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Abstract

Software systems have a natural tendency to grow in size and complexity.
A part of this growth comes with the addition of new features or bug fixes,
while another part is due to useless code that accumulates over time. This
phenomenon, known as “software bloat,” increases with the practice of reusing
software dependencies, which has exceeded the capacity of human developers
to efficiently manage them. Software bloat in third-party dependencies presents
a multifaceted challenge for application development, encompassing issues of
security, performance, and maintenance. To address these issues, researchers
have developed software debloating techniques that automatically remove un-
necessary code.

Despite significant progress has been made in the realm of software debloat-
ing, the pervasive issue of dependency bloat warrants special attention. In this
thesis, we contribute to the field of software debloating by proposing novel
techniques specifically targeting dependencies in the Java ecosystem.

First, we investigate the growth of completely unused software dependencies,
which we call “bloated dependencies.” We propose a technique to automatically
detect and remove bloated dependencies in Java projects built with MAVEN. We
empirically study the usage status of dependencies in the Maven Central reposi-
tory and remove bloated dependencies in mature Java projects. We demonstrate
that once a bloated dependency is detected, it can be safely removed as its future
usage is unlikely.

Second, we focus on dependencies that are only partially used. We introduce
a technique to specialize these dependencies in Java projects based on their
actual usage. Our approach systematically identifies the subset of functionalities
within each dependency that is sufficient to build the project and removes the
rest. We demonstrate that our dependency specialization approach can halve
the project classes to dependency classes ratio.

Last, we assess the impact of debloating projects with respect to client appli-
cations that reuse them. We present a novel coverage-based debloating technique
that determines which class members in Java libraries and their dependencies
are necessary for their clients. Our debloating technique effectively decreases the
size of debloated libraries while preserving the essential functionalities required
to successfully build their clients.

Keywords: Software debloating, software dependencies, Java bytecode, package
manager, static program analysis, dynamic program analysis
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Sammanfattning

Mjukvarusystem har en naturlig tendens att växa i storlek och komplexitet.
En del av denna tillväxt kommer med tillägget av nya funktioner eller buggfixar,
medan en annan del beror på onödig kod som ackumuleras över tiden. Detta
fenomen, känt som mjukvaru-bloat, ökar med praxis att återanvända mjukvaru-
bibliotek, vilket har överstigit kapaciteten hos mänskliga utvecklare att effektivt
hantera dem. Mjukvaru-bloat i tredjepartsbibliotek innebär en mångfacette-
rad utmaning för applikationsutveckling, som omfattar säkerhets-, prestanda-
och underhållsproblem. För att hantera dessa problem har forskare utvecklat
mjukvaruavbloatningstekniker som automatiskt tar bort onödig kod.

Trots att betydande framsteg har gjorts inom området för mjukvaruavblo-
atning, kräver det genomgripande problemet med bloat bland kodberoenden
särskild uppmärksamhet. I denna avhandling bidrar vi till området för mjuk-
varuavbloatning genom att föreslå nya tekniker som specifikt riktar sig mot
beroenden i Java-ekosystemet.

Först undersöker vi tillväxten av helt oanvända mjukvaruberoenden, som vi
kallar överflödiga (bloated) beroenden. Vi föreslår en teknik för att automatiskt
upptäcka och ta bort svullna beroenden i Java-projekt som byggs med Maven. Vi
studerar empiriskt användningsstatus för beroenden i Maven Central Repository
och tar bort överflödiga beroenden i mogna Java-projekt. Vi visar att när ett
överflödigt beroende upptäcks kan det säkert tas bort eftersom det är osannolikt
att det kommer att användas i framtiden.

För det andra fokuserar vi på beroenden som endast används delvis. Vi
introducerar en teknik för att specialisera dessa beroenden i Java-projekt baserat
på deras faktiska användning. Vår strategi identifierar systematiskt den delmängd
av funktioner inom varje beroende som är tillräcklig för att bygga projektet
och tar bort resten. Vi visar att vår beroendespecialiseringsmetod kan halvera
förhållandet mellan projektklasser och beroendeklasser.

Till sist bedömer vi effekten av att avbloata projekt med avseende på klien-
tapplikationer som återanvänder dem. Vi presenterar en ny täckningsbaserad
avbloatningsteknik som bestämmer vilka klassmedlemmar i Java-bibliotek och
dess beroenden som är nödvändiga för deras klienter. Vår avbloatningsteknik
minskar effektivt storleken på avbloatade bibliotek medan man bevarar de vä-
sentliga funktioner som krävs för att framgångsrikt bygga deras klienter.

Nyckelord: Mjukvaruavsvällning, mjukvaruberoenden, Java bytekod, pakethante-
rare, statisk programanalys, dynamisk programanalys
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Chapter 1

Introduction

“This is your last chance. After this there is no turning back. You take the
blue pill, the story ends. You wake up in your bed and believe whatever
you want to. You take the red pill, you stay in Wonderland, and I show
you how deep the rabbit hole goes. Remember, all I’m offering is the truth.
Nothing more.”

— Morpheus, The Matrix

CODE reuse is a software engineering practice in which developers rely on
pre-existing code components, libraries, or modules to build new software
applications, rather than implementing everything from scratch [17].

This approach has been advocated as a good practice since the early days of
software engineering, as it helps developers to increase productivity [18] and
learn from past experiences to create software that is more robust, efficient, and
maintainable [19]. As software engineering practices evolve, various mechanisms
have been developed to facilitate code reuse, such as object-oriented programming,
public APIs, open-source components, and package managers. These techniques
and tools have made it even more convenient and efficient for developers to
incorporate pre-existing code components into their projects.

In recent years, the use of package managers to handle software dependen-
cies (a.k.a. libraries) has become a standard software engineering practice [20].
Software ecosystems and package managers provide developers with a centralized
location to find and download the dependencies they need, as well as to keep
them up to date [21]. Part of the success of package managers is attributed to their
effectiveness in helping developers navigate the escalating complexity of code
reuse within the current software engineering lifecycle [22]. Package managers
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CHAPTER 1. INTRODUCTION

boost software reuse by creating a clear separation between the application and
its third-party dependencies [23]. As a result, software ecosystems and package
managers have become an essential part of modern software development and a
key enabler of the rapid pace of innovation in this field [24]. There exist package
managers for most programming languages, such as MAVEN for Java [25], NPM
for JavaScript [26], and PIP for Python [27]. Each of them effectively handles the
massive demands of code reuse across millions of dependencies hosted in public
repositories, such as the Maven Central repository [28] for the Java ecosystem.
This has greatly simplified the process of managing dependencies, making it easier
for developers to build and maintain complex software systems.

Software dependencies pervade the landscape of modern software develop-
ment. For example, in 2022 the average Java application depends on more than
40 third-party dependencies [29]. Despite the myriad of advantages that package
managers offer, such as streamlining software reuse and simplifying dependency
management, their widespread adoption has introduced new challenges that devel-
opers must contend with [30]. Developers of software applications must effectively
overcome the challenges of managing these third-party dependencies [31] to avoid
entering into the so-called “dependency hell” [32]. These challenges relate to en-
suring high-quality dependencies [33], keeping the dependencies up-to-date [34],
or making sure that heterogeneous licenses are compatible [35]. Consequently,
the effective management of software dependencies has become an indispensable
aspect of modern software development.

Dependencies are reusable software components that are commonly designed
for multiple uses and platforms [36]. For example, the Apache PDFBOX li-
brary [37] is a versatile and multi-functional project, serving a wide array of
features designed to run on various development environments. The PDFBOX APIs
enable developers to create, process, and extract content from PDF files, accom-
modating diverse use cases like text extraction, form filling, and PDF rendering.
This multi-functionality, while advantageous in providing diverse features and
capabilities to its users, often has an engineering cost. When used as a dependency
by another project, the Apache PDFBOX library may introduce a considerable
amount of unnecessary code, commonly referred to as “software bloat” [38]. This
is because PDFBOX is designed to cater to numerous use cases and platforms,
many of which may not be relevant to a specific user. As a result, applications that
rely on the PDFBOX and other multi-purpose libraries may suffer from increased
code complexity, memory usage, longer compilation times, and larger distribution
package sizes, potentially affecting the overall performance and user experience
in its dependent applications.
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1.1. SOFTWARE DEBLOATING

The problems associated with the presence of software bloat aggravates as
developers rely more on pre-existing code. The number of dependencies used in a
project can quickly add up, resulting in large amounts of unnecessary code [39].
Moreover, the excess of code not only takes up more disk space but can lead
to a number of problems, such as a higher risk of software vulnerabilities [40],
increased memory usage [41], and longer build times [42]. Additionally, as
software dependencies are often updated independently of the main project, it
can be difficult to keep track of the version of dependencies that a project relies
on and this could be a potential source of bugs [21]. As the challenges associated
with the phenomenon of software bloat escalate, researchers are turning their
attention to innovative solutions to mitigate its negative effects.

1.1 Software Debloating

To address the phenomenon of software bloat, researchers are exploring a tech-
nique known as “software debloating,” which aims to remove unnecessary code
and features from software applications. Effectively debloating software involves
addressing three key challenges: 1) detecting the bloated code, 2) removing it,
and 3) assessing that the debloated artifact preserves its original behaviour. The
first challenge entails a thorough examination of the codebase and the software
development lifecycle to pinpoint areas containing unnecessary or redundant
code [43]. The second challenge involves surgically removing the bloated code
through code-specific transformation techniques [44]. Finally, assessing the va-
lidity of the debloated artifact requires comprehensive testing and validation to
ensure that the removal of bloated code has not introduced new errors or ad-
versely impacted the application’s functionality, performance, or reliability [45].
By effectively executing these tasks, developers can create leaner, more efficient
software, and ensure a better user experience.

Detecting code bloat is notably difficult due to the intricacies and complex-
ities associated with modern software systems. Identifying the unnecessary or
redundant code segments requires a deep understanding of the application’s
functionality, its dependencies, and the relationships between different code com-
ponents. Bloated code might be intertwined with essential functionalities, making
it difficult for developers to discern which parts are truly unnecessary. Current
techniques to detect code bloat rely on static [43] and dynamic [46] program
analysis to accurately determine the code segments contributing to bloat. Although
they are effective in most circumstances, often difficulties arise due to the dynamic
features that modern programming languages and libraries may include, such
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CHAPTER 1. INTRODUCTION

as reflection, dynamic loading, or runtime code generation [47]. These features
make it challenging to determine the precise set of code segments that are used
or unused at runtime, complicating the debloating process [48]. Moreover, the
effectiveness of these techniques may be limited by factors such as the scalability
of the bloat detection algorithm, the use of code obfuscation tools in the target
application, or the lack of well-defined criteria for determining the targeting code
bloat. Consequently, researchers continue to explore new methodologies and tools
to enhance the accuracy and efficiency of techniques to effectively detect code
bloat.

Removing bloated code presents its own set of challenges, as the process
involves finding a way to eliminate the unnecessary code parts without com-
promising the necessary functionalities of the applications or introducing new
bugs [49]. One significant challenge to this task lies in the interdependencies
present in complex software systems [50]. Software components are often tightly
interconnected, and removing a seemingly unnecessary piece of code (e.g. chang-
ing a single line of code in a configuration file) could inadvertently break other
parts of the application that depend on it, either directly or indirectly [51]. On the
other hand, dependencies between code components may not always be immedi-
ately apparent, leading to the inadvertent removal of critical code. Consequently,
the act of removing bloated code might result in unintended side effects, such as
performance degradation, instability, or altered application behavior. To mitigate
these risks, developers must adopt sound code transformation techniques, coupled
with thorough testing to ensure that the debloating process does not introduce
unforeseen issues.

Assessing the integrity of a debloated artifact is another critical aspect of the
software debloating process that poses unique challenges [52]. Ensuring that the
removal of the bloated code has not introduced new errors or adversely impacted
the application’s functionality, performance, or reliability requires comprehensive
testing and validation. Designing and executing a robust debloating assessment
mechanism that effectively covers all aspects of the application’s behavior can be
a time-consuming and resource-intensive task. Current debloating methodologies
depend on pre-existing applications’ test suites to assess the efficacy of the debloat-
ing approaches [53]. Nonetheless, false positives or negatives during the testing
process may result in unforeseen errors arising long after debloating has taken
place. Therefore, a thorough evaluation is required to ensure that all relevant
code paths are covered and that the removed code does not affect the application’s
functionality [54]. Overall, researchers must ensure that debloating techniques do
not significantly impact the maintainability and readability of the code. Striking
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1.2. DEBLOATING JAVA DEPENDENCIES

the right balance between removing the bloated code and preserving its integrity
and maintainability is still an open research endeavor.

1.2 Debloating Java Dependencies

In the context of this thesis, we investigate the use of debloating techniques to
remove the software bloat resulting from the addition of third-party dependencies.
Tackling software bloat within third-party dependencies poses unique challenges,
primarily due to the restricted influence that developers possess over the internals
of these libraries [55], which complicates the process of identifying and removing
unnecessary code without altering the libraries’ binaries. Moreover, bloated code
resulting from the practice of code reuse can manifest at various granularity levels,
from entire software modules to individual lines of code, adding to the complexity
and time-consuming nature of the debloating process [56]. Overcoming these
obstacles necessitates substantial engineering efforts, a thorough evaluation of the
debloated artifact, and a profound understanding of the target application and its
downstream dependencies.

In Java, as with many other programming languages, code reuse is a fun-
damental practice to increase developers’ productivity [57, 39, 58]. Package
managers, like MAVEN or GRADLE, streamline this practice by facilitating the task
of reusing dependencies hosted in external repositories [8]. However, effectively
handling Java dependencies poses several challenges for developers [59]. For
example, each package manager has its own unique set of protocols, tools, and
mechanisms that govern how dependencies are coordinated in software projects.
This means that developers must not only familiarize themselves with the specific
package manager’s syntax and conventions but also adapt their needs to its par-
ticular dependency resolution algorithms and dependency versioning schemes.
Furthermore, developers should also pay attention to the design choices made by
public software repositories hosting the dependencies they incorporate into their
projects For instance, software artifacts hosted in Maven Central are immutable,
once an artifact is uploaded and published, it cannot be removed or modified [1].
Consequently, Maven Central accumulates all the versions of all the dependencies
ever released there, and applications that declare a dependency towards a library
must ensure to pick the right version. Although MAVEN provides features allowing
developers to visualize the dependencies they utilize, managing dependency up-
dates proves challenging due to the intricate nature of dependency trees [21]. For
example, MAVEN could benefit from mechanisms that ascertain whether a declared
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dependency is truly essential for the project using it [2]. These complexities and
challenges associated with dependency management contribute significantly to
the emergence of code bloat in the Java ecosystem.

We have observed that code bloat is a prevalent issue that can emerge when
utilizing Java dependencies. To alleviate its detrimental effects, developers need to
carefully consider the dependencies they incorporate, ensuring that only those vital
to the project are included [43]. For instance, when using functionalities from the
Apache PDFBOX library, developers should assess their specific requirements and
only add the necessary features into their project [60]. If the project solely involves
extracting text from PDF files, there is no need to include the entire PDFBOX

library [61]. In this case, by selectively incorporating only the relevant modules
or classes for text extraction, developers can effectively reduce software bloat. In
addition, developers should also be aware of the different available versions of a
dependency, and use the most recent and stable one to avoid vulnerabilities and
issues associated to dependency conflicts [62].

Several software debloating techniques have been proposed to reduce the
size and complexity of applications through the removal of unnecessary third-
party code. For Java, various debloating techniques have emerged in the last
two decades. Most of these techniques rely on static analysis [63] and dynamic
analysis [48] to detect code bloat. While static and dynamic code analysis have
shown promising results in identifying unused features [64] and other types of
bloat in Java applications, there is still a need to extend their applicability to
third-party libraries. Thus, as new software features and libraries are developed,
debloating techniques must continue to evolve to keep up with the ever changing
landscape of modern software development.

On the other hand, when undertaking the process of debloating a software
project, t is essential to consider the potential impact on clients who will reuse its
code as a dependency [65]. The removal of seemingly unnecessary or redundant
code could inadvertently break the functionality of dependent projects if they rely
on the removed parts in their codebases. This interdependency between several
client projects can create challenges to the debloating efforts, as developers must
carefully balance the need to optimize their software while ensuring the continued
functionality of clients that rely on their code [66]. Despite some progress in this
area, there is still work to be done to fully debloat Java applications and reduce
their overall size and complexity. Comprehensive assessment of the debloating
results, as well as communication with the clients of the projects, are essential in
this context, as they help ensure that the debloating process does not compromise
the stability, functionality, or performance of the dependent software applications.
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1.3 Problem Statements

According to the discussions above, we identify three key problems to be
addressed in the field of software debloating in Java:

• P1: The pervasive practice of software reuse, fueled by the increase in the sup-
ply of software dependencies leads to dependency bloat in the Java ecosystem.

• P2: Most of the code shipped with the used dependencies is unused by the
dependent software projects.

• P3: Debloating software libraries could affect the clients that depend on these
libraries, and the extent of such an impact is currently unclear.

1.4 Summary of Thesis Contributions

The essence of this thesis is on tackling the code bloat that arises as a result of
the increasing complexity in software systems. The problems listed above repre-
sent the various facets of this phenomenon for a particular software ecosystem:
the Java MAVEN ecosystem. In particular, our contributions focus on the fact that
current debloating techniques for Java lack the ability to detect and remove code
bloat coming from third-party dependencies. To overcome the existing limitations,
we propose novel debloating techniques that prioritize minimally invasive changes
in the dependency tree of software projects, thereby making it easier for developers
to adopt them. Unlike existing debloating methods that focus on producing leaner
binaries and enhancing the precision of static and dynamic program analysis for
debloating, our contributions are centered on a different aspect. We target the
removal of code originating from the software supply chain of third-party libraries,
which we have identified as a fundamental source of code bloat. This not only
contributes to enhancing the maintainability of the applications, but also reduces
the attack surface and improves the projects’ build performance. By leveraging the
developers’ familiarity with build systems, we implement debloating techniques
that can readily debloat Java applications at build time. the development of
MAVEN-based debloating tools has not only demonstrated significant value in
addressing this challenge, but also facilitated user adoption.

In this thesis, we make the following technical contributions to the field of software
debloating:
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• C1 Removing Bloated Dependencies: In order to address P1, regarding the
increase of dependency bloat in the Java ecosystem, we propose a software
debloating approach to help developers identify and remove bloated depen-
dencies in Java projects that build with MAVEN. Our approach is implemented
in a tool called DEPCLEAN, which automatically removes direct, transitive, and
inherited dependencies and produces a fully debloated version of the project’s
dependency tree. The corresponding paper is published in the journal Springer
Empirical Software Engineering [2]. Moreover, armed with DEPCLEAN, we
performed a longitudinal study of bloated dependencies in the Java ecosystem.
We analyze the usage status of dependencies over time in order to determine
to what extent a bloated dependency is likely to be used in the future. Our
results are published as a conference paper in the Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering [3]. We present C1 in details
in Section 3.2.

• C2 Specializing Used Dependencies: In order to address P2, we develop a
novel technique that specializes the individual dependencies in the dependency
tree to the specific needs of Java projects. We implement this technique
in a tool called DEPTRIM, which removes unused class files in third-party
dependencies of projects that build with MAVEN. The corresponding paper is
currently submitted to the journal IEEE Transactions on Software Engineering,
and the PDF preprint is available on arXiv [6]. We present the details of C2
in Section 3.3.

• C3 Debloating w.r.t. Clients: To address P3 regarding the lack of insights
about the impact of debloating libraries on their clients, we propose a novel
debloating technique based on dynamic analysis that relies on the collection
of execution traces from a diverse set of code-coverage tools to determine
which class members in the Java libraries and their dependencies are actually
necessary for their clients. We implement this technique in a tool called JDBL,
and assess the applicability of this debloating technique on a large collection
of Java libraries. The paper is published in the journal ACM Transactions on
Software Engineering and Methodology [4]. We discuss C3 in Section 3.4.

In addition to the technical contributions outlined earlier, this thesis also provides
valuable experimental findings and makes meaningful contributions to public
research.
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Table 1.1: Mapping of the contributions in this thesis to the appended research papers.

RESEARCH PAPERS

CONTRIBUTIONS
I II III IV V VI

[1] [2] [3] [4] [5] [6]

C1 Removing Bloated Dependencies 3 3

C2 Specializing Used Dependencies 3

C3 Debloating w.r.t. Clients 3

C4 Reproducible Research 3 3 3 3 3 3

• C4 Reproducible Research: For each proposed technical contribution (C1, C2,
and C3), we design and carry out empirical studies that systematically assess
the effectiveness of our software debloating approaches. Our methodologies,
research protocols, and experimental outcomes serve as a valuable guide for
researchers interested in exploring dependency usage and developing software
debloating techniques in the future. Moreover, the datasets collected and
curated by the author of this thesis offer a solid foundation for additional
inquiries in this area. In support of open science, we share the complete source
code of our research tools, datasets, experiment scripts, and results on GitHub
and Zenodo.

Table 1.1 provides an overview of the technical contributions presented in the
papers included in Part II of this thesis. Each paper has a distinct emphasis on
the various technical contributions (C1, C2, and C3). Additionally, each technical
contribution is evaluated through rigorous experimental protocols, ensuring their
reliability and reproducibility. We have made a commendable effort in releasing
our proposed software solutions as open-source code, together with the associated
experiments and datasets, thereby promoting transparency and reproducibility
of our research. Overall, our papers contribute significantly to the field of soft-
ware debloating and dependency analysis in Java, offering experimental results,
research software prototypes, and datasets to further advance the field (C4).

1.5 Summary of Research Papers

This is a compilation thesis that includes six research papers, each of which
is summarized below. The papers are ordered based on the way in which the
contributions are presented in this thesis.
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Paper I: “The Emergence of Software Diversity in Maven Central”

César Soto-Valero, Amine Benelallam, Nicolas Harrand, Olivier Barais, and Benoit
Baudry
In Proceedings of the 16th International Conference on Mining Software Repositories
(2019)

Summary: The Maven Central repository is immutable, which means that any
artifact uploaded to Maven Central cannot be removed or altered, and upgrading a
dependency requires the release of a new version. As a result, Maven Central accu-
mulates all the versions of libraries published there, and any application declaring
a dependency on a library has the freedom to choose among any version of that
library. In this paper, we hypothesize that the immutability of MAVEN artifacts,
coupled with the flexibility of the clients to choose any version, is conducive to the
emergence of software diversity within Maven Central. To test our hypothesis, we
conduct an analysis of 1,487,956 artifacts, which represent all versions of 73,653
libraries. Our findings reveal that more than 30% of libraries have multiple ver-
sions that are actively being used by the latest artifacts. For popular libraries, over
50% of their versions are utilized. Moreover, more than 17% of libraries have
multiple versions that are significantly more frequently used than others. Our
results demonstrate that the immutability of artifacts in Maven Central supports a
sustainable level of diversity among library versions in the repository. This paper
contributes to C4.

Own contributions: The author of this thesis wrote the paper and established all
technical results, with extensive feedback from discussions with the co-authors.

Paper II: “A Comprehensive Study of Bloated Dependencies in the Maven
Ecosystem”

César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry
Springer Empirical Software Engineering (2021)

Summary: The prevalent practice of software reuse, driven by the growth in
the availability of software dependencies, results in an accumulation of excessive
dependencies within Java projects. This problem, presented in P1 and discussed
in Section 1.3, is known as dependency bloat. We propose a new technique,
implemented in a tool called DEPCLEAN, that automatically detects and removes
bloated dependencies in MAVEN projects. Bloated dependencies refer to third-
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party libraries that are included in the application binary, yet are unnecessary
for the application to function properly. DEPCLEAN detects bloated dependencies
by constructing a call graph of the Java bytecode class members by capturing
annotations, fields, and methods, and accounts for a limited number of dynamic
features such as class literals. DEPCLEAN produces a variant of the dependency
tree without bloated dependencies (i.e., a debloated pom.xml). We evaluate DEP-
CLEAN both quantitatively and qualitatively. First, we analyze 9,639 Java artifacts
hosted on Maven Central, which include a total of 723,444 dependency relation-
ships. Our empirical results show that 75% of the dependencies in Maven Central
are bloated (i.e., it is feasible to reduce the number of dependencies of MAVEN

artifacts to 1/4 of its current count). Our qualitative assessment of DEPCLEAN

with 30 notable open-source projects indicates that developers pay attention to
bloated dependencies when they are notified of the problem: 21/26 answered
pull requests proposing the removal of these dependencies were accepted and
merged by developers, removing 140 bloated dependencies in total. This paper
contributes specifically to C1.

