Ph.D. Proposal (80%) Seminar

Automatic Software Debloating

César Soto Valero

Supervised by: Thomas Durieux, Martin Monperrus, and Benoit Baudry

KTH Royal Institute of Technology

iy

Ak
o % WALLENBERG Al

FKTHE \/\//\S I:) | AUTONOMOUS SYSTEMS

%g \éEcLEmcs)lrfjA5$ 9% - S)) =) AND SOFTWARE PRUGRAM

R

cesarsv@kth.se

1. Background

2. Debloating Java dependencies (static analysis)
3. Debloating Java bytecode (dynamic analysis)
4. Lessons learned

5. Conclusion

6. Future work

Part #1: Background

| Software bloat]

“Software tends to grow over time,
whether or not there's a need for it.”

Gerard J. Holzmann. (2015). Code Inflation. IEEE Software, 32 (2).

Software bloat

“The term software bloat refers to code
that is packaged in an application but
that is not necessary for building and
running the application.”

[USENIX] RAZOR : A Framework for Post-deployment
Software Debloating

[USENIX] Is Less Really More? Quantifying the Security
Benefits of Debloating Web Applications

[CCS] Slimium: Debloating the Chromium Browser with
Feature Subsetting

[TSE] TRIMMER: An Automated System for
Configuration-based Software Debloating

[USENIX] Debloating Software through Piece-Wise

Compilation and Loading

Part 1

t2: Debloating Java dependencies

4

| Static analysis |

Source code

Spark ‘

import com.google.common.base.Joiner;

import uirg.apacho.cearlc.annctatiun.Private;

@Private
public class EnumUtil {

public static <E extends Enum<E>> parseIgnoreCase Class<E> clz, String str) {
[1 constants = clz.getEnumConstants();
if (str == null) A
return null;
+

for (E e : constants) {
if (e.name().equalsIgnoreCase(str)) {
return e;
}
+
throw new IllegalArgumentException(
String format("Illcgat type="%s" Scpported type values: %s",
str; Joiner.on(", ").join(constants)));

core/src/main/java/org/apache/spark/util/Enumutil java

public class org/apache/spark/util/EnumUtil {

Spa

public static parseIgnoreCase(Ljava/lang/Class;Ljava/lang/String;)Ljava/lang/Enum;

L9
LTNENUMBER 35 L9
INVOKESTATIC com/google/common/base/Joiner.on (Ljava/lang/String;)Lcom/google/common/base/Joiner;

ALOAD 2
INVOKEVIRTUAL com/google/common/base/Joiner.join ([Ljava/lang/Object;)Ljava/lang/String;

AASTURE

target/classes/org/apache/spark/util/EnumuUtil.class

public static on(Ljava/lang/String;)Lcom/google/common/base/Joiner;

LO

LINENUMBER 71 LO
NEW com/google/common/base/Joiner
DUP

ALOAD O
INVOKESPECIAL com/google/common/base/Joiner.<init> (Ljava/lang/String;)V
ARETURN

public final join(Ljava/lang/Iterable;)Ljava/lang/String;
LO
LINENUMBER 230 LO
ALOAD O

ALOAD 1
INVOKEINTERFACE java/lang/Iterable.iterator ()Ljava/util/Iterator; (itf)
INVOKEVIRTUAL com/google/common/base/Joiner.join (Ljava/util/Iterator;)Ljava/lang/String;

ARETURN

Dependency tree

Dependency tree

<parent>
<groupIld>org.Q</groupId>
<artifactId>Q</artifactId>

</parent>

11

Dependency tree

<dependency>
<groupId>org.A</groupId>
<artifactId>A</artifactId>

</dependency>

<dependency>
<groupId>org.B</groupId>
<artifactId>B</artifactId>

</dependency>

<dependency>
<groupId>org.C</groupId>
<artifactId>C</artifactId>

</dependency>

12

Dependency tree

Dependency tree

Bytecode analysis

15

=

|m e
?ﬂ‘@@
°. o o _

16

Debloating transitive dependencies

Y

?j

<dep

f’—
-
//
e \
’
P \
’ \
/ \
\

/de

endency>
<groupId>org.A</groupId>
<artifactId>A</artifactId>
<exclusions>
<exclusion>
<groupId>org.E</groupld>
<artifactId>E</artifactId>
</exclusion>
</exclusions>
pendency>

17

Debloating inherited dependencies

18

Debloating inherited dependencies

f’—
-
//
e \
’
P \
’ \
/
/
7
|
\4
1
1
’
/
4
-,
-
-
s
4
/
-

\
\
\
\
\
\
\
\
N
N
~
~
N\
~
N
N
N
\
\
\
\
A

Debloated dependency tree

DepClean o)
KJRG |

e Detect and report bloated dependencies:
o In the context of an artifact.
0 On the whole dependency tree.
® Automatic generation of a debloated pom.xml file.

