. We rely on

d
can umy emove  bonted dependency. We aher report vl

DerCrean,’
in Maven pmjech We analyze the evolution of 48,469 distinct

insights regarding the unnecessary
by bloat, we identify that 22.% of dependency updates are v
bloated dependencics.

ACM Reference Format:

ACM, New

a b
il Asis ofBoted Jov Dependencien I
York, NY, USA, 11 pages. itpss/doLorg/nnnnnnn.nnnnnn

1 INTRODUCTION

ofthem ae bloatedat one point in time, i out datasct
Our f bloated e

gt ot e evltion o ot o will e slon between
bloat and regular maintenance activities such as dependency up-
dates. We present original quantitative results regarding the evolu-
tion of We first

in the number of boated dependencies. Next, we investigate how
the usage status of dependencies evolves over time. This analysis
is a key contribution of our work where we demonstrate that a

[15), most applications embed a part of code that is unnecessary
to their correct operation. Several debloating tools have emerged
i recent years [7, 14, 15, 17, 19, 21] to address the security and
maintenance issues posed by excessive code at various granular-
ity levels. However, these works do not analyze the evolution of
blost ves . Detin o bos I the perpetive o
ucial to
lare devcloper. n o, devloper when proposed to
adapt a debloating tool, wonder i a picce of bloated code might be
needed in coming releases, or what s the actual issue with bloat.
“This work proposes the first longitudinal analysis of software
blot We focus an on spcif typeofbout: blosted dmpundﬂl—
cies [21]. The

per s bloated is very likely to remain bloated over
subsequent versions of a project. We present the first observations
about the impact of regular maintenance activities on software
bloat. Besides, we analyze the impact of Dependabot, a popular
dependency management bt on thse actviie. W show that
i e ey D Pohermorene

the
hat 84.3 of the bloated dependencie are loted a5 soun s they
are added in the dependency tree of a project

" summarie, the contriutions o his paper are

+ Alongtudinal iy of sfwre dependences’vange in

 resuls con-
o bloated depend d

Forll kb cs,contatthe owner ot
ESECISE'21, gt 23-27, 2021, Athens,Gree, Vil Event
© 2021 Copyrght el by the owner/uthors)

'ACM ISBN nannan.nnnanmn.

over time.
. lysis of the stablity of
cies: 89.27% of dircct dependencies remain bloated. This s a
concrete insight that motivates debloating dependencics.

[T ——————

2"d CONTRIBUTION ’

Longitudinal Analysis of Bloated Java Dependencies
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SUMMARY OF 2" CONTRIBUTION

" The usage status of dependencies is mostly constant over
time
* |tissafeto debloat dependencies(>90% of dependencies do not
change)

" Developers often update bloated dependencies

* Anunnecessary maintenance effort due to the lack of tools

" Some dependency updates are suggested by Dependabot

* First empirical evidence of false alarms related to dependency
management caused by bots
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JDBL: Trace-based Debloat for Java Bytecode
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M Success [l Not compiled [l Crash [ Timeout [l Validation error
311 (78.73%)
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28 (7.09%)
13 (3.29%)
2 (0.51%)
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M All pass [" Not executed [l Not all Pass
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30 (9.65%)
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Bloated (%)
Dependencies 52/254 (20.5%) 1
Classes 75,273/121,055 (62.2 %) Il
Methods 505,268/829,015 (60.9 %) Il
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M All tests pass [l Not all tests pass
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54 (19.08%)
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SUMMARY OF 3"1 CONTRIBUTION

" Trace-based debloat is doable

* >78% successfully debloated libraries

" Debloated libraries preserve the original behaviour

* >70%libraries are not affected
=  Debloated libraries are

* >50% smaller than the original

" Library clients preserve the original behaviour

* >80% clients are not affected
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LESSONS LEARNED

" Debloatis hard in practice
* Determining what is actually used is not trivial
*  Static + Dynamic analysis may help

" Debloat is relevant
* Package ecosystems are bloated

* Developers are willing to debloat software
°* Moretools are needed for this purpose
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" End-to-end software debloat
" Debloat containers

" Debloat specific features

" Debloat test suites
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