Own contributions: The author of this thesis wrote the paper, implemented DEP-
CLEAN, and performed the experimental evaluation. The co-authors contributed
significantly to motivate the importance of removing “bloated dependencies” and
provided useful feedback during technical discussions.

Paper III: “A Longitudinal Analysis of Bloated Java Dependencies”

César Soto-Valero, Thomas Durieux, and Benoit Baudry
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (2021)

Summary: In order to address P1 regarding the uncertainty of developers when
coming across bloated dependencies, we perform a longitudinal study that delves
into the evolution and impact of bloated dependencies in the Java ecosystem.
We use DEPCLEAN to determine the usage status of dependencies (i.e., used or
bloated) across the the history of 435 Java libraries. This represents analyzing a
collection of 48,469 dependencies spanning a total of 31,515 versions of MAVEN

dependency trees. Our results indicate a steady increase of bloated dependencies
over time, with 89.2% of direct dependencies labeled as bloated remaining as
such in subsequent versions of the studied projects. Our empirical evidence sug-
gests that developers can confidently remove bloated dependencies to streamline
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application performance. Additionally, we discovered novel insights regarding
the unnecessary maintenance efforts induced by dependency bloat. Notably, we
found that 22% of dependency updates made by developers were performed on
bloated dependencies, and that DEPENDABOT, an automated dependency update
bot, suggests a similar ratio of updates on bloated dependencies. By contributing
these insights, we aim to inspire software developers to pay more attention to
their dependency trees and take immediate actions to address the issue of bloated
dependencies. This paper contributes to C1.

Own contributions: The author of this thesis wrote the paper in close collabora-
tion with co-authors. The author of this thesis led the work on the experimental
evaluation and the co-authors helped significantly with the data collection phases.

Paper IV: “Coverage-Based Debloating for Java Bytecode”

César Soto-Valero, Thomas Durieux, Nicolas Harrand, and Benoit Baudry
ACM Transactions on Software Engineering and Methodology (2022)

Summary: In order to address P3, related to the need for more knowledge re-
garding the impact of debloating software libraries for the clients that depend on
these libraries, we develop a new debloating technique based on dynamic analysis,
which we coined as “coverage-based debloating.” For its implementation, we
leverage state-of-the-art Java bytecode coverage tools to precisely capture which
class members of a Java project and its dependencies are necessary to execute a
specific workload. We implement this technique in a tool called JDBL. We use the
client’s test suite as a workload to remove code bloat and generate a debloated
version of the packaged libraries. The evaluation of JDBL using a dataset of 94
open-source Java libraries yielded that coverage-based debloating achieves the
removal of 68.3% of the libraries’ bytecode and 20.3% of their total dependencies
while maintaining the syntactic correctness and original functionality of the de-
bloated libraries. Furthermore, our results demonstrate that 81.5% of the clients
with at least one test using the library successfully compile and pass their test
suite when the original library is replaced by its debloated version. Our technique
represents an advance in the field of software debloating using dynamic analysis.
We offer a research tool for addressing the challenges posed by software bloat
in modern Java application development. This paper contributes specifically to C3.

Own contributions: The author of this thesis wrote the paper, implemented JDBL,
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and performed the experimental evaluation with the help of co-authors.

Paper V: “The Multibillion Dollar Software Supply Chain of Ethereum”

César Soto-Valero, Martin Monperrus, and Benoit Baudry
IEEE Computer (2022)

Summary: The advent of blockchain technologies has sparked a flurry of activity
in the research community, coding enthusiasts, and serious investors over the past
decade. Ethereum, as the largest programmable blockchain platform to date, has
enabled the trading of cryptocurrency, facilitated the creation of digital art, and
ushered in a new era of decentralized finance through the use of smart contracts.
The operation of the Ethereum blockchain is supported by a complex network of
nodes, which rely on a vast array of third-party software dependencies, maintained
by various organizations. The reliability and security of Ethereum are therefore
directly influenced by these software suppliers. In this paper, we conduct a rig-
orous analysis of the software supply chain of third-party dependencies of BESU

and TEKU, the two major Java Ethereum nodes. Our results uncover the inherent
challenges in maintaining and securing the dependencies of both cutting-edge
blockchain software projects. This paper contributes to C4.

Own contributions: The author of this thesis wrote the paper and performed the
data analysis in close collaboration with co-authors. The original idea of the paper
is from co-authors.

Paper VI: “Automatic Specialization of Third-Party Java Dependencies”

César Soto-Valero, Deepika Tiwari, Tim Toady, and Benoit Baudry
Under major revision at IEEE Transactions on Software Engineering (as of February
2023)

Summary: In C1, we remove bloated dependencies entirely from the dependency
trees of MAVEN projects. However, the partial use of remaining dependencies indi-
cates potential for further reduction of third-party code. P2 focuses on addressing
the presence of this unused code in non-bloated dependencies. To tackle this
issue, we introduce a novel technique that specializes Java dependencies based
on their actual usage. We implement our technique in a tool called DEPTRIM,
which systematically identifies the required subset of each dependency’s bytecode
necessary for building the, eliminating the unnecessary code parts. DEPTRIM
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repackages the specialized dependencies and integrates them into the projects’ de-
pendency trees. We evaluate DEPTRIM with 30 notable open-source Java projects.
DEPTRIM specializes 86.6% of the dependencies in these projects, successfully
rebuilding each with a specialized dependency tree. Through this specialization,
DEPTRIM removes 47.0% of unused classes from the dependencies, decreasing the
ratio of dependency classes to project classes from 8.7× in the original projects
to 4.4× after specialization. Our results emphasize the relevance of dependency
specialization, as it can significantly reduce the share of third-party code in Java
projects. This paper contributes to C2.

Own contributions: The author of this thesis wrote the paper, implemented
DEPTRIM, and performed the experimental evaluation with the help of co-authors.

1.6 Thesis Outline

As a compilation thesis, this document consists of two parts. In Part I, Chapter 1
introduces the problem of debloating Java dependencies and summarizes the
research papers included in this thesis that contribute to solving this particular
problem. Chapter 2 presents a state-of-the-art of the field of software debloating
and discusses the novelty of our contributions. Chapter 3 offers more details
regarding our technical contributions. Chapter 4 concludes the thesis and discusses
the potential future work. Part II of the thesis includes all the papers discussed in
Part I.
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Chapter 2

State of the Art

“La perfection est atteinte, non pas lorsqu’il n’y a plus rien à ajouter, mais
lorsqu’il n’y a plus rien à retirer.”

— Antoine de Saint-Exupéry

SOFTWARE bloat refers to code that is packaged in an application but is ac-
tually not necessary to run the application. In this chapter, we present an
overview of the phenomenon of software bloat in the software develop-

ment lifecycle and offer a comprehensive review of the most relevant research
papers in the field of software debloating, consolidating the necessary background
knowledge to comprehend our contributions. This consolidation of the literature is
essential for understanding the complexities and challenges associated to software
bloat, enabling researchers and practitioners to develop more effective debloating
techniques in order to improve software efficiency, security, and maintainability.
Our review involves a thorough examination of the pertinent published research
papers that investigate this subject. In particular, our investigation reveals that the
majority of the current literature can be categorized based on three fundamental
aspects: purposes for debloating, code analysis technique for debloating, and
granularity of the bloated code removal. We structure this chapter accordingly to
reflect these salient concepts.

In the last part of this chapter, we position our contributions to the field of
software debloating in relation to the most closely related tools and techniques.
This provides a more concrete understanding of the unique and novel aspects of
our contributions. In addition, we also draw attention to the current resources
available, such as tools and datasets, which can be utilized as groundwork or
benchmarks for forthcoming studies on software debloating.
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2.1 Code Bloat in the Software Engineering Lifecycle

Software systems have a natural tendency to grow in size and complexity over
time whether or not there is a need for it. This happens due to various factors such
as advancements in hardware [56], contemporary programming practices [67],
or sometimes for no apparent reason at all [38]. Consequently, software bloat
emerges as a result of the natural increase in software complexity [68], e.g.,
through the addition of non-essential features, bug fixes, or just by the accu-
mulation of useless code that adds up over time [69]. This phenomenon has
several unfortunate consequences. For example, it needlessly increases the size
of the packaged software artifacts [38], makes software harder to understand
and maintain [70], increases the attack surface [71], and degrades the overall
performance [41]. The existence of software bloat poses challenges in the soft-
ware development landscape. Therefore, it becomes increasingly important for
developers and researchers to devise efficient strategies to mitigate its adverse
effects for enhancing software quality.

Software bloat refers to code that is packaged in an application but is actually
not necessary to build and execute the application to provide a given functionality.

As software systems grow in size and sophistication, software stacks have also
evolved to be more intricate and layered [72]. Modern applications are built on
top of runtimes, which are in turn built on top of operating systems that depend on
specific hardware architectures, and so on. Each layer adds its own set of features
and dependencies, which may not be essential to the correct execution of one
specific, user-facing application. Therefore, the escalating complexity throughout
the entire software stack contributes to the increase of software bloat, making room
for the introduction of unnecessary features, dependencies, and redundancies at
various stages of the software development lifecycle [73]. In particular, software
bloat increases when building on top of software frameworks [71], as well as
with the practice of code reuse [74]. Moreover, software bloat accumulates across
the entire software system, leading to performance issues, increased memory
usage, and longer development and deployment times. This increasing level of
complexity across the software engineering lifecycle makes it more difficult for
developers to control the diverse components of applications [75], which further
exacerbates the problem of software bloat.

Figure 2.1 illustrates the pervasive presence of software bloat throughout the
software engineering lifecycle. The figure highlights three crucial phases of this
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Figure 2.1: Presence of software bloat in the software engineering lifecycle when developing
and deploying a software application.

process: implement & communicate, build & check, and release & deploy (depicted
as green rounded rectangles). At the top of the figure, we represent dependencies
as reusable software components managed by package managers, such as MAVEN

for Java, NPM for JavaScript, and PIP for Python, which developers utilize during
all software development phases.

First, in the implementation phase, developers fetch dependencies from exter-
nal repositories to local repositories in order to reuse functionalities and expedite
the application development process. Upon the compilation of the developers’
source code, the second phase involves testing and building the application (i.e.,
packaging the application’s code along with the third-party code from dependen-
cies, generally resulting in a single binary file). When the binary file is prepared, it
is released and deployed into an execution environment, typically external servers
that provide abstraction and isolation for reliable and efficient application execu-
tion (e.g., cloud services powered by Docker and Kubernetes clusters). Figure 2.1
also displays software development tools at the bottom, assisting developers in
each development phase (e.g., IDEs, build automation tools, IaC, monitoring tools).
For instance, in the case of a Java application, the Open JDK comprises the Java
Runtime Environment (JRE) and additional tools necessary for building a Java
application, including the Java compiler, debugger, and other development tools.

Figure 2.1 pinpoints three critical stages where software bloat appears, accord-
ing to our experience. First, software bloat can occur after the implementation
phase when developers include redundant source code or unnecessary features in
their software projects [76]. This can encompass bloat in the code directly written
by developers, as well as in the remaining configuration files required to build
and check the software application. Second, when the software is built, compilers
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and other tools may transform software artifacts (e.g., when adding the code from
third-party dependencies or inserting logging traces across the application for
monitoring purposes). This additional code transformations can be a significant
source of software bloat. In particular, compiled third-party dependencies are
fetched from external repositories, added entirely, and packaged alongside the
application’s binaries.

By reusing dependencies developers are able to build more complex and pow-
erful software systems with less effort. However, they can substantially contribute
to software bloat, particularly when developers rely heavily on code coming from
third-party libraries and frameworks. Furthermore, we observed that software
repositories themselves may contain unnecessary or redundant dependencies. For
example, each dependency is available in multiple versions, and each version
contains its own set of downstream dependencies [1]. On the other hand, it is
important to note that although the hardware layer supporting the running appli-
cation is not a direct contributor to software bloat, more powerful hardware can
encourage software developers to incorporate potentially bloated features [77].

As depicted in Figure 2.1, the engineering lifecycle of software applications
is adversely affected by increased exposure to software bloat. This results from
the challenges in identifying and eliminating redundant or unnecessary code
within the numerous development phases and the inherent complexity of modern
software systems. For example, one of the causes of software bloat is known as
“feature creep,” where software developers add new functionalities to software
applications without considering their impact on the overall size and efficiency
of the application [78, 79, 80]. We observe that the practice of code reuse can
inadvertently contribute to increased software bloat. This practice can lead to the
accumulation of unnecessary code and features that bloat the software and make
it more difficult to maintain and optimize. Another cause of software bloat is code
duplication, where developers copy and paste code without considering its rele-
vance or impact on the overall software structure [81]. Furthermore, developers
have limited control over certain stack components, such as the operating system
or hardware, making it challenging to eliminate code bloat from these sources.
Therefore, it is essential for developers to proactively address and manage the
sources of bloat that are within their control, mitigating its adverse effects on the
deployed software applications.

Software bloat affecting applications has been a widely-discussed topic in
software engineering research. Numerous research papers have investigated
the causes and consequences of software bloat, proposing various code removal
techniques to eliminate unnecessary code and optimize software performance.
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Specifically, software bloat has been identified as a significant challenge con-
cerning software size, maintenance, performance, and security. Recent studies
have concentrated on measuring the impact of software bloat across the software
stack, encompassing user-level programs [36], OS kernels [82], and virtual ma-
chines [45]. Other research efforts have focused on elucidating the implications
of software bloat on global energy consumption [44, 83, 84]. Lately, the research
community has shown interest in examining the effects of software bloat on the
software supply chain of dependencies [31], as it can contribute to increased
complexity, diminished performance, and vulnerabilities [50]. In summary, the
research findings demonstrate that software bloat is widespread and significant,
affecting a substantial portion of code throughout the software development life-
cycle. This situation is a unique opportunity for researches to develop innovative
techniques for software debloating.

2.2 Related Work on Software Debloating

To address the issue of software bloat, various debloating techniques have been
proposed in the research literature. One prevalent approach involves using static
program analysis methods to identify unused or redundant code within compiled
software applications [43], followed by code transformations and synthesis to
remove these parts. Another approach employs dynamic analysis tools, which
instrument and execute the application using a workload to detect code areas
unnecessary for the workload execution [85], subsequently removing them. More
recently, researchers have suggested employing a combination of both static and
dynamic analysis techniques to enhance the accuracy and completeness of the
bloat detection process. The effectiveness of the debloating task is enhanced when
focusing on pinpointing code areas causing performance problems or consuming
excessive resources.

Software debloating is the process of automatically detecting and removing
software bloat across the software development lifecycle.

Despite the existence of debloating techniques, removing code bloat is an
active research field in software engineering. Automatic debloating software poses
three key challenges: 1) determining the location of the bloated parts [79], 2)
removing these parts effectively [86], and 3) ensuring that debloated artifacts
preserve the original behavior and provide useful features [85]. One major
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Figure 2.2: Overview of the methodology that we followed to find, categorize, and tabulate
the state-of-the-art research papers on software debloating.

incentive for debloating is the complexity of modern software applications [87],
which often consist of thousands or even millions of lines of code, leading to
increasing technical debt [67]. This technical debt contributes to code bloat as
developers may prioritize addressing urgent tasks or implementing new features
over refactoring and optimizing existing code, resulting in the accumulation
of redundant, unnecessary, or inefficient code segments [72]. Identifying and
removing bloated code in such large-scale applications can be a daunting task,
demanding significant time and resources from practitioners. Additionally, the
interdependencies between different parts of software applications can make it
difficult to remove code without breaking other parts of the software stack that
serves the application.

Software debloating is a widely studied topic in the software engineering
domain. In the the following, we present a comprehensive literature review on
this topic. To provide a solid foundation for understanding the current state of
research on software debloating, we first identify a list of papers covering the
area according to a set of specific criteria. In particular we focus on papers in
which a software debloating tool is proposed or an experiment to address software
bloat is performed. We have read the selected papers carefully to consolidate
a comprehensive knowledge of the field. Based on our analysis, we identified
three aspects that characterize the state-of-the-art on this topic, which we propose
as part of our contribution: (i) the objective or purpose of the debloating task,
(ii) the code analysis technique employed to detect and remove code bloat, and
(iii) the granularity at which the bloated code is removed. Our literature review
highlights the more relevant tools and techniques, as well as the granularity at
which bloat is addressed, based on this categorization.

Figure 2.2 illustrates the main steps of the methodology that we adopt in
order to find the most relevant related work as of early 2023. Throughout the
development of this thesis, we have been surveying the state-of-the-art, and now
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we aim to consolidate a comprehensive list of relevant work using the methodology
described as follows.

First Ê, we curated a list of keywords after careful consideration of the software
debloating research field. Then, we search for relevant research papers using these
keywords in three prominent databases: Scopus, WoS, and Google Scholar. Second
Ë, we filter the list of papers obtained based on our expertise in the software
debloating domain, ensuring that only the most relevant ones were included in
further analysis. After filtering, we manually organize the papers by author names,
venue of publication, title, and programming language used. Then, we categorize
the papers based on their main debloating purposes, code analysis techniques
employed, and granularity of the code removal approach. This categorization
process facilitates a comprehensive analysis of the papers and helps identify trends
and patterns among the previous contributions to this research field. Finally Ì,
we organize and tabulate the relevant resulting papers, presenting a thorough and
up-to-date overview of software debloating.

Table 2.1 presents the comprehensive list of research papers on software
debloating published between 2002 and 2022. The table encompasses all the
categories previously mentioned, offering a clear and detailed insight into the
research landscape. By following the methodology outlined earlier, we provide
an extensive overview of the pivotal research papers in this domain. We believe
that this compilation could serve as a valuable resource for researchers and
practitioners interested in the field of software debloating.

As a result of our analysis of papers published in various venues (column
VENUE), we observe that previous works on software debloating propose diverse
techniques, each tailored to a specific programming language (column PL). No-
tably, significant efforts have been dedicated to debloating C/C++ executable
binaries, while debloating approaches for programming languages other than
C/C++, Java, and JavaScript are almost nonexistent in the literature. In this
context, we observe that the debloating process operates on programs that have
already statically compiled and linked dependencies [88, 85], disregarding the
bloat that arises from other aspects of the software engineering lifecycle, e.g., from
the usage and reliance on package managers. We also note that the majority of
debloating efforts primarily focus on reducing program size, with less emphasis on
improving maintainability (column PURP.). This imbalance in focus leads to the un-
intended consequence of creating software that is smaller in size but still difficult to
maintain, update, and extend, ultimately hindering long-term software quality and
manageability. Most works predominantly rely on static analysis to detect unreach-
able code, such as [89], [63], and [64], which is the most frequently employed
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technique (column ANLYS.). Regarding debloating granularity (column GRAN.),
a considerable amount of work is dedicated to removing bloat at the applications’
fine-grain levels. However, we observe that there is a limited amount of research on
debloating code from third-party dependencies introduced across various stages of
the software development lifecycle. In the subsequent sections, we provide a more
detailed overview of the key research papers for each of the distinguishing cate-
gories: debloating purpose, code analysis technique, and debloating granularity.

Table 2.1: Categorization of research papers on software debloating (years 2002 – 2022).

REF. VENUE TITLE PL PURP. ANLYS. GRAN.

[90] FSE Cimplifier: automatically debloating containers C/C++ size dynamic Docker
containers

[91] TOSEM Guided feature identification and removal for
resource-constrained firmware

C/C++ size dynamic features

[92] FEAST CARVE: Practical security-focused software de-
bloating using simple feature set mappings

C/C++ size dynamic features

[93] GECCO Removing the Kitchen Sink from Software C/C++ size dynamic features

[94] SIGPLAN Automatic feature selection in large-scale
system-software product lines

C/C++ size dynamic features

[85] USENIX RAZOR: A Framework for Post-deployment Soft-
ware Debloating

C/C++ size dynamic instruc-
tions

[95] TECS Honey, I shrunk the ELFs: Lightweight binary
tailoring of shared libraries

C/C++ size hybrid libraries

[96] SAC Automated software winnowing C/C++ size static functions

[97] DIMVA BinTrimmer: Towards static binary debloating
through abstract interpretation

C/C++ size static instruc-
tions

[98] ICSE Perses: Syntax-guided program reduction C/C++ size static tokens

[42] FMICS Wholly!: a build system for the modern software
stack

C/C++ size, perfor-
mance

dynamic packages

[99] CCS Effective program debloating via reinforcement
learning

C/C++ size, perfor-
mance

static features

[100] EuroSec Configuration-driven software debloating C/C++ size, security dynamic features

[79] ASE TRIMMER: application specialization for code
debloating

C/C++ size, security dynamic features

[101] FEAST TOSS: Tailoring online server systems through
binary feature customization

C/C++ size, security dynamic features

[102] CO-
DASPY

Code specialization through dynamic feature
observation

C/C++ size, security dynamic instruc-
tions

[103] USENIX LIGHTBLUE: Automatic profile-aware debloat-
ing of bluetooth stacks

C/C++ size, security static features

[88] USENIX Debloating software through piece-wise compi-
lation and loading

C/C++ size, security static features

[104] DTRP Large-scale debloating of binary shared libraries C/C++ size, security static functions

[105] ASPLOS One size does not fit all: security hardening
of mips embedded systems via static binary de-
bloating for shared libraries

C/C++ size, security static instruc-
tions

[106] ASIACCS Pacjam: Securing dependencies continuously
via package-oriented debloating

C/C++ size, security static packages

[107] NIER Program debloating via stochastic optimization C/C++ size, security static statements

[108] ACSAC Nibbler: debloating binary shared libraries C/C++ size, security static libraries

[109] PLDI Blankit library debloating: Getting what you
want instead of cutting what you dont

C/C++ size, security,
performance

dynamic features,
functions

Continued on next page
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Table 2.1: Categorization of research papers on software debloating (years 2002 – 2022). (Continued)

[53] TSE Trimmer: An automated system for
configuration-based software debloating

C/C++ size, security,
performance

hybrid instruc-
tions

[110] CCS Binary control-flow trimming C/C++ size, security dynamic features

[111] USENIX DECAF: Automaticlasses, adaptive de-bloating
and hardening of COTS firmware

C/C++ size, security static instruc-
tions

[112] FSE Cachetor: Detecting cacheable data to remove
bloat

Java performance dynamic collections

[113] ISMM A bloat-aware design for big data applications Java performance dynamic objects

[44] ECOOP Reuse, recycle to de-bloat software Java performance dynamic objects

[114] PLDI Detecting Inefficiently-Used Containers to Avoid
Bloat

Java performance hybrid objects

[115] OOPSLA Combining concern input with program analysis
for bloat detection

Java performance static statements

[78] TSE Xdebloat: Towards automated feature-oriented
app debloating

Java size dynamic features

[116] MOBILE-
Soft

Identifying features of android apps from exe-
cution traces

Java size dynamic features

[117] SCP Slimming a Java virtual machine by way of cold
code removal and optimistic partial program
loading

Java size dynamic JVMs

[48] FSE JShrink: In-Depth Investigation into Debloating
Modern Java Applications

Java size hybrid functions,
methods,
classes

[55] FSE Binary reduction of dependency graphs Java size static classes

[118] ISSRE RedDroid: Android application redundancy cus-
tomization based on static analysis

Java size static classes,
methods

[89] TOPLAS Practical extraction techniques for Java Java size static functions,
methods,
classes

[63] COMP-
SAC

JRed: Program customization and bloatware
mitigation based on static analysis

Java size, security,
maintenance,
performance

static classes,
methods

[119] CCS Dissecting Residual APIs in Custom Android
ROMs

Java size, security static APIs

[70] SIEP Piranha: Reducing feature flag debt at Uber Java size, mainte-
nance

static features

[64] HASE Feature-based software customization: Prelimi-
nary analysis, formalization, and methods

Java size, security static features

[120] WWW Unnecessarily Identifiable: Quantifying the fin-
gerprintability of browser extensions due to
bloat

JS size dynamic browser
extensions

[80] IST Slimming JavaScript applications: An approach
for removing unused functions from JavaScript
libraries

JS size hybrid functions

[121] TSE Evolving JavaScript code to reduce load time JS size static source
code

[122] TSE Momit: Porting a JavaScript interpreter on a
quarter coin

JS size, perfor-
mance

dynamic features

[46] EMSE Stubbifier: debloating dynamic server-side
JavaScript applications

JS size, security,
performance

hybrid functions

[123] CCS Slimium: debloating the chromium browser
with feature subsetting

JS size, security static features

[124] USENIX Mininode: Reducing the Attack Surface of
Node.js Applications

JS size, security static files

[125] EISA JSLIM: Reducing the known vulnerabilities of
JavaScript application by debloating

JS size, security static functions

[126] ACSAC DeView: Confining Progressive Web Applica-
tions by Debloating Web APIs

JS size, security dynamic APIs

[127] OOPSLA Detecting redundant CSS rules in HTML5 appli-
cations: a tree rewriting approach

CSS maintenance static statements
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Software
debloating
purposes

Size
Q: Is it possible reducing the size of
code while preserving the original

functionalities?