® Open source (https://github.com/castor—software/depclean).

DepClean

() Build |passing | ©> quality gate passed | ¢> maintainability A | ¢ reliability FC > security A

maven-central v2.0.3 | license MITI &) vulnerabilities OI &> bugs FI) code smells 47

& lines of code | 3.1k | ¢ duplicated lines 0% J ¢ technical debt 6h codecov '58% easter egg °)(°

debloating

fon
—
;?\
(02

RQ: How much dependency bloat
exists out there?

Example: Spoon library

/./'

https://github.com/INRIA/spoon

Open source library for
code analysis, 75
dependencies.

23

https://github.com/INRIA/spoon

Maven excludes
31 redundant
dependencies.

24

DepClean novel analysis

https://github.com/INRIA/spoon

DepClean detects
13 bloated
dependencies.

25

Debloated Spoon library

g

https://github.com/INRIA/spoon/pull/3167

JAR Size #Classes
Before 16.2 Mb 7 425
After 12.7 Mb 5593
Reduction 28% 25%

26

Empirical study (data collection)

® 9K artifacts
O Diverse
O Reused
O Complex
® 723K dependency relationships
O 45K direct (6%)
O 180K inherited (25%)
O 498K transitive (69%)

3.6M artifacts in 2019.

27

Dependencies

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

9K artifacts and 723K dependencies

Direct

Inherited

m Bloated mUsed

Transitive

2.7% of direct
dependencies are bloated

15% of inherited
dependencies are bloated

57% of transitive
dependencies are bloated

28

RQ: Do developers care about bloated
dependencies?

User study

e 30 software projects

@)

@)

Open source

Active

Popular

Build succesfuly with Maven

Contain dependencies

commons-configuration

TeaVM
Z :
=
2
i E
lelele

chdj-maven-p

>_.F||nkcr

selenese-runner-ja

gSpoo

Javapaser

;uauo-duq-o uAse

jae=h
o
(o8

auo.ld-.lo a

sieqajpueH

30

30 pull requests in 30 notable open-source projects

m Accepted & Merged mRejected mNA

Removed 140 bloated
dependencies in 21 projects
thanks to DepClean.

31

Example: Jenkins

® jenkins-core

O org.jvnet.hudson:jtidy (direct)
O org.jenkins-ci:constant-pool-scanner (transitive)

O net.i2p.crypto:eddsa (transitive)
® jenkins-cli

o commons-codec (direct)

https://github.com/jenkinsci/jenkins/pull/4378

32

Developers’ comments

jenkins-core

“Past experiences removing unused dependencies have consistently

shown that some code will have depended on that inclusion and will be

broken by it.”

33

RQ: Why consider debloating?

Longitudinal study

e 435 projects

e 31515 dependency tree versions

0 Do bloated dependencies stay bloated across time?

0 Do developers maintain dependencies that are bloated?

35

0 Do bloated dependencies stay bloated across time?

Pattern U . BU . UB fluctuating

Direct

Transitive

(5]
Q.
>~
)
>
Q
C
(5]
©
c
(5]
Q.
5]
a

25% 50% 75%
Percentage of occurrence

89% of bloated direct, and 93% of the transitive bloated
dependencies remain bloated in all subsequent versions of

the studied projects.

37

Longitudinal study

0 Do developers maintain dependencies that are bloated?

<dependency>
<groupId>commons—-io</groupId>
<artifactId>commons—io</artifactId>
<version>2.6</version>

<version>2.7</version>

</dependency>

0 Do developers maintain dependencies that are bloated?

Developers updates on used dependencies] Developers updates on bloated dependencies

‘» 2,659 (22.04%)

0 2,000 4,000 6,000 8,000 10,000

9,403 (77.96%)

Direct dependency updates

Longitudinal study

0 Do developers maintain dependencies that are bloated?

com.google.guava:guava

GitHub opened this alert on 30 Mar

1% Bump guava from 26.0-jre to 29.0-jre in /core
#17 opened on 1 Apr by dependabot = bot

Dependabot alerts Dismiss all ~

A fix has already been started

/A 50pen . 0 Closed No bandwidth to fix this

Risk is tolerable to this project
com.google.guava:guava
& google.g 9 Vulnerable code is not actually used
B by GitHub <33 corefpom.xml §9 #17

/A junit:junit Manage repository vulnerability settings

B by GitHub <3 offline/pom.xml ~ §9 #15 Manage account notification settings

0 Do developers maintain dependencies that are bloated?

Dependabot updates on used dependencies Jll Dependabot updates on bloated dependencies

‘» 716 (22.6%)

0 500 1,000 1,500 2,000 2,500

2,452 (77.4%)

Direct dependency updates

 Bloated dependencies remain bloated over time.
 Developers maintain dependencies that are bloated.