Performance
Q: Is it possible removing

unnecessary functionalities to make
software faster?

Maintenance
Q: Is it possible removing code

bloat to make software more easy to
change?

Security
Q: Is it possible decreasing the

attack surface through the removal
of unnecessary code?

Figure 2.3: Illustration of the four main purposes for software debloating and their respective
relevant research questions.

2.2.1 Purposes for debloating

We found that there are four key objectives of debloating that are widely ac-
knowledged in the software engineering community: reducing applications’ size,
improving their performance, enhancing their security, and making software easier
to maintain and update. Figure 2.3 depicts these objectives along with their
corresponding critical research questions. In the following sections, we explore
each of these purposes in detail.

Debloating for code size reduction

A primary goal of debloating software is to minimize its size. Bloated software can
consume substantial disk space and bandwidth, posing challenges for users with
limited storage or slow internet connections. By removing unnecessary code and
other resources, debloated software artifacts can be accommodated on smaller
devices and transferred more swiftly, resulting in improved download and upload
times for users. From an engineering standpoint, smaller applications require
fewer build resources, potentially reducing deployment costs and mitigating build
errors [128].

Significant research effort has been directed towards reducing software size by
removing unused API members, as there is evidence that a considerable proportion
of API members are not widely used [14], e.g., many classes, methods, and fields of
popular Java libraries are provided but they are not used in practice [129]. Seminal
work by Tip et al. [89] presents a set of techniques for reducing the size of Java
applications. They propose a uniform approach for modeling dynamic language
features and supplying additional user input through a modular specification
language, reducing the class file archives of Java programs to 37.5% of their
original size. Pham et al. [130] implement a bytecode-based analysis tool to learn
about the actual API usage of Android frameworks. The empirical evaluation
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based on 200K Android apps shows that most APIs usages are confined to a
limited set of functionalities, which can be effectively learned and predicted to
offer highly accurate API recommendations. Hejderup [131] study the actual
usage of modules and dependencies in the Rust ecosystem and propose PRÄZI, a
tool for constructing fine-grained call-based dependency networks for the Cargo
package manager [132]. Using PRÄZI, the authors found that packages call only
40% of their resolved dependencies, which emphasizes the need of reducing the
size of those dependencies. Lämmel et al. [133] perform a similar large-scale
study on API usage based on the migration of Abstract Syntax Trees (AST) code
segments. Other studies have focused on understanding how developers use
APIs on a daily basis [66, 134]. Some of the motivations include improving API
design [135], reducing the amount of dependency code [14], and increasing
developers’ productivity [136]. Agadakos et al. [108] propose NIBBLER: a system
that identifies and erases unused functions within shared libraries. NIBBLER works
in tandem with defenses like continuous code re-randomization and control-flow
integrity, enhancing them without incurring additional runtime overhead. The
authors developed and tested a prototype of NIBBLER on x86-64 Linux. NIBBLER

reduces the size of shared libraries and the number of available functions by up to
56% and 82%, respectively in a set of real-world programs.

Beyond APIs, the reduction of Docker container sizes has the advantage of
decreasing the amount of data that needs to be transferred during applications’
deployment or scaling, ultimately leading to lower network traffic and associated
costs. In this context, the work of Rastogi et al. [90] specifically targets container
debloating. They introduce a tool called CIMPLIFIER, designed to address bloat
concerns in Docker containers by utilizing user-defined constraints. CIMPLIFIER

partitions containers into streamlined, isolated units that communicate only when
necessary and include solely the essential resources for their functionalities. Eval-
uations performed on popular DockerHub containers indicate that CIMPLIFIER not
only preserves the original functionality but also significantly reduces image sizes
by up to 95%, efficiently processing even large containers in under 30 seconds.

Insights on Debloating for Code Size Reduction

Despite significant progress in software debloating for reducing code size, there
is still ample opportunity for further research and development in this area.
For example, exploring innovative debloating techniques for a broader range of
programming languages and focusing on debloating dependencies can lead to
more effective and efficient size reductions across various software ecosystems.
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Debloating for performance improvement

Debloating software not only reduces size but also enhances its performance.
Bloated software frequently includes redundant or unnecessary code, leading to
slower execution due to increased resource consumption. For instance, in Java,
class initializers might create unused objects, resulting in higher memory usage
and unnecessary overhead at runtime [137]. Eliminating such language specific
code initializers through debloating could streamline Java applications, enabling
faster execution times and improving overall performance, ultimately benefiting
users.

Runtime bloat could significantly impair the performance and scalability of soft-
ware systems. Xu and Rountev [114] introduce static and dynamic analysis tools
for identifying inefficient container usage in Java programs. Their experiments
reveal notable performance optimization opportunities for statically-identified
containers, particularly those with high memory allocation frequency at runtime.
Bhattacharya et al. [44] concentrate on detecting bloat arising from the tem-
porary creation of containers and String objects within loops and propose a
source-to-source transformation for efficient object reuse. The proposed method
substantially reduces temporary object allocations and execution time, especially
in programs with high churn rates or memory-intensive demands. Bhattacharya et
al. [115] suggest leveraging feature information in program analysis to estimate
the propensity to execute bloated code chunks in Java programs with optional
concerns. The proposed approach enables the identification of specific statements
likely causing bloat, which reveals the negative impact of optional features on
runtime performance.

A large body of debloating techniques focuses on reducing applications build
time. Celik et al. [138] present MOLLY, a build system to lazily retrieve dependen-
cies in Continuous Integration (CI) environments and reduce build time. They
show that MOLLY can speed-up the build time 45% on average compared to the
standard MAVEN build pipeline for a set of studied projects. Yu et al. [139] in-
vestigated the presence of unnecessary dependencies in header files of large C
projects. They proposed a graph-based algorithm to statically remove unused code
by pre-processing dependencies at the program units level, resulting in minimized
build time. Nguyen and Xu [112] propose a novel runtime profiling tool called CA-
CHETOR, which uses dynamic dependence profiling and value profiling to identify
and report operations that generate identical data values, addressing the runtime
bloat issues affecting modern object-oriented software by identifying optimization
opportunities for performance improvement. Gelle et al. [42] present WHOLLY,
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a tool designed to achieve reproducible and verifiable builds of optimized and
debloated software that runs uniformly on traditional desktops, the cloud, and
IoT devices. WHOLLY uses the clang compiler to generate LLVM bitcode for all
produced libraries and binaries to allow for whole program analysis, specialization,
and optimization. Furthermore, it uses Linux containers to ensure the integrity
and reproducibility of the build environment.

Insights on Debloating for Performance

Although various techniques have been developed to reduce runtime bloat and
optimize build times, further research is needed to explore new methods and en-
hance existing ones for even better performance gains. By continuing to investi-
gate debloating strategies, the software engineering community can effectively
tackle performance-related challenges, ensuring faster, more efficient software
and building systems that ultimately benefit users and developers alike.

Debloating for security enhancement

Bloated software can contain hidden vulnerabilities that hackers can exploit to
gain unauthorized access to systems and steal sensitive data. By removing unnec-
essary code and eliminating redundant features, software debloating can reduce
its attack surface and improve its overall security. For example, the “Heartbleed”
vulnerability [140], discovered in 2014 in the OpenSSL cryptographic software
library, was caused by a buffer over-read vulnerability in OpenSSL’s implementa-
tion of the Transport Layer Security (TLS) protocol’s heartbeat extension. Using
software debloating techniques to remove unused or rarely used features, such
as the heartbeat extension [105], can reduce the attack surface and make the
codebase easier to audit and more secure for its clients.

Significant work has focused on decreasing the attack surface of program bina-
ries compiled to LLVM bitcode. Brown and Pande [92] propose CARVE, a simple
yet effective security-focused debloating technique that utilizes static source code
annotation to map software features, introduces debloating with replacement
and removing vulnerabilities in four network protocol implementations across
12 scenarios. CARVE eliminates the need for advanced software analysis during
debloating and reduces the overall level of technical sophistication required by
the user when compared with other tools. Ghaffarinia and Hamlen [110] in-
troduce a new method for automatically reducing the attack surfaces of binary
software by removing unwanted or unused features, even in the absence of formal
specifications or metadata, through a combination of runtime tracing, machine
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learning, in-lined reference monitoring, and contextual control-flow integrity
enforcement, resulting in low overhead and successful elimination of zero-day
vulnerabilities. Koo et al. [100] propose a software debloating approach to miti-
gate the proliferation of code reuse attacks. The proposed debloating technique
reduces the number of instruction sequences that may be useful for an attacker
and eliminates potentially exploitable bugs. This approach is configuration-driven
and removes feature-specific code that is exclusively needed only when certain
configuration directives are specified, which are often disabled by default. The
technique identifies libraries solely needed for a particular functionality and maps
them to certain configuration directives, so feature-specific libraries are not loaded
if their corresponding directives are disabled.

The prevailing goal of reducing the number of gadgets (a.k.a. features) avail-
able in a software package to reduce its attack surface and improve security has
received significant interest from researchers and practitioners [88]. Decreasing
the number of gadgets available in a software package reduces its attack surface
and makes mounting gadget-based code reuse exploits, such as those based on
return-oriented programming (ROP), more difficult for an attacker [53]. Brown
and Pande [45] propose new metrics based on quality rather than quantity for
assessing the security impact of software debloating. They show evidence that the
process of software debloating can effectively reduce gadget counts at high rates.
However, it may not effectively constrain an attacker’s ability to fabricate an exploit.
Furthermore, in certain situations, the reduction in gadget count may obscure
the introduction of new quality gadgets, leading to a worsening of security rather
than an improvement, such as in smartphone applications [141]. Koishybayev
and Kapravelos [124] discuss the use of JavaScript as a programming language
for both client-side and server-side logic, enabled by Node.js and its package
manager, NPM. The paper introduces MININODE, a static analysis tool for Node.js
applications that measures and removes unused code and dependencies, which
can be integrated into the building pipeline of Node.js applications to produce
applications with significantly reduced attack surface. MININODE was evaluated by
analyzing 672K Node.js applications, identifying 1,660 vulnerable packages, and
successfully removing 2,861 of these packages while still ensuring builds succeed.
More recently, Oh et al. [126] propose a tool called DEVIEW for reducing the
attack surface of progressive web applications (PWAs) by blocking unnecessary
but accessible web APIs. DEVIEW tackles PWA debloating challenges through
record-and-replay web API profiling and compiler-assisted browser debloating,
maintaining original functionality and preventing 76.3% of known exploits on
average.
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Insights on Debloating for Security Enhancement

There remains a substantial amount of work to be done on debloating for
security purposes, particularly in addressing vulnerabilities arising from third-
party dependencies, which are known sources of security issues [142]. As
the research has shown, there is potential for further exploration in this area,
including enhancing security by mitigating gadget-based code reuse exploits,
refining metrics for assessing the impact of debloating on long-term security,
and improving the safety of software that relies heavily on code reuse.

Debloating for maintenance

Bloated software can be more difficult to maintain and update, particularly if it
contains redundant or poorly designed code. Debloating software projects can
improve maintainability resulting in better overall software quality and developers
satisfaction [143]. For example, current web applications include a large set
of JavaScript files, some of which contain code that is never executed. Part of
this code may have been added during the development process, but it is no
longer needed for the application to function correctly [126]. Removing these
unnecessary JavaScript files would decrease the size of the application, and with
less code to worry about, developers can more easily understand and modify
the codebase, which can reduce the amount of time it takes to make changes or
fix bugs. In addition, debloated software can also lead to a more reliable and
stable application because there are fewer opportunities for bugs or errors to be
introduced [144]. Smaller codebases are also easier to test and can have faster
testing times, which can lead to faster release cycles and more frequent updates
and deployments.

There is scarce research work on the use of debloating for maintainability
purposes. Jiang et al. [63] use a set of well-known code complexity metrics,
including Chidamber and Kemerer (CK) object-oriented metrics [145], to assess the
impact of debloating on code quality. They found that debloating can help reduce
code complexity and increase code quality, but the degree of these improvements
depends on the program’s design and the nature of the application functions.
Hague et al. [127] introduce an approach to detect redundant CSS rules in
HTML5 applications by using an abstraction based on monotonic tree-rewriting,
establishing the precise complexity of the problem, and proposing an efficient
reduction to an analysis of symbolic push-down systems that yields a fast method
for checking redundancy in practice, with demonstrated efficacy. They show
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that code complexity is significantly reduced. Ramanathan et al. [70] presents
PIRANHA, an automated code refactoring tool that generates differential revisions
to remove code related to stale feature flags. PIRANHA analyzes the program’s
ASTs to generate refactoring suggestions and assigns the diff to the author of the
flag for further processing before the application is landed. This tools has been
implemented in multiple apps within Uber for removing unnecessary features in
code written in Objective-C, Java, and Swift.

Insights on Debloating for Maintenance

Despite the existing evidence that debloating can improve code quality, reduce
its complexity, and facilitate faster release cycles, there remains a significant
need for more research to better understand its impact on maintainability. By
further investigating debloating techniques and their applications, the software
engineering community can work towards producing more maintainable, reli-
able, and efficient software systems that lead to higher user satisfaction and
better overall software quality.

2.2.2 Code analysis techniques for debloating

In the last few years, a range of techniques has been developed by researchers
to detect code bloat. Detecting code bloat is a challenging task as it requires the
identification of unnecessary code or code that is almost never executed, which
may be intertwined with necessary code segments that are often executed. Code
bloat may be caused by various factors, such as excessive code reuse, lack of
refactoring, or inadequate configurations, which makes it difficult to pinpoint a
specific source of bloat. Existing bloat detection techniques rely on static analysis,
dynamic analysis, or a hybrid approach that utilizes both techniques. Static
analysis is useful for detecting potential sources of code bloat by analyzing the
source code without actually executing it [146]. However, static analysis is more
conservative and may fail to identify certain types of code bloat, such as those
that are only apparent under specific conditions [147, 148, 149, 47]. On the other
hand, dynamic analysis techniques are more aggressive, and the accuracy of the
debloating heavily depends on the completeness of the workload employed.

Listing 2.1 shows a code example illustrating the challenges of using static
and dynamic analysis for debloating, specifically when dealing with the dynamic
features of the Java programming language. In this example, the method named
unusedMethod is never called (line 31), and it could be safely detected and re-
moved by debloating techniques that rely on static analysis. However, static analy-
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1 import java.lang.reflect.Method;
2 import java.util.Scanner;
3
4 public class Foo {
5 public static void main(String[] args) {
6 Scanner scanner = new Scanner(System.in);
7 try {
8 String className = "Foo";
9 String methodName = "greet";

10 String personName = scanner.next();
11 // Dynamically loading a class
12 Class<?> clazz = Class.forName(className);
13 // Dynamically invoking a method using reflection
14 Method method = clazz.getDeclaredMethod(methodName, String.class);
15 method.invoke(null, personName);
16 } catch (Exception e) {
17 // Catch the exception
18 }
19 }
20
21 // This method is invoked using reflection
22 public static void greetAlice(String name) {
23 if (name.equalsTo("Alice"){
24 System.out.println("Hello, " + name);
25 } else {
26 System.out.println("Sorry, I don’t know you");
27 }
28 }
29
30 // This method is never called and could be removed by debloating
31 public static void unusedMethod() {
32 System.out.println("This method is never used.");
33 }
34 }

Listing 2.1: Example of the challenges when using static and dynamic program analysis
techniques to detect code bloat in a Java program that uses reflection.

sis techniques struggle to accurately identify the dependencies and relationships
between classes and methods [150] when reflection is used [151]. For example,
the class Foo is loaded via reflection (line 12) and the method greetAlice is
invoked using reflection (line 15). Traditional static analyzers have difficulty
identifying the relationship between this method and its invocation, leading to
potential debloating errors. On the other hand, dynamic analysis involves the
execution of the code and can identify instances of code bloat that appear only
under specific conditions. Dynamic analysis techniques rely on the completeness
of the workload or test suite to identify which parts of the code are actually used
during execution. However, if the test suite or workload does not cover all possible
use cases [152], there is a risk that the debloating process might remove code
that is actually required in certain scenarios, leading to application failures when
removing too much code. In this case, the value of the variable personName de-
pends on the user-provided input (line 10), and therefore it is not possible to infer
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which branch of the if-else statement will be executed (line 23) in all possible
cases. Notice that if the user-provided workload is the String Alice then line 24
is executed, otherwise line 26 is executed instead. Dynamic program analysis
may be computationally expensive as it requires executing the code, and may not
cover all code paths. Combining the dynamic and static analysis approaches can
improve the accuracy and efficiency of code debloating efforts.

It is worth noting that, while the Java compiler performs optimizations during
compilation, it typically does not remove unused methods at this stage [137]. The
Java Virtual Machine (JVM) and its Just-In-Time (JIT) compiler conduct more
extensive optimizations at runtime, such as inlining methods and eliminating
dead code. Nevertheless, these runtime optimizations usually do not remove
unused methods from the generated class files or JAR files. As a result, although
unused classes and methods may not impact the performance of the running
application, they still add to the size of the compiled binary files [153]. To
address this, debloating techniques and other post-compilation optimizations can
be utilized to remove unused code, minimize the binary size, and enhance the
overall maintainability of the codebase.

Debloating using static analysis

Using static analysis for debloating involves examining the source code of a
software application to identify potential sources of code bloat. Sources of bloat
include unused variables, functions, and classes, as well as code that is redundant
or can be simplified. Static analysis tools use a range of algorithms and heuristics
to identify code that can be removed or refactored, and some tools can even
suggest alternative implementations that can improve performance. An advantage
of static analysis techniques lies in their scalability and performance, as there is
no need to execute the code, which is an expensive task (e.g., when running tests
or building artifacts).

Most debloating techniques for C/C++ are built upon static analysis and are
conservative in the sense that they focus on detecting unreachable code (i.e.,
sections of a program’s code that can never be executed during the program’s
execution). Redini et al. [97] propose BINTRIMMER, a tool to perform static
program debloating on binaries. The authors propose a novel abstract domain
technique, based on abstract interpretation, to improve the soundness of static
analysis to reliably perform program debloating. According to the evaluation,
BINTRIMMER is 98% more precise than the related work. Malecha et al. [96]
propose “winnowing”, a static analysis and code specialization technique that uses
partial evaluation. The process preserves the normal semantics of the original
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program, that is, any valid execution of the original program on specified inputs is
preserved in its winnowed form. Invalid executions, such as those involving buffer
overflows, may be executed differently. Biswas et al. [102] propose ANCILE, a code
specialization technique that leverages fuzzing (based on user-provided seeds) to
discover the code necessary to perform the functions required by the user.

In the Java ecosystem, Jiang et al. [63] propose JRED, a static analysis tool
built on top of the SOOT framework to automatically detect unused code from
both Java applications and the JRE. Additionally, the same authors present a novel
approach [64] for customizing Java bytecode through static dataflow analysis and
enhanced programming slicing, enabling developers to tailor Java programs based
on users’ requirements or remove redundant features in legacy projects. In the
context of Android applications, Jiang et al. [118] conducts a comprehensive study
of software bloat, categorizing it into compile-time and install-time redundancy,
and proposes a static analysis-based approach for effectively identifying sources of
code bloat in Android applications.

Insights on Debloating using Static Analysis

Debloating using static analysis has proven to be an effective approach for
debloating software applications, providing scalability and performance ad-
vantages due to the absence of code execution. While existing tools such as
JRED, BINTRIMMER, and ANCILE have demonstrated success in debloating Java
and C/C++ applications, further research and development of debloating
techniques are necessary to expand their applicability and effectiveness. For
example, there is still room for improvement and innovation in developing
novel tools that not only address code bloat in compiled applications but also
tackle bloat issues related to configuration files and third-party dependencies.

Debloating using dynamic analysis

Using dynamic analysis for detecting code bloat involves running a software appli-
cation and monitoring its behavior to identify sources of code bloat. For example,
this technique can be used to identify code that is rarely executed, code that
consumes excessive resources, or code that can be optimized to reduce its size.
Debloating based on dynamic analysis techniques is more aggressive and could
remove reachable code [154], i.e., the parts of an application that can be reached
statically but that may not be executed at runtime, within a specific period, in a
production environment. Dynamic analysis tools use a range of profiling and trac-
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ing techniques to monitor the execution of a software application, and some tools
can even automatically generate test cases to exercise code that is rarely executed.

In recent years, there has been a growing interest in developing debloating tech-
niques for program specialization using dynamic analysis. These techniques aim
to create smaller, specialized versions of programs that consume fewer resources
and reduce the attack surface Azad et al. [71]. However, capturing complete and
precise dynamic usage information for debloating is challenging, especially at
scale, due to dynamic language features such as type-induced dependencies [155],
dynamic class loading [149], and reflection [47]. Debloating techniques based
on dynamic analysis have been applied to various contexts, ranging from C com-
mand line programs [103] and JavaScript frameworks [80] to fully containerized
applications [90]. Sun et al. [98] propose PERSES, an approach that reduces
programs by exploiting their formal syntax and focuses on smaller, syntactically
valid variants, while Heo et al. [99] presents a C program reducer based on the
syntax-guided Hierarchical Delta Debugging algorithm, which uses reinforcement
learning to aggressively remove redundant code and improve processing time.

Dynamic analysis-based debloating has led to several novel approaches, such
as the work by Landsborough et al. [93], which presents two distinct methods.
The first approach employs dynamic tracing to safely remove specific program
features but is limited to removing code reachable in a trace when an undesirable
feature is enabled. The second approach utilizes a genetic algorithm to mutate a
program until a suitable variant is found, potentially removing any non-essential
code for proper execution, but possibly breaking program semantics unpredictably.
Additionally, Sharif et al. [79] proposes TRIMMER, a tool using dynamic analy-
sis to debloat applications based on user-provided configuration data, offering
application specialization benefits by eliminating unused functionalities within a
user-defined context. To further mitigate the construction of malicious programs,
Porter et al. [109] introduces a demand-driven approach to reduce dynamically
linked code surfaces by loading only the necessary set of library functions at
each call site within the application at runtime, leveraging a decision-tree-based
predictor and optimized runtime system.
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Insights on Debloating using Dynamic Analysis

Debloating using dynamic analysis has demonstrated potential in generat-
ing specialized, efficient programs and reducing attack surfaces, leveraging
runtime information. However, scalability challenges and the reliance on com-
prehensive workloads covering all use cases present significant barriers to its
widespread adoption. To improve these debloating techniques, research should
also concentrate on identifying code bloat in third-party dependencies, which
frequently contribute to increased application size and complexity.

Debloating using hybrid techniques

Using a hybrid approach for debloating involves combining both static and dynamic
analysis techniques to identify and remove code bloat. This approach typically
starts by executing static analysis to identify potential sources of code bloat and
then using dynamic analysis to refine the code removal phase or validate the
debloating results. Hybrid approaches for debloating can be more effective than
using either static or dynamic analysis alone, as they strike a balance between the
aggressiveness of dynamic analysis and the conservative advantages of static anal-
ysis. This allows for more comprehensive identification and removal of code bloat.

Bruce et al. [48] develop an end-to-end bytecode debloating framework called
JSHRINK. It augments traditional static reachability analysis with dynamic profiling
and type dependency analysis and renovates existing bytecode transformations
to account for new language features in modern Java. The authors highlight
several nuanced technical challenges that must be handled properly and examine
behavior preservation of debloated software via regression testing. Qian et al.
[85] introduces a debloating framework called RAZOR, which aims to reduce
the size of bloated code in deployed binaries without requiring access to the
program source code. RAZOR uses control-flow heuristics to infer complementary
code necessary to support user-expected functionalities and generates a functional
program with minimal code size. The framework has been evaluated on commonly
used benchmarks and real-world applications, showing that it can reduce over 70%
of code from bloated binaries without introducing new security issues, making it a
practical solution for debloating real-world programs. Quach et al. [88] introduce
a generic inter-modular late-stage debloating framework. It combines static
(i.e., compile-time) and dynamic (i.e., load-time) approaches to systematically
detect and automatically eliminate unused code from program memory. This can
be thought of as a runtime extension to dead code elimination. Unused code
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is identified and removed by introducing a piece-wise compiler that not only
compiles code modules (executables, shared resources, and static objects) but
also generates a dependency graph that retains all compiler knowledge on which
function depends on what other function(s).

Insights on Debloating using Hybrid Techniques

Debloating using hybrid approaches that combine static and dynamic analysis
techniques for debloating offer a balance between the aggressive nature of
dynamic analysis and the conservative benefits of static analysis. This can lead
to more comprehensive identification of code bloat. There is a growing need
to develop tools utilizing this approach and evaluate their effectiveness on
real-world software applications to further enhance the soundness of static
analysis for debloating purposes.

2.2.3 Granularity of debloating

One important aspect of debloating is the granularity at which it is performed. This
ranges from coarse-grained debloating of entire features or modules to low-level
debloating of individual program instructions or statements (as illustrated in Fig-
ure 2.4). The effectiveness of debloating at different levels of granularity depends
on the specific software application and the goals of the debloating process. For
example, coarse-grained debloating can be effective in removing a large amount
of software bloat in an application but it may also remove useful functionalities
for some particular users. On the other hand, fine-grained debloating can yield
removing more targeted code pieces but it could be time-consuming and more
challenging to implement. Multiple studies have been performed at different
debloating granularities. Overall, care must be taken when removing code at each
granularity level, as excessive removal may have unintended consequences that
could negatively impact the program’s behavior [156]. We discuss below the three
main levels: level debloating, fine-grained, and coarse-grained debloating.

Debloating at low-level

The lowest level of granularity in debloating is instruction-level debloating, which
involves identifying and removing individual source code pieces or program state-
ments that are not essential to the core functionality of the software application.
For instance, a particular instruction may have been added during the develop-
ment process for debugging purposes or to accommodate a particular hardware
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Figure 2.4: Granularity of debloating techniques and their impact according to the amount of
bloated code removed.

architecture, but may not be necessary for the program to function properly. By
removing such instructions, the size of the deployed code is reduced, which could
result in faster execution times and improved performance. Overall, low-level
debloating is challenging to implement due to the interdependencies between the
different components of the software stack.

Wagner et al. [117] present a method to mitigate the bloatware problem in
“always connected” embedded devices. Specifically, by storing the library code
in a remote server. The instructions that are needed will be downloaded on
demand. In addition, by applying some more sophisticated analysis, some library
code can be downloaded in advance before they are actually executed to improve
runtime performance. Morales et al. [122] proposes a multi-objective optimization
approach, called MOMIT, to miniaturize JavaScript apps to run on IoT devices
with limited memory, storage, and CPU capabilities, which reduces code size,
memory usage, and CPU time while allowing the apps to run on additional
devices. Xin et al. [107] propose a general approach that allows for formulating
program debloating as a multi-objective optimization problem. The approach
defines a suitable objective function, so as to be able to associate a score to every
possible reduced program, and tries to generate an optimal solution (i.e. one that
maximizes the objective function). According to Ziegler et al. [95], in the domain
of embedded systems, there is a significant shift towards adopting commodity
hardware and moving away from special-purpose control units in industrial sectors
such as the automotive industry and avionics. As a result, there is a consolidation
of heterogeneous software components to run on commodity operating systems
during this transition. They propose an approach towards lightweight binary
tailoring.

In addition, some studies have also examined debloating at the level of control
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flow and data flow techniques in order to generate smaller program variants [110,
115, 157, 158]. Control-flow debloating involves identifying and removing redun-
dant control structures such as loops or conditionals, while data-flow debloating
involves identifying and removing redundant data structures or data accesses.
Although these approaches have proven to be highly effective in reducing software
bloat and improving performance, they may require more sophisticated tools and
validation techniques.

Insights on Debloating at the Low Level

Debloating at low-level involves identifying and removing individual source
code pieces or program statements that are not essential to the core func-
tionality of the software application. Despite existing approaches, there is a
growing need for the development of more sophisticated tools that can tackle
debloating challenges at the level of control flow and data flow techniques in
order to generate smaller program variants. By creating and evaluating such
tools on real-world software applications, researchers can continue to improve
the efficiency and performance of software systems while reducing bloat.

Debloating at the fine-grained level

At a finer level of granularity, debloating can be performed at the level of API
members, such as classes, functions, or variables. This approach involves identify-
ing and removing entire classes or methods that are not used or are redundant
within the software application. Fine-grained debloating can be more effective
than lower-grained debloating in reducing software bloat, but it can also be more
time-consuming and require more manual effort.

Tip et al. [89] explore extraction techniques, such as removing unreachable
methods, inlining method calls, and transforming the class hierarchy to reduce
application size, and introduces a uniform approach that relies on a modular
specification language called MEL for supplying additional user input for model-
ing dynamic language features and extracting software distributions other than
complete applications, while discussing associated issues and challenges with
embedded systems applications extraction. Vázquez et al. [80] define the notion
of Unused Foreign Function (UFF) to denote a JavaScript function contained in de-
pendent libraries that are not needed at runtime. Also, they propose an approach
based on dynamic analysis that assists developers to identify and remove UFFs
from JavaScript bundles. The results show a reduction of JavaScript bundles of
26%. Also for JavaScript, Turcotte et al. [46] present a fully automatic technique
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that identifies unused code by constructing static or dynamic call graphs from
the applications tests and replacing code deemed unreachable with either file- or
function-level stubs. If a stub is called, it will fetch and execute the original code
on-demand, thus relaxing the requirement that the call graph be sound. Kalhauge
and Palsberg [55] presents a general strategy for reducing dependency graphs
in input such as C#, Java, and Java bytecode, which has been a challenge for
delta debugging. The authors present a tool called J-REDUCE, which achieves
more binary reduction and is faster than delta debugging on average, enabling
the creation of short bug reports for Java bytecode decompilers.

Insights on Debloating at the Fine-Grain Level

Most debloating approaches have focused on fine-grained debloating. There
is a growing need to improve the application of these techniques to other
programming languages and software ecosystems, as well as to debloat code
elements from third-party dependencies. To address this, researchers could
explore new strategies and tools that can effectively streamline dependency
graphs, while ensuring compatibility with different programming languages
and build systems.

Debloating at the coarse-grained level

At the coarsest level of granularity, debloating can be performed at the level of
entire features or modules. This approach involves identifying and removing
entire code segments that are not essential to the core functionality of the software
application. Coarse-grained debloating can be effective in reducing software bloat
and improving performance, but it may also lead to the removal of useful or
important functionalities.

Ruprecht et al. [94] propose an automated approach for d tailoring the sys-
tem software for special-purpose embedded systems by completely removing
unnecessary features. The goal is to optimize functionality and reduce mem-
ory usage, as exemplified by the significant memory savings (between 15% and
70%) achieved in tailored Linux kernels for Raspberry Pi and Google Nexus 4
smartphones. Rastogi et al. [90] propose a technique for debloating application
containers running on Docker. They decompose a complicated container into
multiple simpler containers with respect to a given user-defined constraint. Their
technique is based on dynamic analysis to obtain information about application
behaviors. The evaluation on real-world containers shows that this approach
preserves the original functionality, leads to a reduction of the image size of up
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to 95%, and processes even large containers in under thirty seconds. Chen et
al. [101] presents an approach called TOSS that automates the customization of
online servers and software systems by identifying desired code using program
tracing and tainting-guided symbolic execution, and removing redundant features
through static binary rewriting to create a customized program binary. The ap-
proach was evaluated on MOSQUITTO, and it successfully created a functional
program binary with only desired features, resulting in a significant reduction of
the potential attack surface.

Bu et al. [113] propose a bloat-aware design paradigm towards the develop-
ment of efficient and scalable Big Data applications in object-oriented GC-enabled
languages. It points out that the negative impact on performance caused by
bloatware has been significant on software specifically designed to handle large
amounts of data, such as GIRAPH and HIVE. Qian et al. [123] present SLIMIUM, a
debloating framework for the web browser CHROMIUM that harnesses a hybrid
approach for fast and reliable binary instrumentation. The main idea behind
SLIMIUM is to determine a set of features as a debloating unit on top of a hybrid
(i.e., static, dynamic, and heuristic) code analysis, and then leverage feature sub-
setting to code debloating. Starov et al. [120] investigate to what extent the page
modifications that make browser extensions fingerprintable are necessary for their
operation. By analyzing 58,034 browser extensions from the Google Chrome App
Store, they discovered that 5.7% of them were unnecessarily identifiable because
of extension bloat. Agadakos et al. [104] present NIBBLER: a system that identifies
and erases unused functions within dynamic shared libraries. NIBBLER works in
tandem with defenses like continuous code re-randomization and control-flow
integrity, enhancing them without incurring additional runtime overhead. NIBBLER

reduces the size of shared libraries and the number of available functions.

Insights on Debloating at the Coarse-Grain Level

Debloating at the coarse-grained level has shown promise in reducing software
bloat and improving performance. However, this approach may also lead to the
removal of useful or important functionalities. Future work should focus on
refining coarse-grain debloating techniques to maintain critical features while
still optimizing software systems, exploring the application of these methods to
various programming languages and software ecosystems, and evaluating their
effectiveness in real-world scenarios.
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Table 2.2: Comparison of existing Java debloating tools and techniques. TARGET is the type
of artifact considered for debloating: bytecode (B), or source code (S); ANALYSIS refers to the
type of code analysis performed for debloating: Static, Dynamic, or Hybrid; EXP. SCALE

counts the number of study subjects used to evaluate the technique; GRANULARITY is the
code level at which debloating is performed: field (F), method (M), class (C) or dependency
(D). The four columns in EVALUATION CRITERIA present the criteria used to assess the validity
the debloating technique: compilation (COMP.), test suite (TESTS), client applications
(CLIENTS), and human developers via pull requests (DEVS). The last column, OUTPUT, is the
outcome of the debloating techniques.

REF. TARGET ANALYSIS EXP. SCALE
GRANULARITY EVALUATION CRITERIA OUTPUT
F M C D COMP. TESTS CLIENTS DEVS

[63] bytecode Static 9 libs 7 3 3 7 3 7 7 7 Debloated JARS

[55] bytecode Dynamic 3 apps 7 7 3 7 3 3 7 7 Debloated JARS

[48] bytecode Hybrid 26 projects 3 3 3 7 3 3 7 3 Debloated JARS

C1 [2] src. code Static 30 projects 7 7 7 3 3 3 7 3 Debloated POMs

C2 [6] bytecode & Hybrid 30 projects 7 7 3 3 3 3 7 7 Specialized POMs
src. code

C3 [4] bytecode Dynamic 395 libs
7 3 3 3 3 3 3 7 Debloated JARS

1,370 clients

2.3 Novel Contributions of This Thesis to Software Debloating

Similar to other software stacks, Java applications often suffer from the detrimen-
tal effects of software bloat. Part of this bloat comes with the addition of new
features, whereas another part is a result of reusing third-party dependencies. De-
pendency bloat negatively impacts the size of the applications, affects the project’s
maintenance, degrades performance, and potentially compromises security. To
address this issue, we propose propose various techniques for debloating Java
applications using code analysis techniques in order to detect and remove code
bloat from third-party dependencies. In the following, we proceed to highlight the
distinctive aspects of our contributions compared to the current state-of-the-art
debloating techniques for Java.

Table 2.2 positions the research papers proposed in our contributions that come
along with a software tool (i.e., DEPCLEAN in C1 [2], DEPTRIM in C2 [6], and
JDBL in C3 [4]) in relation to the more related tools and techniques for software
debloating in Java (i.e., JRED in [63], J-REDUCE in [55], and JSHRINK in [48]).
First, we note that all prior techniques focus on debloating Java bytecode rather
than targeting source code. This is because targeting Java bytecode offers a more
general and efficient method for bloat removal (e.g., enabling debloating for JVM
languages like Scala, Groovy, or Kotlin) while source code debloating introduces
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extra complexities associated to compilation inconsistencies. In contrast, our
tools DEPCLEAN and DEPTRIM focus on debloating dependency trees through
the analysis of dependency and the subsequent transformation of pom.xml files.
In addition to the technical contributions, we perform the first empirical study
that explores and consolidates the concept of bloated dependencies in the MAVEN

ecosystem and is the first to investigate the reaction of developers to the removal
of bloated dependencies.

Existing techniques for detecting code bloat in Java predominantly utilize
static and dynamic program analysis, with some employing hybrid approaches
to tackle potential issues arising from the Java dynamic language features. As
with our tools, existing debloating techniques primarily rely on static (JRED) and
dynamic (J-REDUCE) program analysis algorithms to detect code bloat. In the case
of JSHRINK, it adopts a hybrid approach to address the potential unsoundness
of static analysis for detecting used code. In the case of DEPTRIM, it implements
a novel variant of the hybrid approach in which the versions of the specialized
dependency trees are validated based on the results of the project’s tests when
building with the specialized version of the dependency.

With regards to the scale of our experiments, both DEPCLEAN and DEPTRIM

are assessed on a significant set of 30 notable MAVEN projects, surpassing the
scope of prior studies. It is important to note that each contribution requires the
projects to be built both before and after debloating, ensuring the integrity of the
build process and of the debloated artifacts. Remarkably, we evaluate JDBL on
395 libraries and 1,370 client applications, which is an order of magnitude larger
than previous work. JDBL stands as the pioneering debloating tool that utilizes a
large set of clients of the debloated software artifacts for validation purposes.

With respect to the granularity of the code bloat removal, state-of-the-art Java
tools focus on removing fields, methods, and classes. All prior tools excise classes,
with only JSHRINK targeting fields. Besides removing methods and classes, our
tools address bloat within third-party dependencies. For instance, DEPCLEAN

eliminates entirely unused dependencies, while DEPTRIM removes classes from
partially used dependencies in addition to discarding completely unused ones.

With respect to the debloat evaluation criteria, all previous works rely on
compilation and tests (except JRED). Both JSHRINK and DEPCLEAN also involve a
user evaluation with developers through pull requests. Utilizing developers via pull
requests serves as an effective evaluation assessment for software debloating, as it
leverages their expertise and familiarity with the codebase, ensuring the proposed
debloating changes are relevant, maintain functionality, and align with the project’s
objectives. Furthermore, JDBL remains the sole study that incorporates client
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applications’ tests to evaluate the debloated artifacts’ usability, extending beyond
the confines of the project’s scope.

In conclusion, a review of the literature on debloating for the Java ecosystem
reveals that previous analysis techniques focus on fine-grained debloating, such
as removing fields, methods, and classes. Although these existing debloating
techniques can be effective at reducing program size and improving performance,
they may not address all sources of code bloat, such as third-party dependencies
in libraries and frameworks. As pointed out in Section 1.2, software dependencies
in Java projects are responsible for a large amount of the shared code size in
the compiled and packaged artifacts. Therefore, we identify a need to address
dependency-related bloat in addition to fine-grained debloating, in order to reduce
the overall size of a Java application and improve its performance, size, and
maintainability.

2.4 Summary

In this chapter, we introduce software bloat, a pervasive problem affecting all layers
of the modern software stack. We discussed how software bloat has emerged across
the software development lifecycle, needlessly increasing the size of software
applications, making them harder to understand and maintain, widening the
attack surface, and degrading the overall performance. This phenomenon is rooted
in several factors, including excessive code reuse, feature creep, code duplication,
and other human and technology-related factors. We identified various software
debloating techniques that have been proposed to mitigate software bloat at
different granularities. However, we observe that removing code bloat remains
a significant challenge due to the intricate nature and complexity of modern
software applications and their interdependencies. As software complexity and
feature richness continue to grow, tackling software bloat will remain a critical
research area in software engineering.
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Chapter 3

Thesis Contributions

“No te detengas avanza / Lucha prosigue y camina / Que el que no se
determina / Nada de la vida alcanza / Nunca pierdas la esperanza / De
realizar tus ideas / Cuando abatido te veas / Juega el todo por el todo
/ Y verás que de ese modo / Lograrás lo que deseas / No le temas al
fracaso / Que el que por su bien batalla / No hay barrera ni muralla /
Que le detengan el paso / Camina y no le hagas caso / Al que te hable con
pesimismo / Busca la dicha en ti mismo / Como el hombre valeroso / Mira
que el hombre penoso / Nunca sale del abismo.”

— Mi abuelo, Un día cualquiera hace años

WITH the increasing complexity of Java applications and their reliance
on third-party libraries, debloating Java dependencies has become
an essential engineering task. In this chapter, we present the main

contributions of this thesis to address the problem of software bloat in the Java
ecosystem. We start with an overview of the MAVEN dependency management
system and of its essential terminology, which constitutes the foundation for
comprehending the technical contributions. As introduced in Section 1.4, our work
contributes to the field of software debloating across three different aspects. First,
we provide a mechanism to detect and remove bloated Java dependencies, thereby
streamlining the dependency trees of software projects that build with MAVEN.
Second, we specialize used dependencies to reduce the amount of third-party
code, which yields even more benefits in terms of code size reduction. Finally,
we evaluate the impact of debloating Java libraries in relation to their client
applications through a novel coverage-based debloating technique, thus providing
valuable insights into the efficacy of this debloating technique. Furthermore,
we outline the tools and datasets we have contributed to promote reproducible
research in this field.
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1 <groupId>org.p</groupId>
2 <artifactId>p</artifactId>
3 <version>0.0.1</version>
4 <packaging>jar</packaging>
5 . . .
6 <dependencies>
7 <dependency>
8 <groupId>org.d1</groupId>
9 <artifactId>d1</artifactId>

10 </dependency>
11 <dependency>
12 <groupId>org.d2</groupId>
13 <artifactId>d2</artifactId>
14 </dependency>
15 <dependency>
16 <groupId>org.d3</groupId>
17 <artifactId>d3</artifactId>
18 </dependency>
19 </dependencies>
20 . . .

Listing 3.1: Excerpt of a MAVEN
pom.xml file declaring three
dependencies: d1, d2, and d3.

d1 d3

p

d2

d6d4 d5

Dependency relationship

Direct dependency Transitive dependency

Project code

Figure 3.1: Dependency tree from the
pom.xml file of Listing 3.1. The project p
declares the direct dependencies d1, d2,
and d3. The dependencies d4, d5, and d6
are transitive dependencies of p.

3.1 Essential Dependency Management Terminology

MAVEN [25] is a popular package manager and build automation tool for
Java projects and other programming languages that compile to the Java Virtual
Machine (JVM), such as Scala, Kotlin, Groovy, Clojure, or JRuby. MAVEN is
primarily designed to handle the dependencies within a software project. In
addition to this crucial functionality, it also handles other tasks during the project
build process, such as testing, packaging, and deployment. We define the key
concepts associated with handling dependencies in the MAVEN ecosystem below.

Maven Project. We consider a project a collection of Java source code files and
configuration files organized to be built with MAVEN. A MAVEN project declares a
set of dependencies in a specific configuration file known as pom.xml (acronym for
Project Object Model), which is located in the project’s root directory. The pom.xml
contains specific metadata about the project construction, its dependencies, and
its build process. MAVEN projects are usually packaged and deployed to external
repositories as single artifacts (JAR files). Listing 3.1 shows an excerpt of the
dependency declaration in the pom.xml of a project p. In this example, developers
explicitly declare the usage of three dependencies: d1, d2, and d3. Note that the
pom.xml of a Maven project is a configuration file subject to constant change and
evolution: developers usually commit changes to add, remove, or update the
version of a dependency.

Maven Dependency. A MAVEN dependency defines a relationship between a
project p and another packaged project d ∈ D. Dependencies are compiled JAR
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files, a.k.a. artifacts, uniquely identified with a triplet (G:A:V) where G is the
groupId, A is the artifactId, and V is the version. Dependencies are defined
within a scope, which determines at which phase of the MAVEN build cycle the
dependency is required (i.e., compile, runtime, test, provided, system, and
import). Listing 3.1 shows an example of dependency relationships. By declaring
a dependency towards d1, the project p states that it relies on some part of the
API of d1 to build and execute correctly. Dependencies are deployed to external
repositories to facilitate reuse. Maven Central [28] is the most popular public
repository to host MAVEN artifacts.

Direct Dependency. The set of direct dependencies Ddirect ⊂ D of a project p is
the set of dependencies explicitly declared in p’s pom.xml file. Figure 3.1 shows the
direct dependencies in the first level of the dependency tree of p, i.e., there is an
edge between p and each dependency [d1, d2, d3] ∈ Ddirect. Direct dependencies are
declared in the pom.xml by the developers, who explicitly manifest the intention
of using the dependency.

Transitive Dependency. The set of transitive dependencies Dtransitive ⊂ D of a
project p is the set of dependencies obtained from the transitive closure of direct
dependencies. Figure 3.1 shows the transitive dependencies in the second level of
the dependency tree of p, i.e., there is an edge between the direct dependencies
of p and each dependency [d4, d5, d6] ∈ Dtransitive. Transitive dependencies are
resolved automatically by MAVEN, which means that developers do not need to
explicitly declare these dependencies. Note that all the bytecode of these transitive
dependencies is present in the classpath of project p, and hence they will be
packaged with it, whether or not they are actually used by p.

Dependency Tree. The dependency tree of a MAVEN project p is a direct acyclic
graph that captures all dependencies of p and their relationships, where p is the
root node and the edges represent dependency relationships between p and the
dependencies in D. Figure 3.1 illustrates the dependency tree of the project p,
which pom.xml file is presented in Listing 3.1. In this example, p has three direct
dependencies, as declared in its pom.xml, and three transitive dependencies, as a
result of the MAVEN dependency resolution mechanism.

Maven Dependency Resolution Mechanism. To construct the dependency tree,
MAVEN relies on its specific dependency resolution mechanism [159]. MAVEN

resolves dependencies in two steps: 1) based on the pom.xml file of the project, it
determines the set of direct dependencies explicitly declared, and 2) it fetches the
JAR files of the dependencies that are not present locally from external repositories
such as Maven Central. Dependency version management is a key feature of
the dependency resolution mechanism, which MAVEN handles with a specific
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dependency mediation algorithm that avoids having duplicated dependencies and
cycles in the dependency tree of a project [159].

Maven Dependency Graph. The Maven Dependency Graph (MDG) is a vertex-
labeled graph, where vertices are MAVEN artifacts (uniquely identified by their
G:A:V coordinates), and edges represent dependency relationships among them [8].
Formally, the MDG is defined as G = (V, E), where: V is the set of artifacts in the
Maven Central repository; and E ⊆ V × V represent the set of directed edges
that determine dependency relationships between each artifact v ∈ V and its
dependencies.

3.2 Contribution #1: Removing Bloated Dependencies

Our first contribution focuses on solving a specific challenge of dependency man-
agement: the existence of bloated dependencies. This refers to packages that are
included as dependencies in a sofwtare project, and therefore get included in its
dependency tree, but that are actually not necessary for building or running the
project We develop a technique to effectively assess the impact of bloated depen-
dencies across the entire MAVEN ecosystem, as well as to effectively eliminate
them within MAVEN projects.

3.2.1 Novel concepts

For a set of dependencies D, and in the context of a MAVEN project, we introduce
the concept of bloated dependency in [2] as follows:

Bloated Dependency. A dependency d ∈ D in a software project p is said to be
bloated if there is no path in the dependency tree of p, between p and d, such that
none of the elements in the API of d are used, directly or indirectly, by p.