- Bots suggest maintaining dependencies that are bloated.

e Ehkss

Part 1

t3: Debloating Java bytecode

4

' Dynamic analysis]

Source code

import com.google.common.base.Joiner;
import org.apache.spark.annotation.Private;

@Private
public class EnumUtil {

public static <E extends Enum<E>> parseIgnoreCase Class<E> clz, String str) {

[1 constants = clz.getEnumConstants();

if (str == null) A
return null;

Iy

for (E e : constants) {
if (e.name().equalsIgnoreCase(str)) {

return e;

}

hy

tiirow new IllegalArgumentException(
String format("Illegal type='%s'. Supported type values: %s",
str, Joiner.on(", ").join(constants)));

core/src/main/java/org/apache/spark/util/Enumutil java

APACHE &

Spark

44

public class org/apache/spark/util/EnumUtil {

Spa

public static parseIgnoreCase(Ljava/lang/Class;Ljava/lang/String;)Ljava/lang/Enum;

L9

LTNENUMBER 35 L9

INVOKESTATIC com/google/common/base/Join ava/lang/String;)Lcom/google/common/base/Joiner;
ALOAD 2

INVOKEVIRTUAL com/google/common/base/Joi Ljava/lang/0Object;)Ljava/lang/String;

AASTUKRE

target/classes/org/apache/spark/util/EnumuUtil.class

Dynamic analysis

46

Dynamic analysis

47

Dynamic analysis

I«
<.

48

Dynamic analysis

49

Dynamic analysis

50

Dynamic analysis

Be-
..,

51

Dynamic analysis

Y

Dynamic analysis

53

Dynamic analysis

54

00

* Relies on code-coverage tools to collect bytecode usage
information at runtime.

* Automatically removes unused methods, classes, and dependencies
in Java projects.

° Open source (https://github.com/castor—softvvare/jdbl)

JDBL

) build passg maven-central v1.0.0 | ¢ quality gate passed | ¢> maintainability A | ¢ reliability E

&) security EI &) vulnerabilities SI &) bugs 4I &) code smells 151 § &>

&) duplicated lines 0.5% [¢ technical debt 3d codecov 12%

55

Debloating with JDBL

Input

Project o 9 e

Collect Validate

JDBL

Output

Workload

Experiment (debloating libraries)

P =0Original library
P'=Debloated library

I Build) J'AR I Test suite
success? exists? pass?

The project build JDBL does not Debloated artifact
fails produces a does not preserves

debloated JAR the behaviour

https://github.com/castor-software/jdbl-experiments

Result (debloating libraries)

M All pass || Not executed Jll Not all Pass

61 (20.2%)
30 (9.93%)

100 150
Libraries

211 (69.87%)

58

Result (debloating libraries)

Methods
Classes
Dependencies

*211 debloated libraries

Removed®

59%
60%
20%

59

Experiment (impact on clients)

Cp =Client of original library P
Cp =Client of debloated library P’

A Client
—> :
success? @ compiles?

The client build The client
fails compilation is
broken due to the
debloated library

https://github.com/castor-software/jdbl-experiments

Test suite
pass?

The client does not
preserves its
behaviour

60

Result (impact on clients)

M All tests pass [l Not all tests pass

52 (18.51%)
50 100 150

Clients

229|(81.49%)

250

61

Part #4: Lessons learned

Lessons learned

e Debloating Java dependencies is a relevant problem.
e Debloating Java bytecode is challenging.

e Debloating real-world applications, automatically, is not the same

than debloating hand-picked projects.

e (Guaranteeing the safety of the debloating procedure is difficult.

63

Part #5: Conclusion

Conclusion

® Maven dependencies are bloated as a consequence of:

O 'Transitive dependencies
O Heritage mechanism of multi-module projects
O Limited engineering of configuration files (pom.xml)
® Software developers care about bloated dependencies.
® C(Coverage-based debloating is a promising technique that advances

the state-of-the-art of Java bytecode debloating.

Part 1

t6: Future work

4

Future wor

e Using debloating to specialize and diversify the software supply

chain of third-party dependencies.

Variants

Original

67

Future wor

e Debloating applications with respect to usage profiles

collected in production environments.

-
It
io

Variants

</
o

n

68

Future wor

e Extending the debloating techniques to cover other layers

of the software stack.

Specialized App.

Debloated Env.
debloating Debloated Infrastructure
Slim OS

Dedicated Hardware

System
Software
Layer
B Hardware —— o
] . G Infrastructure

Publications

The Multibillion Dollar Software Supply Chain of Ethereum. IJEEE Computer, 2022.

* Coverage-Based Debloating for Java Bytecode. TOSEM, 2022.

* A Comprehensive Study of Bloated Dependencies in the Maven Ecosystem. EMSE, 2021.
* A Longitudinal Analysis of Bloated Java Dependencies. ESEC/FSE, 2021.

The Emergence of Software Diversity in Maven Central. MSR, 2019.