We found this type of dependency relationship between software artifacts
intriguing: from the perspective of the dependency management systems such as
MAVEN that are unable to avoid it, and from the standpoint of developers who
declare dependencies but do not actually use them in their applications. The major
issue with bloated dependencies is that the final deployed binary file includes more
code than necessary: an artificially large binary is an issue when the application is
sent over the network (e.g., web applications) or it is deployed on small devices
(e.g., embedded systems). Bloated dependencies could also embed vulnerable
code that can be exploited while being actually useless for the application [160].
Overall, bloated dependencies needlessly increase the difficulty of managing and
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evolving software applications, thereby making it imperative for developers to
detect and remove them.

3.2.2 Bloat detection

The first task to eliminate dependency bloat is to detect bloated dependencies. Our
proposed solution entails performing an in-depth analysis of the usage relation-
ships among the class members of the entire dependency tree of MAVEN projects,
which enables us to determine the usage status of each individual dependency
(i.e., used or bloated). By doing so, we can identify if the dependency is used or
not, and take appropriate actions to remove bloated dependencies. We define the
usage status of a dependency as follows:

Dependency Usage Status. The usage status of a dependency d ∈ D determines
if d is used or bloated w.r.t. to p, at a specific time of the development of p.

We implement dependency usage analysis in a software tool called DEP-
CLEAN [2]. DEPCLEAN builds a static call graph of the bytecode calls between the
class members of a compiled MAVEN project and its dependencies. To study the
distinctive aspects regarding the usage status of all dependencies in the depen-
dency tree of artifacts in the MAVEN ecosystem, we introduce a new data structure,
called the Dependency Usage Tree (DUT) as follows:

Dependency Usage Tree. The DUT of a project p, defined as DUTp = (V, E ,∇),
is a tree, whose nodes are the same as the MAVEN dependency for p and which
edges are all of the (p, pi), for all nodes pi ∈ DUTp. A labeling function ∇
assigns each edge one of the following six dependency usage types: ∇ : E →
{ud, ui, ut, bd, bi, bt} such that:

∇(〈p, d〉) =



ud, if d is used and it is directly declared by p

ui, if d is used and it is inherited from a parent of p

ut, if d is used and it is resolved transitively by p

bd, if d is bloated and it is directly declared by p

bi, if d is bloated and it is inherited from a parent of p

bt, if d is bloated and it is resolved transitively by p

Figure 3.2 shows an hypothetical example of DUT of a project p. Suppose
that p directly calls two sets of instructions in the direct dependency d1 and the
transitive dependency d6. Then, the subset of instructions called in d1 also calls

53



CHAPTER 3. THESIS CONTRIBUTIONS

Usage relationship

Used dependency Bloated dependency

Used API members

d1

d4 d6

p

d2 d3

d5

Figure 3.2: Dependency usage tree of
used and bloated dependencies
corresponding to the dependency tree
presented in Figure 3.1.

d1

p

d6d4

Used dependency Dependency relationship

Figure 3.3: Debloated dependency tree
after removing bloated dependencies with
DEPCLEAN, based on the DUT of
Figure 3.2.

instructions in d4. In this case, the dependencies d1, d4, and d6 are used by p,
while dependencies d2, d3, and d5 are bloated dependencies. For a MAVEN project,
DEPCLEAN constructs a DUT at build time and returns a report with the usage
status of each individual dependency.

Although bloated dependencies are present in the dependency tree of software
projects, bloated dependencies are useless and, therefore, developers should
consider removing them. In the next section, we discuss the approach implemented
in DEPCLEAN to remove bloated dependencies.

3.2.3 Bloat removal

A challenge when addressing bloated dependencies is to remove them from the
project without compromising the build’s success. Our solution relies on the
existing MAVEN dependency handling mechanisms to remove and exclude bloated
dependencies pom.xml files [159]. DEPCLEAN generates as output a variant of the
pom.xml file with all the bloated dependencies removed. DEPCLEAN addresses
both direct and transitive dependencies by modifying the XML entry corresponding
to the bloated dependency. Listing 3.2 shows an excerpt of the diff of such a change
in the pom.xml file for the example presented in Listing 3.1. Note that, in MAVEN,
there is two ways to remove bloated dependencies:

(i) If the bloated dependency is explicitly declared in the pom.xml, then we
remove its declaration clause directly (lines 12 to 19 in Listing 3.2);

(ii) If the bloated dependency is induced transitively from a direct dependency,
then we exclude it from the dependency tree (lines 5 to 10 in Listing 3.2). This

54



3.2. CONTRIBUTION #1: REMOVING BLOATED DEPENDENCIES

1 <dependencies>
2 <dependency>
3 <groupId>org.d1</groupId>
4 <artifactId>d1</artifactId>
5 +aa<exclusions>
6 +aa <exclusion>
7 +aa aa <groupId>org.d5</groupId>
8 +aa aa <artifactId>d5</artifactId>
9 +aa </exclusion>

10 +aa<exclusions>
11 </dependency>
12 -aa<dependency>
13 -aa <groupId>org.d2</groupId>
14 -aa <artifactId>d2</artifactId>
15 -aa</dependency>
16 -aa<dependency>
17 -aa <groupId>org.d3</groupId>
18 -aa <artifactId>d3</artifactId>
19 -aa</dependency>
20 +aa<dependency>
21 +aa <groupId>org.d6</groupId>
22 +aa <artifactId>d6</artifactId>
23 +aa</dependency>
24 </dependencies>

Listing 3.2: Transformations
peformed in the pom.xml file of
Listing 3.1 to remove the bloated
dependencies d2, d3, and d5.

d1 d3d2

d6d4 d5

Dependency relationship

Direct dependency Transitive dependency

Project code

d6

p

Removed relationship Direct inclusion

Figure 3.4: Transformations in the
dependency tree of p as a result of
the changes in the pom.xml file
indicated in Listing 3.2.

exclusion consists in adding an <exclusion> clause inside a direct dependency
declaration entry, specifying the groupId and artifactId of the transitive
dependency to be excluded. Excluded dependencies are not added to the
classpath of the compiled artifact by way of the dependency in which the
exclusion was declared.

Figure 3.3 shows the result of the modified dependency tree after using DEP-
CLEAN to remove bloated dependencies. Figure 3.4 illustrates the transformations
made to the dependency tree to reach this state. Note that the transitive depen-
dency d6 was included as a direct dependency in the pom.xml (lines 20 to 23)
because it is actually used by p, but the direct dependency d3 from which it is
induced is bloated and therefore removed. It is worth mentioning that during this
removal process, DEPCLEAN does not perform any modifications to the source code,
compiled bytecode, or configuration files in the project under analysis. DEPCLEAN

is specifically designed to be non-invasive for the project, ensuring that it does not
modify the build process while performing its debloating operations. The details
about this procedure are described in Algorithms 1 and 2 in ??.
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3.2.4 Debloating assessment

Assessing the impact of removing bloated dependencies is crucial to ensure that the
project build remains unaffected. It is equally important that the debloating pro-
cess aligns with the project’s requirements and makes sense from a practical stand-
point. We use DEPCLEAN to perform two types of assessments: a large-scale quan-
titative analysis of dependency bloat in the Maven Central repository, and a quali-
tative analysis of bloated dependencies in 30 MAVEN projects involving developers.

The quantitative assessment consists in measuring the amount of dependencies
that can be removed. For this we leverage the MDG from our previous research [8]
to collect and analyze a large set of artifacts from Maven Central. We download
the JAR files of all the selected artifacts and their pom.xml files. We resolve all
their direct and transitive dependencies to our local repository and compute the
usage status of all dependency relationships for each artifact using DEPCLEAN. We
report the collected metrics and analyze how the specific reuse strategies of the
MAVEN package management system relates to the existence of software bloat.

The qualitative assessment consists in evaluating the relevance of the removal
of bloated dependencies in software projects. For this we systematically select
30 notable open-source projects hosted on GitHub and conduct an analysis of
dependency bloat. For each project, we use DEPCLEAN to analyze the dependency
tree and build the project with the debloated pom.xml file. If the project builds
successfully, we propose a corresponding change to the developers in the pom.xml
file in the form of a pull request. We engage developers in discussions regarding
the value of each pull request on GitHub and gather their feedback. Note that
although the submitted pull requests contain a small modification in the pom.xml,
the amount of bloated code removed is significant.

DEPCLEAN operates under the premise that a bloated dependency at a given
time will consistently remain bloated, hence it makes sense to remove it. We
further explore the validity of this assumption in the context of Java projects. To
do so, we performed a longitudinal study of bloated dependencies and analyze
how the usage status of dependencies evolves over time, from used to bloated, or
vice versa. Our empirical assessment shows that our hypothesis holds: the large
majority of the bloated dependencies stay bloated in all subsequent versions of
the dependency trees of the studied projects.

3.2.5 Key insights

We use DEPCLEAN to analyze the 723,444 dependency relationships of 9,639 arti-
facts hosted in Maven Central. Our findings indicate that 75.1% of these dependen-
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cies are bloated (2.7% are direct dependencies, 57% are transitive dependencies,
and 15.4% inherited dependency relationships in pom.xml files). Based on these
results, we distill two potential causes of bloat in the Java MAVEN ecosystem: 1)
the cascade of bloated transitive dependencies induced by direct dependencies,
and 2) the dependency heritage mechanism in multi-module MAVEN projects.

We supplement our quantitative investigation of bloated dependencies with a
comprehensive qualitative analysis of 30 popular Java projects. We use DEPCLEAN

to examine the dependency trees of these projects and submit the derived results
as pull requests on GitHub for evaluation by developers. Our results indicated
that developers are willing to remove bloated-direct dependencies: 16 out of 17
answered pull requests were accepted and merged by the developers in their
codebase. On the other hand, we find that developers tend to be skeptical about
excluding bloated-transitive dependencies: 5 out of 9 answered pull requests
were accepted. Overall, the feedback from developers reveals that the removal of
bloated dependencies is clearly worth the additional analysis and effort.

We conduct a longitudinal analysis of dependency usage across 31,515 versions
of MAVEN dependency trees in 435 Java projects. Our findings provide evidence
of bloat stability: once bloated, 89.2% of direct dependencies persist as bloated,
emphasizing the importance of bloat removal. Furthermore, we present evidence
indicating that developers expend unnecessary maintenance effort on bloated
dependencies. Our qualitative examination of the origins of bloated dependencies
uncovers that the primary contributing factor to this form of software bloat is the
addition of dependencies at the early stages of the project development.

Summary of Contribution #1

We conduct a systematic, large-scale study of bloated dependencies in the
MAVEN ecosystem. We implement a tool called DEPCLEAN, designed to au-
tomatically detect and remove bloated dependencies in MAVEN projects. We
found empirical evidence that dependency bloat is widespread among Java
artifacts within the Maven Central repository. Our study is the first to measure
the extent of dependency bloat on a large scale and perform a qualitative
assessment of the opinion of developers regarding the removal of bloated
dependencies. We found that developers are willing to remove bloated depen-
dencies to a large extend. Moreover, we demonstrate that a dependency, once
bloated, it is likely to stay bloated in the future.

This contribution is presented in Research Papers II [2] and III [3].
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3.3 Contribution #2: Specializing Used Dependencies

Our second contribution focuses on advancing the state-of-the-art of dependency
tree reduction by introducing an innovative technique that specialized depen-
dencies specifically to a project’s requirements. We implement this technique
in a tool called DEPTRIM, which systematically identifies and removes unused
classes across the dependencies of a MAVEN project. After debloating, DEPTRIM

repackages the used classes into a specialized version of each used dependency,
and substitutes the original dependency tree of a project with this specialized
variant. This approach enables building a minimal project binary containing only
the code that is relevant to the project, thereby optimizing resource utilization,
improving build performance, and reducing potential security risks associated
with unused code in third-party dependencies.

3.3.1 Novel concepts

We introduce the concept of specialized dependencies and specialized dependency
trees as follows:

Specialized Dependency. A dependency is said to be specialized with respect to
a project if all the classes within the dependency are used by the project, and all
unused classes have been identified and removed. Consequently, there is no class
file in the API of a specialized dependency that is unused, directly or indirectly, by
the project or any other dependency in its dependency tree.

Specialized Dependency Tree. A specialized dependency tree is a dependency
tree where at least one dependency is specialized and the project still correctly
builds with that dependency tree. This means that in at least one of the used
dependencies, unused classes have been identified and removed. A specialized
dependency tree may be one of the following two types:

• Totally Specialized Tree (TST): A dependency tree where all used dependencies
are specialized and the project build is successful.

• Partially Specialized Tree (PST): A dependency tree with the largest possible
number of specialized dependencies, such that the project build is successful.

We implement a tool called DEPTRIM that automatically generates a TST or
PST for MAVEN projects. DEPTRIM systematically identifies the required subset of
classes in each dependency that is necessary to build the project. The specialized
dependencies are repackaged and incorporated into the project’s dependency tree,

58



3.3. CONTRIBUTION #2: SPECIALIZING USED DEPENDENCIES

yielding a tailored dependency tree specific to the project’s needs and require-
ments.

3.3.2 Bloat detection

In order to detect bloat in used dependencies, DEPTRIM relies on static analysis
to determine their API usage from the project compiled sources. This process
involves constructing a static call graph by utilizing the compiled dependencies
resolved by MAVEN and the compiled project sources. The call graph is generated
using the bytecode class members of the project as entry points. By leveraging
the API usage information from the static call graph, DEPTRIM can directly infer
and report class usage information from the bytecode, without the need to load
or initialize classes. The resulting report captures the dependencies, classes, and
methods that are actually used by the project, i.e., those that are reachable via
static analysis. This information is stored in data structure in order identify the
minimal set of classes in each dependency that are necessary to successfully build
the project.

Recalling the example of debloated dependency tree presented in Figure 3.3,
we observe that the debloated dependency tree of project p uses a subset of
the classes in dependencies d1, d2, and d3 (see Figure 3.5). Therefore, these
dependencies could be specialized with respect to p, by detecting and removing
the unused classes.

The completeness of the call graphs is crucial for successful dependency spe-
cialization. If a necessary class member cannot be reached through static analysis,
DEPTRIM considers it unused and proceeds to remove it in a subsequent phase. To
overcome this limitation, DEPTRIM employs state-of-the-art static analysis tech-
niques of Java bytecode to capture invocations between classes, methods, fields,
and annotations (from the project and its direct and transitive dependencies). This
comprehensive approach ensures accurate detection of used and unused classes,
enabling the creation of a specialized dependency tree tailored to the project’s
requirements.

It is worth mentioning that that DEPTRIM also analyzes the constant pool of
class files to capture dynamic invocations from string literals, such as when loading
a class using its fully qualified name via reflection. The constant pool is a data
structure in Java class files that stores constants and symbolic references, including
literals and external references. By examining the constant pool, DEPTRIM can
identify instances of dynamically invoked classes, ensuring a more precise and
thorough dependency analysis. Moreover, the integration of DEPTRIM within the
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Figure 3.5: Used and unused API
members in the debloated dependency
tree from Figure 3.3.
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Figure 3.6: Specialized dependency tree
after removing unused API members from
Figure 3.5.

MAVEN build lifecycle further enhances the tool’s usability, making it a seamless
and convenient solution for developers to optimize their project dependencies.

3.3.3 Bloat removal

DEPTRIM receives as input a debloated dependency tree, such as the ones gener-
ated by DEPCLEAN. If the provided dependency tree is not debloated, DEPTRIM

determines which dependencies are bloated (i.e., there is no path from the project
bytecode toward any of the class members in the unused dependencies), and
removes them from the original pom.xml. Next, DEPTRIM proceeds to remove the
unused classes within non-bloated dependencies by analyzing the call graph of
static bytecode calls . Any class file from the dependencies that is not present in
the call graph is deemed unreachable and removed. Once all the unused class
files in a dependencies are removed, DEPTRIM qualifies the dependency tree as
specialized.

DEPTRIM downloads, unzips, and removes the unused compiled classes di-
rectly from the project dependencies at build time (i.e., during the MAVEN package
phase). Moreover, to facilitate reuse, DEPTRIM deploys each specialized depen-
dency in the local MAVEN repository along with its pom.xml file and corresponding
MANIFEST.MF metadata. After specializing each non-bloated dependency, DEPTRIM

produces a specialized version of the project’s dependency tree. For example, Fig-
ure 3.6 shows the specialized dependency tree after removing unused classes from
the dependencies d1, d2, and d3 as presented in Figure 3.5. In addition, DEPTRIM

produces a variant of the pom.xml file that removes the bloated dependencies
and points to the specialized dependencies instead of their original versions This
results in a TST or a PST for the project.

The output of the DEPTRIM is a set of specialized pom.xml files representing
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the dependencies of the project. These files encompass all the essential bytecode
and resources required for sharing and reusing functionalities among the packages
within the dependency tree. In particular, DEPTRIM takes care of keeping the
classes in dependencies that may not be directly instantiated by the project, but
are accessible from the used classes in the dependencies, with regard to the project.
The details about this procedure are described in Algorithms 1 in ??.

3.3.4 Debloating assessment

To assess the debloated dependency tree, DEPTRIM builds the totally specialized
dependency tree (TST or PST) of the project. All specialized dependencies replace
their original version in the project pom.xml. Then, in order to validate that the
specialization did not remove necessary bytecode, DEPTRIM builds the project, i.e.
its sources are compiled and its tests are run. If the build is a SUCCESS, DEPTRIM

returns this TST.
In cases where the build with the TST fails, DEPTRIM proceeds to build the

project with one specialized dependency at a time. Thus, rather than attempting to
improve the soundness of the static call graph, which is proven to be challenging
in Java [161], DEPTRIM performs an exhaustive search of the dependencies
that are unsafe to specialize. At this step, DEPTRIM builds as many versions of
the dependency tree as there are specialized dependencies, each containing a
single specialized dependency. DEPTRIM attempts to build the project with each
of these single specialized dependency trees. If the project build is successful,
DEPTRIM marks the dependency as safe to be specialized. In case the dependency
is not safe to specialize, DEPTRIM keeps the original dependency entry intact in
the specialized pom.xml file. Finally, DEPTRIM constructs a partially specialized
dependency tree (PST) with the union of all the dependencies that are safe to
be specialized. Then, the project is built with this PST to verify that the build is
successful. If all build steps pass, DEPTRIM returns this PST.

3.3.5 Key insights

We use DEPTRIM to generate specialized dependency trees for 30 notable open-
source Java projects. DEPTRIM effectively analyzes 35,343 classes across 467

dependencies in these projects. For 14 projects, it generates a dependency tree
where all compile its dependencies are effectively specialized. For the remaining 16

projects, DEPTRIM produces a dependency tree that includes all dependencies that
can be specialized without breaking the build, while leaving the others unmodified.
DEPTRIM specializes 86.6% of the dependencies, removing 47.0% of the unused
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classes from those dependencies. The specialized dependencies are deployed
locally as reusable JAR files. For each project, DEPTRIM generates a specialized
version of the pom.xml file, replacing the original dependencies with specialized
ones, ensuring that the project continues to build correctly.

We perform a novel assessment of the ratio of dependency classes compared
to project classes, based on actual class usages. We compute this ratio for the
30 original studied projects and found that it is 8.7×, which is evidence of the
massive impact of code reuse in the Java ecosystem. We found that it is possible
to decrease this ratio of dependency classes to project classes through dependency
specialization with DEPTRIM, from 8.7× to 4.4×. This result confirms the rele-
vance of our approach in substantially reducing the share of third-party classes in
Java projects.

Summary of Contribution #2

We advance the state-of-the-art for dependency tree reduction through the
implementation of a specialization technique that tailors individual dependen-
cies to the specific requirements of a project. We implement an automated
tool, DEPTRIM, that analyses third-party dependencies of a MAVEN project to
remove the unused classes. DEPTRIM repackages the dependencies to create a
specialized version of the dependency tree at build time. We use DEPTRIM to
successfully specialize the dependency tree of 14 projects in its entirety, and 16

partially, reducing the number of third-party classes by 47.0%. We found that
our specialization technique enables a reduction in the ratio of project classes
to dependency classes by a factor of two.

This contribution is presented in Research Paper VI [6].

3.4 Contribution #3: Debloating With Respect to Clients

Our third contribution goes one step further than any previous work on software
debloating and investigates how debloating Java libraries impacts the clients
of these libraries. We propose coverage-based debloating, a novel technique
to debloat projects based on coverage information collected at runtime. We
implemented this technique in a tool called JDBL, which precisely captures what
parts of a project and its dependencies are used when running with a specific
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workload. The goal is to determine the ability of dynamic analysis via coverage at
capturing the behaviors that are relevant for the clients of the debloated libraries.

3.4.1 Novel concepts

In this contribution, MAVEN projects are referred to as libraries, and the project
that reuses the library are called clients. We introduce a set of novel concepts
necessary for debloating libraries w.r.t. clients as follows:

Input Space. The input space of a compiled MAVEN project is the set of all valid
inputs for its public Application Programming Interface (API) that can be executed
by a client.

MAVEN projects provide API members, abstracting implementation details
to facilitate external reuse. Libraries generally provide public API members for
external reuse. However, there exist other dynamic reuse mechanisms that can
be utilized by Java clients (e.g., through reflection, dynamic proxies, or the use
of unsafe APIs). An effective way to determine which API members are reused is
trough the execution of a workload.

Project Workload. A workload is a set of valid inputs belonging to the input
space of a compiled MAVEN project.

Workloads play a crucial role in software debloating tasks that involve perform-
ing dynamic analysis. For instance, workloads are employed to identify unique
execution paths in software applications, similar to those performed for profiling
and observability tasks. These techniques focus on utilizing monitoring tools to
analyze the application’s response to various workloads at run-time, ultimately
contributing to a more efficient and streamlined software system. In this context,
by examining the application’s response to different workloads, it is possible to
generate execution traces.

Execution Trace. An execution trace is a sequence of calls between bytecode
instructions in a compiled MAVEN project, obtained as a result of executing the
project with a valid workload.

Given a valid workload for a project, one can obtain dynamic information
about the program’s behavior by collecting execution traces. We consider a trace
as a sequence of calls, at the level of classes and methods, in compiled Java classes.
These traces include the bytecode of the project itself, as well as the classes and
methods in third-party libraries.

Coverage-Based Debloating. Given a project and an execution trace collected
when running a specific workload on the project, coverage-based debloating
consists of removing the bytecode constructs that are not covered when running
the workload. Coverage-based debloating takes a project and workload as input
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Figure 3.7: Used and unused API
members in the dependency tree of
Figure 3.6. Note that the usage status is
w.r.t. the supplied workload.
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Figure 3.8: Debloated project from
Figure 3.7. Only the used API members of
the project and its dependencies are
packaged.

and produces a valid compiled Java project as output. The generated debloated
project is executable and has the same behavior as the original, modulo the
workload.

3.4.2 Bloat detection

JDBL collects a set of coverage reports that capture the set of dependencies,
classes, and methods actually used during the execution of the Java project.
The coverage collection phase receives two inputs: a compilable set of Java
sources, and a workload, i.e., a collection of entry-points and resources necessary
to execute the compiled sources. The workload can be a set of test cases or a
reproducible production workload. The coverage collection phase outputs the
original, unmodified, bytecode and a set of coverage reports that account for
the minimal set of classes and methods required to execute the workload. The
collection of accurate and complete coverage is essential for coverage-based
debloating

3.4.3 Bloat removal

The goal of the bytecode removal phase is to eliminate the methods, classes, and
dependencies that are not used when running the project with the workload. This
procedure is based on the coverage information collected during the coverage
collection phase. The unused bytecode instructions are removed in two passes.
First, the unused class files and dependencies are directly removed from the
classpath of the project. Then, the procedure analyzes the bytecode of the
classes that are covered. When it encounters a method that is not covered, the
body of the method is replaced to throw an UsupportedOperationException. We
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choose to throw an exception instead of removing the entire method to avoid JVM
validation errors caused by the nonexistence of methods that are implementations
of interfaces and abstract classes.

Capturing the complete coverage of the classes that are necessary for executing
a workload is critical for bloated code removal. Failure to achieve this could result
in a debloated project that either fails to compile or, even worse, causes runtime
errors when client projects use debloated libraries. To collect precise coverage
information, we harness the diversity of code coverage tool implementations [162]
and the dynamic logging capabilities of the JVM. We process and aggregate the
coverage reports from JACOCO, JCOV, YAJTA, and the JVM class loader. A class is
deemed covered if it is reported as used by at least one of these tools, ensuring
a comprehensive assessment of required classes for successful debloating. The
details about this procedure are described in Algorithms 1 in ??.

3.4.4 Debloating assessment

We analyze the impact of debloating Java libraries on their clients. This analysis is
relevant since we focus on debloating open-source libraries, which are primarily
designed for reuse in client applications. Moreover, this particular analysis offers
additional insights into the validity of the coverage-based debloating technique and
the effectiveness of JDBL. To validate the debloating from the clients’ perspective,
we conduct a two-layered assessment: a syntactic evaluation a semantic evaluation
of the clients. By performing these analysis, we can guarantee that the debloated
libraries preserve their functionality and compatibility, thus assessing the validity
of our debloating technique.

For syntactic assessment, we verify that the clients still compile when the
original library is replaced by its debloated version. We check that JDBL does
not remove classes or methods in libraries that are necessary for the compilation
of their client. As illustrated in Figure 3.9, we first check that the client uses the
library statically in the source code. To do so, we statically analyze the source
code of the clients. If there is at least one element from the library present in the
source code of a client, then we consider the library as statically used by the client.
If the library is used, we inject the debloated library and build the client again.
If the client successfully compiles, we conclude that JDBL debloated the library
while preserving the useful parts of the code that are required for compilation.

A debloated library stored on disk is of little use compared to a debloated
library that provides the behavior expected by its clients. Therefore, we also need
to determine if JDBL preserves the functionalities that are necessary for the clients.
As illustrated in Figure 3.9, we first execute the test suite of the client with the
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Figure 3.9: Experimental procedure to assess the impact of debloating a library on the clients
that use a subset of its functionalities.

original version of the library. We check that the library is covered by at least one
test of the client. If this is true, we replace the library with the debloated version
and execute the test suite again. If the test suite behaves the same as with the
original library, we conclude that JDBL is able to preserve the functionalities that
are relevant for the clients.

Building a sound dataset of clients that execute the libraries is challenging. To
ensure the validity of this protocol, we perform additional checks on the clients. All
the clients have to use at least one of the debloated libraries. We only consider the
clients that either have a direct reference to the debloated library in their source
code or which test suite covers at least one class of the library (static or dynamic
usage). The clients that statically use the library serve as the study subjects for
the syntactic assessment. The clients that have at least a test that reaches the
debloated library serve as the study subjects for the semantic assessment.

3.4.5 Key insights

We perform the largest empirical validation of Java debloating in the literature
involving 354 libraries and 1,354 clients that use these libraries. We evaluate JDBL
based on an original experimental protocol that assesses the impact of coverage-
based debloating on the libraries behavior, their size, as well as on their clients.
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Our results indicate that JDBL can reduce 68.3% of the bytecode size and that
211 (69.9%) debloated libraries still compile and preserve their original behaviour
according to the tests.

We evaluate the usefulness of debloated libraries with respect to their client
applications. Our findings reveal that 81.5% of the clients can successfully compile
and execute their test suites when replacing the corresponding dependency with a
debloated version of the library. These results demonstrate that the combination
of multiple coverage tools is effective in accurately capturing the code utilized at
runtime, ultimately showcasing the practicality of debloated libraries for client
applications.

Summary of Contribution #3

We propose a novel coverage-based debloating technique for Java applications.
This technique addresses one key challenge of debloating techniques based on
dynamic analysis: gathering precise and comprehensive coverage information
that comprises the minimal set of classes and methods required to execute a
program under a given workload. We conducted the most extensive empir-
ical validation of the applicability of a software debloating technique in the
literature, involving 354 libraries and 1,354 client applications. Our results
provide evidence of the massive presence of code bloat in those libraries and
the usefulness of our techniques to mitigate this phenomenon.

This contribution is presented in Research Paper IV [4].

3.5 Contribution #4: Reproducible Research

Reproducible research stands as a vital cornerstone of the scientific endeavor.
It plays an essential role in ensuring the validity and reliability of the research
findings. Given its importance, our fourth contribution focuses on the tools and
datasets that are part of the contributions of this thesis. These resources are of
utmost importance as they enable other researchers to reproduce the findings and
conclusions of our studies, validate the results, and build upon our work in future
research endeavors. By providing open access to the datasets and tools used, we
aim to promote transparency, accountability, and reproducibility for the best of
science.
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3.5.1 Software tools

Contributions C1, C2, and C3 in this thesis encompass a software tool engineered
to implement their respective debloating techniques In the following, discuss the
technical challenges associated with each tool, emphasizing their roles in fostering
reproducible research and advancing the field of software debloating in Java.

DEPCLEAN

DEPCLEAN is implemented in Java as a Maven plugin that extends the maven-
dependency-analyzer [163], which is actively maintained by the Maven team
and officially supported by the Apache Software Foundation. For the construc-
tion of the dependency tree, DEPCLEAN relies on the copy-dependencies and
tree goals of the maven-dependency-plugin. Internally, DEPCLEAN relies on the
ASM [164] library to visit all the class files of the compiled projects in order to
register bytecode calls towards classes, methods, fields, and annotations among
MAVEN artifacts and their dependencies. For example, it captures all the dynamic
invocations created from class literals by parsing the bytecodes in the constant
pool of the classes. DEPCLEAN defines a customized parser that reads entries
in the constant pool of the class files directly, in case it contains special refer-
ences that ASM does not support. This allows the plugin to statically capture
reflection calls that are based on string literals and concatenations. Compared to
maven-dependency-analyzer, DEPCLEAN adds the unique features of detecting
transitive and inherited bloated dependencies, and producing a debloated version
of the pom.xml file.

DEPCLEAN is open-source and reusable from Maven Central. DEPCLEAN is a
well-established project that adheres to sound engineering principles such CI/CD,
static analysis to ensure high code quality, and rigorous unit and integration
testing. it has been used to remove bloated dependencies in both open-source
and close-source projects, as well as for research purposes [40, 50, 165, 3].
As per January 2023, DEPCLEAN has 3.2K lines of Java code, 394 commits, 12
contributors, and 155 stars [166] on GitHub. We have done 9 releases to integrate
feedback from users and evolve with the new features of Java and MAVEN (e.g.,
to achieve compatibility with Java records and other MAVEN plugins). Its source
code is available at https://github.com/castor-software/depclean.

DEPTRIM

DEPTRIM is implemented in Java as a MAVEN plugin that can be integrated into a
project as part of the build pipeline, or be executed directly from the command
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line. This design facilitates its integration as part of the projects’ CI/CD pipeline,
leading to specialized binaries for deployment. At its core, DEPTRIM reuses
the state-of-the-art static analysis of DEPCLEAN, located in the depclean-core
module. DEPTRIM adds unique features to this core static Java analyzer by
modifying the bytecode within dependencies based on usage information gathered
at compilation time, which is different from the complete removal of unused
dependencies performed by DEPCLEAN. It uses the ASM Java bytecode analysis
library to build a static call graph of class files of the compiled projects and their
dependencies. The call graph registers usage towards classes, methods, fields, and
annotations. For the deployment of the specialized dependencies, DEPTRIM relies
on the deploy-file goal of the official maven-deploy-plugin from the Apache
Software Foundation. For dependency analysis and manipulation, DEPTRIM relies
on the maven-dependency-plugin. DEPTRIM provides dedicated parameters to
target or exclude specific dependencies for specialization, using their identifier
and scope.

DEPTRIM is open-source and reusable from Maven Central. As per Jan-
uary 2023, DEPTRIM has 1.1K lines of code Java code, 119 commits, and 3

contributors. Its source code is publicly available at https://github.com/castor-
software/deptrim.

JDBL

The core implementation of JDBL consists in the orchestration of mature code
coverage tools and bytecode transformation techniques. The coverage-based
debloating algorithm is integrated into the different MAVEN building phases.
JDBL gathers direct and transitive dependencies by using the official maven-
dependency-plugin with the copy-dependencies goal. This allows JDBL to
manipulate the project’s classpath in order to extend code coverage tools at the
level of dependencies. As with DEPCLEAN and DEPTRIM, we rely on ASM [164] a
lightweight, and mature Java bytecode manipulation and analysis framework for
the bytecode analysis, the detection of bloated classes, and the whole bytecode
removal phase. The instrumentation of methods and the insertion of probes for
usage collection are performed by integrating JACOCO, JCOV, YAJTA, and the JVM
class loader within the MAVEN build pipeline.

JDBL is implemented as a multi-module MAVEN project with a total of 5.0K
lines of code written in Java. JDBL is designed to debloat single-module Maven
projects. It can be used as a MAVEN plugin that executes during the MAVEN

package phase. Thus, JDBL is designed with usability in mind: it can be easily
invoked within the MAVEN build life-cycle and executed automatically, no ad-
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Table 3.1: Reproducible datasets for each of the appended research papers.

RESEARCH PAPER DATASET URL ON GITHUB

I https://github.com/cesarsotovalero/msr-2019

II https://github.com/castor-software/depclean-experiments

III https://github.com/castor-software/longitudinal-bloat

IV https://github.com/castor-software/jdbl-experiments

V https://github.com/chains-project/ethereum-ssc

VI https://github.com/castor-software/deptrim-experiments

ditional configuration or further intervention from the user is needed. To use
JDBL, developers only need to add the MAVEN plugin within the build tags of
the pom.xml file. The source code of JDBL is publicly available on GitHub, with
binaries published in Maven Central. More information on JDBL is available at
https://github.com/castor-software/jdbl.

3.5.2 Reproducible datasets

All research papers in this thesis include a reproducible dataset specifically de-
signed for transparent and reliable research. Table 3.1 shows the URL on GitHub
of the companion dataset for each research paper. The datasets comprise a diverse
range of technologies employed for data collection, analysis, and manipulation
(e.g.. Shell scripts, Java artifacts, R and Python notebooks, Docker containers, CSV
files, and JSON files). These datasets allow other researchers to independently
verify the results obtained. It also enables the development of new methods and
techniques that can be applied to the same dataset.

In addition to the datasets that come with each research paper, the author of
this thesis contributed to making available two additional datasets in the Data
Showcase track of the Proceedings of the IEEE/ACM International Conference on
Mining Software Repositories:

• The Maven Dependency Graph: a Temporal Graph–Based Representation of
Maven Central [8].

• DUETS: A Dataset of Reproducible Pairs of Java Library–Clients [13].

These datasets play a valuable role in promoting reproducible research in the
field of Java dependency analysis. The technical challenges and benefits of both
datasets for the contribution of this thesis are discussed below.
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MDG

The Maven Dependency Graph (MDG) is a graph-oriented open-source dataset
that characterizes the artifacts present in Maven Central and their associated
dependency relationships. It represents a snapshot of the Maven Central Repository
from September 6, 2018. The MDG is implemented as a Neo4j graph database and
contains a total of 2.4M artifacts and 9.7M dependency relationships among them.
The MDG aims at enabling the Software Engineering community to conduct large-
scale empirical studies on Maven Central. The dataset is accessible on Zenodo at
https://zenodo.org/record/1489120.

The author of this thesis contributed to the creation of this dataset, including
engaging in discussions leading to its technical implementation and development.
The dataset has found utility in the author’s Research Papers I [1] and II [2].
Furthermore, the dataset has been effectively reused by other researchers [14,
167, 168, 169].

DUETS

The DUETS dataset consists of a collection of single-module Java libraries, which
build can be successfully reproduced with MAVEN (i.e., all the test pass and a
compiled artifact is produced as a result of the build), and Java clients that use
those libraries. DUETS includes 94 different libraries, with a total of 395 versions, as
well as 2,874 clients. The construction of this dataset involved filtering 147K Java
projects and analyzing 34K pom.xml files in order to identify relevant libraries and
clients that reuse version of these libraries. We take a special care to build a dataset
for which we ensure that both the library and the clients have a passing test suite.
The dataset is accessible on Zenodo at https://zenodo.org/record/4723387.

The contributions in this thesis involve executing software tools on compilable
and testable software projects, which we provide with DUETS. We use the DUETS

dataset for the evaluation of debloating techniques that rely on both static and
dynamic analysis. The dataset has found utility in the author’s Research Papers
III [3], IV [4], and VI [6]. Furthermore, the dataset has been effectively reused
by other researchers seeking to explore the effects of API changes on clients of
various libraries [170, 171].
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Summary of Contribution #4

We contribute three new open-source research tools to the field of debloating
Java dependencies: DEPCLEAN, DEPTRIM, and JDBL. Each research paper
contributes experimental data and makes the results open. By sharing our
datasets and making this information widely accessible, we aim to facilitate
collaboration and knowledge sharing within the scientific community. Further-
more, we contribute two large Data Showcase datasets of Java dependencies.
Moreover, our contributions include two extensive Data Showcase datasets
of Java dependencies, which are essential for researchers and practitioners
seeking to explore various aspects of software engineering. These datasets
have been meticulously curated and pre-processed to ensure their quality and
usability, and we hope that they will be valuable resources for the community
for years to come. By following these reproducible research principles, we aim
to foster collaboration and trust in the scientific community and to advance
the field of software debloating.

This contribution is present in Research Papers I [1], II [2], III [3], IV [4],
V [5], and VI [6].

3.6 Summary

In this chapter, we presented and discussed the contributions of this thesis. First,
we elucidated the terminology and concepts of dependency management in the
MAVEN ecosystem. Further, we described the technical challenges pertaining
to debloating which were targeted in each of our contributions, namely bloat
detection, bloat removal, and debloat assessment.

The first contribution focuses on removing bloated dependencies. We found
that 75% of the dependency relationships in Maven Central are bloated, and
that developers are willing to remove bloated dependencies: we removed 140

bloated dependencies via merged pull requests in mature Java projects. The
second contribution focuses on specializing the remaining used dependencies in
the dependency tree of Java projects. We focus on reducing the share of third-
party classes across the dependencies. Our technique removes 47.0% of classes
in 30 projects, reducing the project classes to dependency classes ratio from 8.7

× to 4.4 × . The third contribution is centered around the process of debloating
Java libraries by removing features that are actually not used at runtime by their
clients. We found that 81.5% of the clients were able to successfully compile and
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execute their test suite using the debloated library. The fourth contribution focuses
on the technical challenges addressed by the three new open-source research
tools that contributed to the field of debloating in this thesis and describe the
two large datasets of Java dependencies employed in our research studies. We
made our research tools and results openly accessible and reproducible, aiming to
foster collaboration in the scientific community and advance the field of software
debloating.

73





Chapter 4

Conclusions and Future Work

“Lättare sagt än gjort.”
— svenskt ordspråk

GIVEN the ever-increasing complexity of software systems, the research field
of software debloating is still in its early stages of development, with many
challenges and opportunities for further investigations. In this chapter,

we summarize the results of the three key technical contributions presented in
this thesis: removing bloated dependencies, specializing used dependencies, and
debloating w.r.t. clients. Moreover, we offer an author’s reflection on the particular
challenges encountered when conducting research in the field of empirical software
engineering. Finally, we discuss promising avenues for future studies and highlight
the current challenges that should be overcome in order to facilitate the progress
and adoption of software debloating techniques.

4.1 Key Experimental Results

In this thesis, we have focused on the design and implementation of software
debloating techniques in the context of Java dependencies. We propose various
techniques to address the following research problems: 1) the increasing practice
of software reuse leading to the emergence of bloated dependencies in the Java
ecosystem; 2) the existence of a large amount of bloated code in used dependen-
cies; and 3) the lack of knowledge regarding the impact of debloating libraries for
their clients. Our technical contributions are organized into three parts to target
these three problems.

First, we focus on addressing the problem of dependency bloat in the MAVEN

ecosystem We create the concept of “bloated dependencies” and propose an ap-
proach to detect and remove these dependencies. We implement this approach in
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a practical software tool called DEPCLEAN [2]. We use DEPCLEAN to empirically
study the pervasiveness of dependency bloat in the MAVEN ecosystem. Our results
reveal that 2.7% of directly declared dependencies, 15.4% of inherited dependen-
cies, and 57% of transitive dependencies are bloated. Our longitudinal analysis of
bloated dependencies shows that the usage status of such dependencies do not
change over time [3], and that developers are willing to remove bloated depen-
dencies when notified, as evidenced by the removal of 140 bloated dependencies
in 30 open-source projects. Beyond academic recognition, DEPCLEAN has received
positive feedback from developers for its ability to detect bloated dependencies in
a variety of real-world projects. Overall, our experimental results highlight the
importance of analyzing, maintaining, and testing configuration files and other
software artifacts related to the management of third-party dependencies (e.g.,
pom.xml files).

Second, we focus on the dependencies that are partially used by MAVEN

projects. We propose a novel technique called “dependency specialization” to
reduce the amount of third-party code in Java projects based on their actual
usage [6]. We implement this dependency specialization technique in a tool called
DEPTRIM, which automatically identifies the necessary subset of functionalities
for each dependency and removes the rest, resulting in repackaged specialized
dependencies. We use DEPTRIM to evaluate the effectiveness of our technique on
30 mature Java projects. Our results show that DEPTRIM successfully specializes
86.6% of the dependencies in the projects without affecting its build, while
dividing by two the amount of third-party code. Overall, our findings suggest that
the specialization of dependencies is an effective approach to significantly reduce
the share of third-party code in Java projects.

Third, we focus on investigating how debloating Java libraries impacts the
clients of these libraries. We propose a novel technique for debloating, which
we call “coverage-based debloating”, that leverages code coverage information
collected at runtime to detect and remove code bloat [4]. We implement this
approach in a software tool called JDBL which relies on a combination of state-of-
the-art Java bytecode coverage tools to precisely capture what parts of a project
and its dependencies are used when running with a specific workload. With
this information, JDBL automatically removes the parts that are not covered, in
order to generate a debloated version of the project. We use JDBL to debloat 211
Java libraries in order to determine the ability of this technique at capturing the
behaviors that are relevant for the clients of the debloated libraries The debloated
versions are syntactically correct and preserve their original behavior according
to the workload. We evaluate thi debloating approach on client projects that
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either have a direct reference to the debloated library in their source code or
which test suite covers at least one class of the libraries that we debloat. Our
results show that 81.5% of the clients, with at least one test that uses the library,
successfully compile and pass their test suite when the original library is replaced
by its debloated version. This result constitutes the first empirical demonstration
that debloating can preserve essential functionalities to successfully compile the
clients of debloated libraries.

4.2 Reflections on Empirical Software Engineering Research

Empirical software engineering is a fascinating research field that encompasses the
collection, analysis, and interpretation of data to improve software development
practices [76]. The inherent complexities of software development, coupled with
the challenges of collecting and analyzing large amounts of human and computer-
generated data, make empirical software engineering research a challenging field.
Throughout our contributions, we have embraced these challenges and have
striven to address and overcome each of them as they arose.

One of the primary challenges has been finding useful datasets of software
artifacts for our empirical experiments on debloating [172]. Collecting data of
software development projects for this purpose is a daunting task, as it requires
access to various software artifacts such as source code, build configuration files,
and third-party dependencies [173]. Additionally, researchers must ensure that
the data has been ethically collected, and is accurate, complete, and relevant
to their research questions [174]. For instance, we investigated to what extent
the number of bloated dependencies increases over time in software projects. To
collect relevant data, we need to analyze a large number of open-source repos-
itories of Java projects that are representative of the dependency management
process in the MAVEN ecosystem and analyze their dependency trees over time at
different releases. We encountered this task challenging as many repositories are
out of date [175] and some dependencies cannot be resolved (e.g., such as those
dependencies that are hosted in private repositories and become inaccessible to the
research community). However, we hope that leveraging new tools, such as bots
to automate pull requests [176] will encourage developers to update dependencies
and maintain their projects in an up-to-date state [177]. To further promote repro-
ducibility in our research and support the broader software engineering community,
we have invested significant effort in curating high-quality datasets of software
artifacts that are readily available for other researchers to use. In this same spirit,
the software engineering community has been actively promoting reproducible
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research by offering publicly accessible datasets via the Data Showcase track at the
International Conference on Mining Software Repositories (MSR). This initiative aims
to encourage the sharing of high-quality datasets for software engineering research
purposes. We are proud to have contributed to this effort throughout this thesis.

Another challenge of empirical software engineering research is finding sound
metrics to evaluate the proposed tools and techniques [178, 179, 180]. When
conducting our debloating experiments, we had to identify metrics that are valid
and reliable for measuring the effectiveness of our proposed debloating techniques.
For instance, in the case of our empirical evaluation of the debloating results of
JDBL, our experiments focus on measuring the amount of code bloat removed
in the debloated libraries at three different code granularity levels: methods,
classes, and dependencies. However, we notice that most previous works in
software debloating do not consider the code removed in third-party dependencies.
Therefore, we had to assume that counting the number of completely removed
third-party dependencies is a reasonable choice in this case. Overall, finding
appropriate metrics in software engineering can be challenging, as some metrics
may not exist previously and for those that already exist, it could be difficult to
accurately use them in the context of some specific experiment. We hope that
our original metrics will become beneficial to the research community exploring
software debloating techniques.

One more challenge we have encountered is establishing a fair and realistic
comparison of our techniques with other existing tools in the field. Research
tools are often not available or the research experiments conducted are not
reproducible [181]. For example, we encountered difficulties in finding available
software debloating tools, as some are closed-source or no longer accessible. Upon
contacting the authors of some existing tools, we faced challenges in executing
them correctly due to specific configuration requirements. Additionally, certain
experiments are designed for specific research environments, which complicates
the process of comparing them in diverse contexts. In this regard, the use of
Docker containers has been widely recognized as an effective way to promote
reproducibility in scientific research [182]. Docker provides a self-contained
environment that can be easily shared and replicated across different computing
platforms. In order to contribute to this ongoing effort and foster a culture of
reproducibility within the research community, we have made our software tools
(DEPCLEAN, DEPTRIM, and JDBL) publicly available and reusable, providing an
opportunity for other researchers to easily build upon our work and perform fair
comparisons in future studies.

Last but not least, we have learned after working on tens of thousands of
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open-source projects that it is hard to build and execute software in general [183].
This can be a challenging and time-consuming process, especially for large projects
containing millions of lines of code and thousands of dependencies. For instance,
while conducting our experiments on the software supply chain of the Ethereum
Java clients Besu and Teku [5], we embraced the opportunities presented by
their significant engineering complexity to further enhance our understanding
of complex software systems (e.g., at that moment, Besu was composed of 41
internal modules, containing 355 unique third-party dependencies provided by
165 distinct supplying organizations). Through our experience, we notice that
studying projects with well-defined CI/CD pipelines can greatly simplify the build-
ing process, thereby saving time and effort for researchers that would otherwise
be spent on manual configuration and integration. Moreover, sometimes when we
were building and executing the software multiple times to collect sufficient data
we found nondeterministic behaviors (e.g., flaky tests [184], Heisenbugs [185], or
non-atomic operations [186]). We believe that the existence of those engineering
challenges when building and executing real-world software represents fundamen-
tal opportunities that contribute to the vibrant and dynamic nature of empirical
software engineering research.

In summary, empirical software engineering research provides answers to the
fundamental questions about the practice of software development. It is a thriving
research field that holds promise for advancing our understanding of software
development practices and improving the quality of software products [187].
Throughout our research journey, we have successfully tackled various challenges,
including gathering valuable datasets, identifying suitable metrics, comparing our
work w.r.t. other research tools, and building and executing software projects from
public repositories on GitHub. These challenges, which are commonly encountered
by researchers in the field, have served as opportunities for us to enhance the
quality of our research and draw more impactful conclusions. As such, it is
imperative that our community remain aware of these existing challenges and
continue working to mitigate them through more careful planning and execution
of their research projects, ultimately promoting reproducible science. We believe
that research on empirical software engineering will remain a vital and enduring
research field for years to come.

4.3 Future Work

Software debloating is an important area of research that has the potential to
significantly improve the performance and reliability of software applications. Our
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research has shown that there exist open challenges in improving the effectiveness
of debloating. In this section, we discuss potential research directions on top of
our contributions.

4.3.1 Neural debloating

The overall research goal of software debloating is to facilitate the adoption
and integration of automatic software debloating techniques in the industry to
improve software. An interesting direction for future work in this field is to explore
the use of advanced Machine Learning methods to enhance the effectiveness of
debloating. Promising seminal efforts in this direction have already been made
employing Reinforcement Learning [99]. We consider promising the use of Deep
Learning algorithms to learn patterns of code execution in order to detect and
predict the emergence of code bloat. By leveraging the capabilities of these
algorithms, debloating techniques can potentially achieve a higher degree of
precision and promptness in identifying and removing code that is not necessary
for the software’s functionality.

One possible research direction towards incorporating advanced Machine
Learning methods into software debloating would be to use Convolutional Neural
Networks (CNN) and Neural Machine Translation (NMT) networks to facilitate
feature extraction and representation of code execution patterns. These neural
network architectures have proven to be effective in various software engineering
tasks, including code generation from textual program descriptions [188] and
automatic program repair [189]. Additionally, reinforcement learning algorithms,
such as Q-learning or Deep Q-Networks (DQN), could be employed to train agents
capable of making optimal decisions during the debloating process [190]. We
believe that the combination of cutting-edge Machine Learning techniques holds
immense potential to revolutionize software debloating, ultimately leading to
leaner, more efficient, and secure software systems that can benefit the entire
software engineering community.

The preservation of software functionality after the debloating process is a
complex challenge that lies at the heart of software debloating [49]. This challenge
is particularly daunting when attempting to identify and remove code that appears
to be unused but is actually necessary for the proper functioning of the application.
By leveraging advanced Machine Learning techniques, researches can potentially
improve the accuracy of identifying truly necessary code, thereby preserving
the intended behavior of the debloated artifacts. On the other hand, current
debloating approaches rely on static analysis techniques, which face the intractable
problem of accurately determining whether a given piece of code is actually
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necessary for the correct execution of the software application. Moreover, some
debloating techniques may inadvertently introduce new bugs or vulnerabilities,
which necessitates a thorough evaluation of the debloating process. By harnessing
the capabilities of Machine Learning, we hope that innovative techniques will be
developed in order to accurately identify and preserve the necessary behavior of
the application, ultimately addressing this critical area of research in the field of
software debloating.

To evaluate such a technique, an experiment could be designed in which
a dataset of software projects with known code bloat issues is collected. The
new neural debloating approach would be applied to these projects, and the
results be compared against traditional debloating methods (such as the code
analysis techniques contributed in this thesis), as well as with the results obtained
using the reinforcement learning approach by Heo et al. [99]. Evaluation metrics
could include the amount of code bloat removed, the accuracy of the debloating
decisions, and the impact on software functionality, as assessed by successfully
passing the test suite. The ultimate goal is to apply and evaluate these debloating
techniques in real-world production environments. This experiment would provide
valuable insights into the effectiveness of advanced Machine Learning methods
for software debloating and help establish the potential of these techniques in
addressing uncovered future issues associated with the existence of code bloat.

4.3.2 Debloating across the whole software stack

Exploring debloating software across the entire software stack is a vital area for fu-
ture research, as it can significantly improve the efficiency and security of software
systems [36]. A promising direction involves focusing on software components
within the Java Development Kit (JDK), which serves as a foundational part of
numerous Java-based applications. Despite its importance, the JDK contains
several features that are rarely used and therefore add unnecessary code bloat
to the running applications. For instance, the CORBA (Common Object Request
Broker Architecture) module, which facilitates communication between objects
in a distributed system, is currently included in many JDK distributions even
though most modern applications have transitioned to alternative technologies
like RESTful web services or gRPC for distributed computing. In the case of
DEPCLEAN, it imports the entire package java.util.zip from the JDK, yet it
only uses classes ZipEntry and ZipFile for performing JAR file manipulations,
and the other classes from this package, such as classes Deflater and Inflater
for general purpose compression constitute bloat for DEPCLEAN. Although the
Java community has made substantial efforts in providing tools like jdeps to help
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identify which packages are actually used by an application, there is still a lack of
fully automatic tools to effectively debloat Java software. To address this issue,
future research efforts could focus on identifying and removing these unused
features from the JDK, thereby reducing the overall size of the software stack and
improving its performance.

Debloating an entire software stack, such as the JVM, JDK, and the OS layer
running on top of modern containers, is a complex yet crucial endeavor because it
involves carefully analyzing, maintaining, and testing not only the application code
but also its dependencies and the underlying runtime environment. To accomplish
this, a holistic approach is required, which considers debloating at every layer of
the stack. One of the main challenges for future research on full-stack debloating
is that dependencies and features often interact in non-trivial ways, making it
difficult to determine which components can be safely removed without affecting
the overall functionality. To tackle this challenge, researchers could develop
sophisticated debloating techniques that combine static and dynamic analysis,
along with Machine Learning, to identify and remove bloat at different levels
(e.g., through the analysis of system calls). For instance, a debloating approach
could begin by analyzing the JDK and JVM layers, identifying rarely used or
obsolete modules and components. Following this, the debloating process could be
extended to the application and container layers, focusing on the dependencies and
features specific to the frameworks used, e.g. Spring Boot or Quarkus. Throughout
the process, the future debloating techniques will ensure the preservation of
software functionality by carefully evaluating the potential impact of each code
removal on the overall system’s behavior.

The results of our studies stress the need to engineer, i.e., analyze, maintain,
and test dependency configuration files to avoid software bloat at a higher level
of the software stack. Debloating modern frameworks that contain many bloated
dependencies, such as the aforementioned Spring Boot and Quarkus, is another
important area for future research. These frameworks are designed to simplify the
development process by providing pre-built features and dependencies that can be
easily integrated into applications. However, this convenience comes at the cost of
bloated dependencies and unnecessary features that can slow down application
performance and increase the risk of security vulnerabilities. To address this issue,
future research could focus on developing more efficient and streamlined versions
of these frameworks that remove unnecessary dependencies and features, while
still maintaining the core functionality that developers appreciate. By doing so,
tailored frameworks can help to reduce the overall bloat of the software stack and
improve the efficiency and security of software in production environments.
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4.4 Summary

In this section, we presented the key results for each of our technical contributions.
We discussed how our debloating approaches help to cope with the increasing
complexity of software systems. Additionally, we reflected on the challenges
encountered while conducting empirical software engineering research, offering
valuable insights on the opportunities for future work. As we continue to identify
promising research directions for further studies in this field, it is essential to con-
front and overcome the existing challenges in order to promote the development
and adoption of effective software debloating techniques, ultimately contributing
to developing better software systems.
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Abstract—Maven artifacts are immutable: an artifact that is
uploaded on Maven Central cannot be removed nor modified. The
only way for developers to upgrade their library is to release
a new version. Consequently, Maven Central accumulates all
the versions of all the libraries that are published there, and
applications that declare a dependency towards a library can pick
any version. In this work, we hypothesize that the immutability
of Maven artifacts and the ability to choose any version naturally
support the emergence of software diversity within Maven
Central. We analyze 1,487,956 artifacts that represent all the
versions of 73,653 libraries. We observe that more than 30% of
libraries have multiple versions that are actively used by latest
artifacts. In the case of popular libraries, more than 50% of
their versions are used. We also observe that more than 17% of
libraries have several versions that are significantly more used
than the other versions. Our results indicate that the immutability
of artifacts in Maven Central does support a sustained level of
diversity among versions of libraries in the repository.

Index Terms—Maven Central, Software Diversity, Library
Versions, Evolution, Open-Source Software

I. INTRODUCTION

Maven Central is the most popular repository to distribute

and reuse JVM-based artifacts (i.e., reusable software pack-

ages implemented in Java, Clojure, Scala or other languages

that can compile to Java bytecode). By September 6, 2018,

Maven Central contains over 2.8M artifacts and serves over

100M downloads every week [1]. The Maven dependency

management system, which is able to resolve transitive depen-

dencies automatically, has been key to this success: it relieves

developers from the complexity of manual management of

their dependencies. Uploading artifacts into Maven Central

is the most effective way for open source projects to remain

permanently accessible to their users. In this way, every build

tool able to download Java libraries can fetch from a world of

libraries and dependencies in a single and authoritative place.

In this work, we analyze software artifacts from the perspec-

tive of one essential characteristic enforced by Maven Central:

immutability1. All artifacts (code packages, documentation,

dependency declarations, etc.) that are uploaded on Maven

Central are immutable: they cannot be rewritten nor deleted.

This is a critical design choice that has a significant influence

on the way the Maven Central repository is utilized. We

1Sonatype community support: https://issues.sonatype.org/browse/
OSSRH-39131

hypothesize that this design decision is a great opportunity

to prevent dependency monoculture [2] and increase the di-

versity [3] among software dependencies.
Previous works have analyzed Maven artifacts from the

perspective of the risks induced by immutability. First, the

redundancy in multiple versions can introduce conflicts among

dependencies, e.g., trying to load the same class several times.

This risk has been extensively analyzed by Wang and col-

leagues [4]. Second, the projects that depend on a library need

to explicitly update their dependency descriptions in order

to benefit from the update. This represents a risk since these

projects can eventually rely on outdated dependencies [5] that

can contain security issues [6] or API breaking changes [7].
We take a fresh look at the presence of multiple versions

of the same library in Maven Central, and consider it as

an opportunity. We analyze how the ability to choose any

library version for software reuse supports the emergence of

software diversity in the repository and how this diversity of

versions fuels the success of popular libraries. We consider this

emergent diversity of reused versions as an opportunity since

it participates in mitigating the risks of software monoculture

[8]. Overcoming this type of monoculture is essential to build

resilient and robust software systems [3], [9], [10].
To conduct this empirical study, we rely on an existing

dataset, the Maven Dependency Graph [1], which captures a

snapshot of Maven Central as of September 6, 2018. This

dataset comes in the form of a temporal graph with metadata

of 2.4M artifacts belonging to 223K libraries, with more than

9M direct dependency relationships between them. In order

to enable reasoning not only at the artifact level but also at the

library level, we extend this dataset with another abstraction

layer capturing dependencies at the library level.
We measure activity, popularity and timeliness of a subset

of 73, 653 libraries with multiple versions, which represents

61.81% of the total number of artifacts in Maven Central. We

empirically investigate whether the diversity of library versions

is a valuable design choice. Our contributions are as follows:

• a quantitative analysis of the diversity of usage and

popularity of library versions;

• evidence of the presence of large quantities of artifacts

that participate in the emergence of diversity;

• open science with replication code and scripts available

online.
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II. BACKGROUND AND DEFINITIONS

In this section, we describe the dataset of Maven artifacts

that constitutes the raw material for our work, as well as its

extended library-level abstraction.

A. The Maven Dependency Graph

To conduct this empirical study, we rely on the Maven

Dependency Graph (MDG), a dataset that captures all of

the artifacts deployed on the Maven Central repository as

of September 6, 2018 [1]. The MDG includes 2, 407, 335
artifacts. Each artifact is uniquely identified with a triplet

(‘groupId:artifactId:version’). The groupId identifier is a way

of grouping different Maven artifacts, for instance by library

vendor. The artifactId identifier refers to the library name.

Finally, the version identifies each library release uniquely.

For example, the triplet ‘org.neo4j:neo4j-io:3.4.7’ identifies

the version 3.4.7 of an input/output abstraction layer for the

Neo4j graph database. The MDG also includes 9, 715, 669
dependency relationships as declared in the Project Object

Model (pom.xml) file of each artifact.

In this work, we focus on libraries, i.e., the sets of artifacts

that share the same tuple ‘groupId:artifactId’ but have differ-

ent versions. The MDG includes 223, 478 of such libraries,

but the concept of library is not rigorously captured in the

graph. Consequently, we extend the artifact nodes of the MDG

with labels referring to their corresponding library. We call

LIBS the set of all libraries in Maven Central. We introduce

an ordering function denoted <v that leverages the standard

version numbering policy described by the Apache Software

Foundation2 in order to compare the different versions of

artifacts belonging to the same library. For instance, 1.2.0 <v

2.0.0. We also define a temporal ordering function denoted

by <t to compare the release dates of different artifacts. For

example, ‘12-09-2011’ <t ‘30-03-2015’. In the remainder of

the paper, we refer to artifacts as library versions or simply

versions. We define the MDG as follows:

Definition 1. Maven Dependency Graph. The MDG is a
vertex-labelled graph, where vertices represent Maven library
versions, and edges describe dependency relationships or
precedence relationships. We use a labeling function over
vertices to group versions by library. We define the MDG as
G = (V,D,N ,L,R), where,
• the set of vertices V represents the library versions

present in Maven Central
• the set of directed edges D represents dependency rela-

tionships between library versions
• the set of directed edges N represents versions

precedence relationships, where the version of the source
node is strictly lower than the version of the target node
w.r.t. <v

• the surjective labelling function L returns the
corresponding library of a given library version
v ∈ V , defined as L : V → LIBS

2https://cwiki.apache.org/confluence/display/MAVEN/Version+number+
policy

Fig. 1. Example of relationships between library versions in the Maven
Dependency Graph.

• the temporal function R refers to the date at which a
library version v ∈ V was deployed, defined as R : V →
T , where T is a <t-ordered discrete time domain

In the MDG, T is bounded to [‘15-05-2002’, ‘06-09-2018’],

where the lower bound refers to the date when the first library

was deployed on Maven Central. In the rest of the paper, we

refer to the lower and upper bounds respectively as START
and SNAPSHOT, and we use days as the time granularity.

Figure 1 illustrates the different nodes and

relationships within a simplified graph G composed

of four libraries (A,B,C,D) and nine library versions

{a1, a2, a3, b1, b2, c1, c2, c3, d1}. The regular edges represent

dependency relationships. For example, the first version of A

(a1) depends on the first version of B (b1), and the second

version of A (a2) depends on the second version of B (b2) and
C (c2). The dashed edges represent precedence relationships,

and all vertices that are related through such edges constitute

the different versions of a library. In Figure 1, we place nodes

in a temporal order, from left to right, corresponding to the

deployment date, thus the node b1 is the firstly deployed,

while the node c3 is the most recently deployed.

The temporal order of releases does not imply a similar

versioning order for a given library. In some cases, library

instances with lower version number may be released after

library versions with a greater version number, e.g., in case of

a library version downgrade or maintenance of several major

library versions. In Figure 1, we can see that a2<ta3 and

a3<va2. Note, this is a common practice adopted by very

popular libraries such as Apache CXF3, and Mule4 [11].

Definition 2. Additional notations. For further references in
the MDG, we introduce the following notations:

• next(v): the next release of a given library version v
w.r.t. the ordering function <v

• nextall(v): transitive closure on the next releases of a
library version v

3https://cxf.apache.org
4https://www.mulesoft.com
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• latest: the library version v such that � next(v)
• LATESTS: the set of all latest library versions in a

dependency graph G
• deps(v): V → Vn, with n ∈ N: the set of direct

dependencies of a given library version v ∈ V
• depstree(v): the whole dependency tree of v
• users(v): V → Vn, with n ∈ N: the set of library

versions declaring a dependency towards v
• usersall(v): all the transitive users of v

For example, in Figure 1, deps(a2) = {b2, c2},
depstree(a2) = {b2, c2, d1}, users(d1) = {c2, c3} and

usersall(d1) = {c2, c3, a2}.
B. The Maven Library’s Dependency Graph

In order to be able to reason about not only versions but also

libraries, we elevate the abstraction of the MDG to the library

level. Figure 2 shows the elevated graph corresponding to the

dependency graph G in Figure 1. We construct a weighted

graph, GL, where nodes correspond to libraries (LIBS) in G.
We create an outgoing edge between two libraries l1 and l2 if

there is at least a version of l1 that uses a library version of l2.
We denote by D(l) the set of direct library dependencies of

a given library l. For example, D(A) = {B, C}. Finally, the

weight of the outgoing edges from l1 to l2 corresponds to the

number of versions of l1 that use a version of l2. We define

the Maven Library’s Dependency Graph (MDGL) as follows:

Definition 3. Maven Library’s Dependency Graph. The
MDGL is a edge-weighted graph, where vertices represent
Maven libraries, and edges’ weight describes the number of
dependency relationships between their versions. We define the
MDGL as GL = (LIBS, E , W), where,
• the set of vertices LIBS represents the libraries present

in Maven Central
• the set of edges E represents the dependency relationships

between libraries
• the weighing functionW represents the weight of a given

edge, defined as W : E → N

For further references in the MDGL, we introduce the follow-
ing notations:
• the set of direct library dependencies D of a given library,

defined as D : LIBS → LIBSn

• the weighing function
←−
W returns the sum of the weights

of incoming edges, defined as
←−
W : LIBS → N

• the weighing function
−→
W returns the sum of the weights

of outgoing edges, defined as
−→
W :LIBS → N

2

1

3 2

DA B C

Fig. 2. The elevated Maven Library’s Dependency Graph from Figure 1.

III. STUDY DESIGN

This work is articulated around five research questions. In

this section, we introduce these questions as well as the metrics

that we collect to answer them. We also describe the represen-

tative subset of artifacts that we study throughout the paper.

A. Research Questions

RQ1: To what extent are the different library versions actively
used?

Because Maven artifacts are immutable, all the versions of

a given library that have been released in Maven Central are

always present in the repository. Meanwhile, previous studies

have shown that users of a given version do not systematically

update their dependency when a new version is released [5],

[12], [13]. Consequently, we hypothesize that, at some point

in time, multiple versions of a library are actively used. In

this research question, we investigate how many versions are

currently used, how many have been used but are not anymore

and how many versions have never been used.

RQ2: How are the actively used versions distributed along the
history of a library?

The full history of versions of a library released on Maven

Central is always available. Consequently, users can decide

to depend on any of the versions. In this research question,

we analyze where, in the history of versions, are located the

versions that are actively used.

RQ3: Among the actively used versions of a library, is there
one or several versions that are significantly more popular
than the others?

Library users are free to decide which version to depend on

and for how much time. In the long term, these users’ decisions

determine what are the most popular libraries and versions

in the entire software ecosystem [5], [14]. This research

question investigates to what extent these decisions lead to

the emergence of one or more versions that receive a greater

number of usages compared to the other versions.

RQ4: Does the number of actively used versions relate to the
popularity of a library?

We observe that for most libraries, more than one version is

actively used at a given point in time. The library developers

have no control over this since they cannot remove versions

from Maven Central, nor force their users to update their

dependencies. Meanwhile, it might be good for a library to

maintain several versions that fit different usages. In this

question, we investigate how the existence of multiple active

versions relates to the overall popularity of a library.

RQ5: How timely are the different library versions in Maven
Central?

With each new release, project maintainers make an effort

to improve the quality of their libraries (e.g., by fixing bugs,

adding new functionalities or increasing performance). These

changes are expected to be directly reflected in the number of
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users that update their dependencies to the new available re-

lease, and also in the number of new usages of the library [15].

This research question aims to get insights into how timely is

the release of new versions. In particular, we investigate how

much attraction gets a library version while it was the latest,

compared to the older versions during the same period of time.

B. Metrics

To characterize the activity status of libraries and versions

in terms of their usages by other latest library versions, we

introduce the notions of active, passive, and dormant libraries
and versions. Moreover, we introduce the lifespan of library

versions to get insights on the duration of their activity

period. These notions and measures are intended to answer

RQ1 and RQ2.

Metric 1. Activity status. A passive library version v is a
version that has been used in the past, but is no longer
used, even transitively, by any latest library version (v ∈
LATESTS). Formally, this metric is described as a boolean
function isPsv : V → {true, false}, where,

isPsv(v) =

⎧⎨
⎩
false v ∈

⋃
i∈LATESTS

{depstree(i)}

true, otherwise

An active library version v is a version where
isPsv(v) = false. A dormant library version is an
extreme case of a passive library version that occurs when
the version has never been used by existing libraries (i.e.,
users(v) = ∅) in Maven Central.

At the library level, an active library is a library that has
at least one active version, whereas a passive library is a
library that has all its versions passive. A dormant library
is an extreme case of passive library that occurs when all its
versions are dormant.

Metric 2. Lifespan. The lifespan of a library version v is
the time range during which it was/is being used. We define
this period as the time range between the release date of v
and the timestamp at which it becomes passive. In case v is
active, this period starts at the release date of the artifact
until the day the SNAPSHOT was captured. Dormant library
versions do not have a lifespan at all. We denote this metric
by ls(v) =[startLsv, endLsv]. Then, the interval’s upper
bound can be formally described as follows:

endActv =

{
SNAPSHOT, ¬isPsv(v)

last, isPsv(v)

where, last = max
⋃

i∈usersall(v)

{R(next(i))}.

To study the popularity of library versions in Maven Central,

and hence answer RQ3 and RQ4, we introduce a metric

of popularity which measures the transitive influence and

connectivity of a library version in the MDG. We rely on

the standard PageRank algorithm [16], which accounts for the

number of transitive usages. Intuitively, library versions with

a higher PageRank are more likely to have a larger number of

transitive usages. On the other hand, to measure the popularity

of libraries, we use the Weighted PageRank algorithm [17] on

the MDGL.

Metric 3. Popularity. The popularity of a library version
v ∈ V is as follows:

popV(v) = (1− d) + d
∑

i∈users(v)
popV(i),

where d is a damping factor to reflect user behavior, which is
usually set to 0.85 [18].

The popularity of a library l ∈ LIBS is as follows:

popL(l) = (1− d) + d
∑

i∈U(l)

popv(i)
←−c (l,i)

−→c (l,i),

where ←−c and −→c are respectively:

←−c (l,i) =

←−
W (i)∑

p∈D(l)

←−
W (p)

, −→c (l,i) =

−→
W (i)∑

p∈D(l)

−→
W (p)

.

Finally, to answer RQ5, we introduce the notion of timeli-
ness of library versions. This metric looks at the number of

usages of every single version when it was latest and assesses

if it was successful in attracting more users compared to its

older versions. To this end, we compare the usages of a given

version v during its lifespan to the usages that the whole library

has received during the period when v was latest. We call this

period the timeliness period.

Metric 4. Timeliness. The timeliness period, tp(v), of a
library version v, is the time range between the release date
of v and the most recently released version of its library
ordered by <t, which is not necessarily next(v). We denote
this version as mr:

tp(v) = [R(v),R(mr)],
where, mr = min

i∈nextall(v)
{R(i)|R(i) >t R(v)}.

The timeliness of a library version v is a function, tim(v) :
V → Q+, where,

tim(v) =
|users(v)|

|
⋃
i∈V
{i|R(i) ∈ tp(v) ∧ L(v) ∈

⋃
j∈deps(i)

{L(j)}}|
.

In case the library corresponding to v was not used during
the timeliness period of v (the denominator is 0), then we
consider tim(v) = 0. This also applies when v is dormant.
All first releases of libraries have tim(v) = 1 since they have
no earlier releases.

Based on the timeliness metric, three situations can occur:
• v is timely if tim(v) = 1: v was a success during its

timeliness period and users relied on it
• v is over-timely if tim(v) > 1: v has attracted users

beyond its timeliness period
• v is under-timely if tim(v) < 1: users relied on older

versions during its timeliness period
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TABLE I
CATEGORIES OF LIBRARIES IN MAVEN CENTRAL ACCORDING TO THEIR

RELEASING PROFILES

Category Criteria #Libraries (%) #Versions (%)
(i) #versions = 1 65, 557 (29.33%) 65, 557 (2.72%)
(ii) One shot* 32, 825 (14.69%) 459, 445 (19.08%)
(iii) #versions > 1 125, 096 (55.98%) 1, 882, 333 (78.2%)

(*) Libraries with more than one version and that have been released in the
same day.

C. Study Subjects

During our initial exploration of the MDG, we distinguished

three different categories of libraries in Maven Central: (i)

libraries that have only one version (∼30%), (ii) libraries with

multiple versions all released on the same day (∼15%), and

(iii) libraries with multiple versions released within different

time intervals (∼55%). Table I gives detailed numbers about

these categories. In particular, after manual inspection we

notice that a large number of libraries belonging to categories

(i) and (ii) are shipped with their classpath. We suspect these

projects to be using Maven only for deploying and storing

their libraries in Maven Central, but not for dependency

management or further maintenance tasks.

In this work, we are interested in studying libraries that have

multiple versions and utilize Maven regularly to manage and

update their dependencies, i.e., libraries belonging to category

(iii) in Table I. Figure 3 shows the distribution of the number

of versions for the libraries in this category. The minimum and

maximum number of versions are respectively 2 and more than

2, 000, precisely, 2, 122. Meanwhile, the 1st-Q and 3rd-Q are

around 5 and 200 versions respectively.

In order to conduct our empirical study on a representative

dataset, we choose [1st-Q, 3rd-Q] as a range of number of

versions. Therefore, this study focuses on all the libraries

with between 5 and 200 versions. This accounts for 73, 653
libraries and 1, 487, 956 versions, representing 32.96% and

61.81% of the total number of libraries and version in Maven

Central at the SNAPSHOT time.

Fig. 3. Distribution of the number of library versions in Maven Central.

IV. RESULTS

In this section, we address our research questions and

present the results obtained.

A. RQ1: To what extent are the different library versions
actively used?

To answer RQ1, we study the activity status of libraries

and versions in Maven Central. Table II shows the numbers

and percentages of active, passive and dormant libraries and

versions. We observe a low percentage of active versions

(14.73%), whereas there is a predominant number of passive

ones (85.27%), of which more than a half are dormant

(45.16%). On the other hand, we can notice that the majority

of libraries are active (95.49%), i.e., have at least one of its

versions active. Meanwhile, passive libraries represent nearly

5% of the total number of libraries, of which (∼4%) are

dormant.

Fig. 4. Distribution of the number of active versions across active libraries

TABLE II
ACTIVITY STATUS OF LIBRARIES AND VERSIONS IN THE STUDY SUBJECTS

Status #Versions (%) #Libraries (%)
Active 219, 184 (14.73%) 70, 337 (95.49%)
Passive non-dormant 596, 776 (40.11%) 387 (0.53%)
Dormant 671, 996 (45.16%) 2, 929 (3.98%)
Total 1, 487, 956 (100%) 73, 653 (100%)

We are intrigued by the 2, 929 dormant libraries. The

median number of versions in this family of libraries is 9
with a maximum of 150 versions. We noticed that most of

them are in-house utility libraries, intended for custom logging

or testing, e.g., ‘com.twitter:util-benchmark_2.11.0’. Other

libraries are archetypes5, e.g., ‘io.fabric8.archetypes:karaf-
cxf-rest-archetype’. These libraries are not intended to be

used in production. Their custom nature makes them used

rather internally, or by the library maintainers themselves.

In Table II, we also observe that a low proportion of versions

are active 219, 184 (14.73%), yet they are distributed across a

very high number of libraries, 70, 337 (95.49%), making these

libraries active. Figure 4 summarizes the distribution of active

versions in active libraries. We observe that more than a half of

active libraries, 40, 233 in total, have only one active version.

The remainder, 30, 104 libraries, have more than one active

version. For some libraries, such as ‘org.hibernate:hibernate-
core’, more than 100 versions are currently active. However,

5https://maven.apache.org/guides/introduction/introduction-to-archetypes
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the number of libraries with more than 100 active versions

represents less than 2% of the total. More interestingly, we

notice that 17% of the libraries have active versions belonging

to more than one different major releases (e.g., 2.X.X). For

instance, the library ‘activemq:activemq’ has two active ma-

jor versions: 3.X.X and 4.X.X, whereas ‘com.spotify:docker-
client’ has seven active versions: from 2.X.X up to 8.X.X.

Figure 5 shows the lifespan distribution of active and passive

versions. To avoid the bias introduced by the SNAPSHOT
time constraint, we consider only non-latest active versions

of libraries (v /∈ LATESTS). As we can see from the figure,

the lifespan of passive versions is approximately distributed

between 8 and 80 days (1st-Q and 3rd-Q), whereas, this range

is larger for active versions: between 351 and 1, 626 days. This

conveys that versions that are active for more than 80 days are

likely to remain active for a longer period. Subsequently, these

libraries are likely to be popular and widely used. Finally, we

notice that the median number of days a version spends after

its creation before being used for the first time is 14, with

a mean of 57.61. This suggests that versions that have been

dormant for less than 57 days are likely to become active;

beyond this time period, they are likely to remain dormant.
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Fig. 5. Distributions of the lifespan (in days) of passive and active versions

Findings from RQ1: More than 40% of libraries in

Maven Central have strictly more than one active version,

while almost 4% of the libraries have never been used.

This hints on an inclusive, immutable repository that can

support the emergence of a diversity of library usages.

B. RQ2: How are the actively used versions distributed along
the history of a library?

According to Metric 1, active libraries have at least one

active version. In this research question, we focus on under-

standing how these active versions are distributed across the

different library releases.

Figure 6 shows the positional distribution of all the active

versions in the libraries. Since libraries can have different

number of versions, we use a normalized relative index lying

between [0, 1], where 0 and 1 represent the indexes of the

first and last versions of the library, respectively. First of all,

we observe that active versions are scattered across different

positional indices. While 68.4% of active library versions

are almost evenly distributed across the non-latest releases,

a significant number of active versions, precisely 69, 146
(31.6%), are latest versions. This result is inline with the

current policies of dependency management systems, which

recommend upgrading to latest dependencies.
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Fig. 6. Positional distribution of active versions (#bins = 30).

Digging further, we investigate the transitional distribution

of active and passive versions. To do this, we transform each

library l ∈ LIBS into a vector, Sl, capturing the passive/active

status corresponding to all of its versions. Our objective is

to analyze the occurrence of common transitional patterns

between active and passive versions.

Let Sl be a vector representing the activity status of library

versions ordered by <v (i.e. ordered by version number).

The status corresponding to a version v is P if isPSV (v)
is TRUE and A otherwise. For example, the library

com.google.guava:guava-jdk5 has a total of five versions,

i.e., Sguava−jdk5 = [A,A,P,P,A]. Considering that we are

particularly interested in transitional patterns, the consecutive

versions with the same status can be compressed to a single

status, e.g., the previous example is represented as [A,P,A].

TABLE III
THE TOP-7 MOST COMMON TRANSITIONAL PATTERNS

Pattern Frequency Example
[P,A] 43, 549 commons-codec:commons-codec
[P,A,P,A] 10, 219 org.apache.commons:commons-lang3
[P,A,P,A,P,A] 3, 478 org.jboss.logging:jboss-logging
[A,P, A] 2, 761 com.google.guava:guava-jdk5
[P,A,P,A,P,A,P,A] 1, 592 org.joda:joda-convert
[A,P,A,P,A] 1, 343 com.google.inject:guice
[P,A,P] 613 org.springframework:spring-webflow

We obtained a total of 94 different transitional patterns.

Table III shows the frequency of appearance of the seven

most common of them. As expected, the 92% of the patterns

are finishing by an A. The most frequent pattern is [P,A],
i.e., old versions are passive and the latest ones are active.

Yet, the remaining patterns represent more than 40% of the

libraries. The rest of libraries follow a pattern where some

old versions are also active. In extreme cases, the latest

version of the library is passive (patterns finishing with a

P). In such cases, we observe that most of their clients use

an older version with the same major version number. We
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speculate that this behavior is due to the clients’ belief that the

version they use is rather stable. Similar findings have been

reported by Kula et al. [12]. We also observe that 5.5% of

the libraries have their earliest version active. It is interesting

to note that many of them are very popular libraries, e.g.,

‘org.hamcrest:hamcrest-core’ and ‘org.apache.ant:ant’.

Findings from RQ2: 31.6% of active versions are latest

and the remaining 68.4% of active versions are evenly

distributed across the libraries’ history. When the clients

do not use the latest version, they often depend on earlier

versions belonging to the same major release of the library.

C. RQ3: Among the actively used versions of a library, is there
one or several versions that are significantly more popular
than the others?

In this research question, we investigate the diversity in the

popularity of library versions. We assess the popularity of a

library versions using Metric 3. In particular, we are interested

in identifying significantly popular versions and analyzing the

positional distribution of these versions. For this aim, we use

the Tukey’s outlier detection method [19] to identify versions

with a popularity score that is far greater than the remaining

versions of the library.

We distinguish between three different classes of libraries:

(i) libraries that do not have a significantly most popular

version (55, 148), (ii) libraries with one significantly popular

version (9, 622), and (iii) libraries with more than one

significantly popular version (8, 883). The first class (i)

represents libraries with versions that have a similar number

of usages. The classes (ii) and (iii) represent libraries with

one or more versions that have attracted more users compared

to the rest of their versions. A large number of the users

of significantly popular versions are different versions of

the same library. These are library providers that may have

remained loyal to one version despite the release of newer

versions. To our surprise, almost all the significantly popular

versions are active, only 86 out of 143, 334 are passive.

For instance, ‘com.amazonaws:aws-java-sdk:1.11.409’ is

significantly popular and passive.

Figure 7 shows illustrative examples, Apache IO, JUnit,

and XML APIs, each one corresponding to one of these three

classes. The horizontal dashed line in each frame represents

the outlier’s threshold of the library. All the versions that lie

above this line are considered significantly popular. As shown

in the figure, although the version 2.4 of Apache IO is quite

old, it is still the most popular release of this library in Maven

Central. In the case of JUnit, it has two significantly popular

versions: 4.11 and 4.12. On the other hand, the library XML

APIs does not have any significantly popular version (i.e., the

popularity of its versions remains steady across time).

In order to measure the positional distribution of popular

versions, we focus on libraries that have at least one signifi-

cantly popular version. We determine the relative position of

such versions with respect to the number of versions of the

Fig. 7. Evolution of the popularity of versions (popV (v) metric) correspond-
ing to the libraries Apache Commons IO, JUnit and XML APIs.

library. As for the positional distribution of active version,

we also normalize the relative position between [1, 0]. The

histogram in Figure 8 shows the distribution of the positions

of the most popular versions across libraries. We observe that

less than 10% of libraries have their latest version as the

most popular. This is expected since the average lifespan of

latest versions is lower than the average of non-latest versions.

Interestingly, we found that the remaining highly popular

versions are almost equally distributed, between 2% and 5%,

in the remaining positions.

Fig. 8. Histogram of the positional distribution of significantly popular library
versions (#bins = 30).

This result indicates that the most popular libraries in Maven

Central are distributed across all the different library releases.

It is notable that for almost 85% of libraries the most used

version is not the latest. Thus, older versions are still being

heavily used by other libraries, with the exception of the first

version which is rarely the most popular.

Findings from RQ3: 17% of the libraries have more than

one significantly popular version distributed across differ-

ent releases, each of which creates a niche fitting a group

of users. This indicates that library developers successfully

address the needs of diverse populations of users.
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D. RQ4: Does the number of actively used versions relate to
the popularity of a library?

We have seen so far that many libraries in Maven Central

have multiple active versions, of which more than one can

be significantly more popular than the others. Now, we

investigate whether the activity status of versions has a

direct effect on the popularity of their corresponding library.

For this, we calculate the percentages of active and passive

versions of each library and compare them with respect to

the overall popularity of the library.
Figure 9 shows the smoothing function corresponding

to the relation between the popularity of libraries and

their percentages of active versions. There is a significant

positive correlation between both variables (Spearman’s rank

correlation test: ρ = 0.87, p-value < 0.01). In particular,

we observe that libraries that have more than 50% of active

versions are more likely to be very popular, as popular libraries

with many versions attract more clients for their versions.
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Fig. 9. Fitting curve (GAM model) of the percentage of active versions w.r.t.
the popularity of libraries (popL(l) metric). The shaded area around the fitting
curve represents the 95% confidence interval.

Table IV shows the seven most popular libraries ranked in

decreasing order of popularity, as well as their percentage of

active and significantly popular versions. As we can see, in all

the cases a significant proportion of their versions are active.

This indicates that many versions of these libraries continue

being actively used, contributing to the popularity of the

library and adding dependency diversity among all the clients.

In three cases out of seven, there are more than two versions

that are significantly more popular than the others. Finally, we

also notice that these popular libraries serve general purposes,

which allow them to fit well for various types of usages.

Findings from RQ4: Popular libraries in Maven Central

have most of their versions active and serve general

purposes. Moreover, the popularity of a library can be

estimated by the number of its active versions. The more

active versions a library has, the more likely it is to be

popular, and vice-versa.

E. RQ5: How timely are the different library versions in
Maven Central?

This research question focuses on the temporal dimension

of the dataset. We analyze whether the diversity of popular and

TABLE IV
THE TOP-7 MOST POPULAR LIBRARIES IN OUR STUDY SUBJECTS AND

THEIR NUMBER OF ACTIVE AND SIGNIFICANTLY POPULAR VERSIONS

Library Domain #Active (%) #Popular (%)
google.code.findbugs:jsr305 Utility 10 (90%) 1 (9.01%)
org.slf4j:slf4j-api Logging 63 (86.3%) 3 (4.1%)
log4j:log4j Logging 18 (94.7%) 1 (5.2%)
com.google.guava:guava Utility 71 (79.7%) 1 (1.2%)
junit:junit Testing 27 (96.5%) 2 (7.1%)
org.hamcrest:hamcrest-core Testing 5 (100%) 1 (20%)
commons-logging:logging Logging 15 (88.3%) 2 (11.8%)

active versions that we observe today is a phenomenon that

sustained in the past history of the libraries. We look at every

single library version v separately and investigate whether,

during the time period when v was the latest, it gained the

expected attraction among its older peers. We compare the

number of usages that a version v gets during its lifespan

period against the number of usages that the whole library

received during the timeliness period of v. For this comparison,

we rely on the timeliness function described in Metric 4. This

metric can be considered as an internal popularity metric that

assesses the popularity of a version among its peers.

Overall, for all our study subjects, 70.6% of library versions

are under-timely (including dormant versions), while 19.8%
are timely, and the remaining 9.6% are over-timely. Figure 10

shows the distribution of the three timeliness classes for active

and passive versions. We observe that roughly 45% of passive

library versions were under-timely. These are versions that did

not attract users for their library throughout their timeliness

period. Meanwhile, almost 55% are timely. These are library

versions that were not only active at some point, but also

widely used. This gives substantial evidence that the diversity

that we observe today has existed in the past in Maven Central.

On the other hand, we observe that 55.3% of active versions

are under-timely. These are versions that are not widely

popular among their peers, yet active. The average lifespan

of these versions is ∼777 days, which suggests that although

they are under-timely, they are likely to remain active for a

long period of time; whereas, the remaining active versions

are evenly distributed among timely and over-timely.

55.3% 20% 24.7%

45.6% 40% 14.4%passive non-dormant

0% 25% 50% 75% 100%

over−timelytimelyunder−timely
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Fig. 10. Proportions of timeliness classes for passive and active versions.

In order to analyze the distribution of the timeliness

classes at the library level, we calculate the proportions of

under-timely, timely and over-timely versions in each library.

Figure 11 shows a ternary diagram [20] representing the

distribution of the three timeliness classes across the study

subjects. In the figure, each point represents a library. In
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general, we observe a high dispersion in the space of libraries,

meaning that there are representative cases for almost all of

the different proportions of classes. The paired correlation

tests between the proportions of each of the classes and the

popularity of their corresponding library reveal that none of

the correlations are statistically significant (p-value > 0.05
according to the Spearman’s test). Therefore, the proportions

of the timeliness of the versions of a library are not directly

related with the popularity of the library.

Fig. 11. Distribution of libraries w.r.t. their percentages of over-timely,
timely and under-timely versions. The dispersion of points inside the triangle
indicates that the proportions of classes are well distributed across the libraries.

Findings from RQ5: The diversity in the usage and

popularity of versions has consistently sustained during the

history of Maven Central. We observe that ∼10% of all the

library versions attract new users during their timeliness

period and remain active even after the next version has

been released. Meanwhile, there is no correlation between

the popularity of a library and the timeliness of its versions.

V. DISCUSSION

In this section, we discuss the implications of our findings

about the emergence of software diversity in Maven Central,

as well as some threats to the validity of our results.

A. Supporting the Emergence of Software Diversity

This study focuses on the diversity of usages of libraries and

versions in Maven Central. We have observed empirically how

the immutability of versions, which is a characteristic enforced

by design in Maven Central, supports the natural emergence

of software diversity [3]. This diversity takes multiple forms

and has various effects:

• all active libraries have strictly more than one active

version, and the 42.7% of them have more than two active

versions;

• 17% of the libraries have two or more versions that are

significantly more popular than the others, which indi-

cates a very rich diversity in usages of the latest library

releases and may imply that the latest library versions

deployed on Maven Central use different versions of a

similar library;

• the most popular libraries are also the ones that have the

largest proportion of active versions;

• the existence of multiple used versions that overlap in

time is a common phenomenon in the history of all

libraries.

We interpret these multiple forms of diversity in usage and

popularity of libraries as follows: a repository that offers the

opportunity for users to choose their dependencies, naturally

supports the emergence of diversity among these dependen-

cies. In other words, this massive emergent diversity is not

only due to users who forget to update their dependencies.

Many users decide very explicitly to depend on one or

the other version of a library because it perfectly fits their

needs. Consequently, this kind of diversity emerges in a fully

decentralized and unsupervised manner.

Our study also highlights some important challenges for a

repository that supports diversification. First, there is a cost for

the maintainers of Maven Central. We have observed that, al-

though most libraries are actively used (95.49%), only 14.73%
of the Maven artifacts are used. We have also noticed that some

companies use Maven Central to store artifacts that nobody

else uses (45.1% of versions are dormant). Consequently,

keeping all versions induces an overhead in hardware and

software resources. Second, there is a cost for the developers

of popular libraries who need to maintain several versions of

their library to serve different clients. Third, there is a risk

that users decide to keep a dependency towards a vulnerable

or flawed version.

The trade-off between healthy levels of diversity in a system

(here, the Maven Central ecosystem) and the challenges of

redundancy and noise is necessary and very natural. Biological

studies insist on the importance of keeping less fit or even

unexpressed genes as genetic material that is necessary in

order to adapt to unpredictable environmental changes [21],

[22]. Our study reveals that the immutability of Maven artifacts

provides the material for libraries to eventually fit the needs

of various users, which eventually results in the emergence

of diverse popular and timely versions. In the same way that

biological systems do, library maintainers can accommodate

the overhead of manual updates and conflict management in

order to contribute to the sustainability of the massively large

pool of software diversity that exists in Maven Central.

B. Threats to Validity

We report about internal, external, and reliability threats to

the validity of our study.

a) Internal validity: The internal threat relates to the

metrics employed, especially those to compare the popular-

ity of libraries and versions. In this work, we characterize

popularity in terms of number of usages and quantify it based

on well-known graph-based metrics [23]. Thus, we assume

that a widely reused library is a popular one, and we consider

only the relationships described in Maven Central, which do

not take into account usages from private projects. The jOOQ

library is one example among others. Because it is dual-

license, many OSS libraries avoid to depend on it, but other
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closed-source software are still using it and there is no way

to quantify their number. However, as suggested in previous

studies, software popularity can be measured in a variety of

ways, depending on different factors such as social or technical

aspects [24]. Another concern relates to the fact that conven-

tions on semantic versioning are not really taken well into

account by library maintainers [25]. Still, we believe that at

the scale of the dataset employed in this study, our metrics are

a fair approximation of the state of practice in Maven Central.

b) External validity: Our results might not generalize

to other software repositories beyond the Maven Central

ecosystem (e.g., npm, RubyGems or CRAN). It should also

be noticed that Maven Central does not perform any real

vetting of the people that deploy artifacts or on the quality

of such artifacts. Thus, the integrity and origin of most

of our study subjects therein is not known or verifiable.

Moreover, this work takes into account version ordering as

well as temporal ordering relationships, which we believe are

sufficient to give a plausible representation of the way that

libraries are updated as well as their evolution trends.

c) Reliability validity: Our results are reproducible,

the dataset used in this study is publicly available online6.

Moreover, we provide all necessary code7 to replicate our

analysis, including Cypher queries and R notebooks.

VI. RELATED WORK

This paper is related to a long line of previous works

about mining software repositories and analysis of dependency

management systems. In this section we discuss the related

work along the following aspects.

a) Structure and updating behavior: Over the past years,

several research papers have highlighted the benefits of lever-

aging graph-based representations and ecologycal principles to

analyze the architecture of large-scale software systems [26]–

[29]. Raemaekers et al. [30] investigated the adherence to

semantic versioning principles in Maven Central as well as

the update trends of popular libraries. They found that the

presence of breaking changes has little influence on the actual

delay between the availability of a library and the use of the

newer version. Kula et al. [12] study the latency in trusting the

latest release of a library and propose four types of dependency

adoptions according to the dependency declaration time. De

Castilho et al. [31] use the Maven Central repository for

automatically selecting and acquiring tools and resources to

build efficient NLP processing pipelines. Their analysis relied

partially on Maven build files to collect library dependencies in

industrial systems. However, as far as we know, none of the ex-

isting works have studied the repercussion of the artifacts’ im-

mutability at the scale of the entire Maven Central repository.

b) Analysis of evolution trends: The evolution of soft-

ware repositories is a popular and widely-researched topic in

the area of empirical software engineering. Recently, Decan

6https://doi.org/10.5281/zenodo.1489120
7https://github.com/castor-software/oss-graph-metrics/tree/master/

maven-central-diversity

et al. [32] perform a comparison of the similarities and differ-

ences between seven large dependency management systems

based on the packages gathered and archived in the libraries.io
dataset. They observe that dependency networks tend to grow

over time and that a small number of libraries have a high

impact on the transitive dependencies of the network. Kikas

et al. [33] study the fragility of dependency networks of

JavaScript, Ruby, and Rust and report on the overall evolution-

ary trends and differences of such ecosystems. Abdalkareem et

al. [34] investigate about the reasons that motivate developers

to use trivial packages on the npm ecosystem. Raemaekers

et al. [35] construct a Maven dataset to track the changes on

individual methods, classes, and packages of multiple library

versions. Our work expands the existing knowledge in the area

by showing how software repositories can contribute to prevent

dependency monoculture by making available a more diverse

set of library versions for software reuse.

c) Security and vulnerability risks: Researchers have in-

vestigated and compared dependency issues across many pack-

aging ecosystems. Suwa et al. [11] investigate the occurrence

of rollbacks during the update of libraries in Java projects.

Their results confirm previous studies that show that library

migrations have no clear patterns and in many cases, the latest

available version of a library is not always the most used [36],

[37]. Mitropoulos et al. [38] present a dataset composed of

bugs reports for a total of 17, 505 Maven projects. They use

FindBugs to detect numerous types of bugs and also to store

specific metadata together with the FindBugs results. Zapata

et al. [39] compare how library maintainers react to vulnerable

dependencies based on whether or not they use the affected

functionality in their client projects. Our work considers

security and vulnerability risks in software repositories from a

novel perspective, i.e., by taking into account the benefits and

drawbacks that come with the emergence of software diversity.

VII. CONCLUSION

In this paper, we performed an empirical study on the

diversity of libraries and versions in the Maven Central

repository. We studied the activity, popularity and timeliness

of 1, 487, 956 artifacts that represent all the versions of 73, 653
libraries. We defined various graph-based metrics based on

the dependencies among Maven artifacts that are captured

in the Maven Dependency Graph [1]. We found that ∼40%
of libraries have two or more versions that are actively used,

while almost 4% never had any user in Maven Central. We

also found that more than 90% of the most popular versions

are not the latest releases, and that both active and significantly

popular versions are distributed across the history of library

versions. In summary, we presented quantitative empirical

evidence about how the immutability of artifacts in Maven

Central supports the emergence of natural software diversity,

which is fundamental to prevent dependency monoculture

during software reuse. Our next step is to investigate how

we can amplify this natural emergence of software diversity

through dependency transformations at the source code level.
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Abstract
Build automation tools and package managers have a profound influence on software devel-
opment. They facilitate the reuse of third-party libraries, support a clear separation between
the application’s code and its external dependencies, and automate several software develop-
ment tasks. However, the wide adoption of these tools introduces new challenges related to
dependency management. In this paper, we propose an original study of one such challenge:
the emergence of bloated dependencies. Bloated dependencies are libraries that are pack-
aged with the application’s compiled code but that are actually not necessary to build and run
the application. They artificially grow the size of the built binary and increase maintenance
effort. We propose DEPCLEAN, a tool to determine the presence of bloated dependencies in
Maven artifacts. We analyze 9,639 Java artifacts hosted on Maven Central, which include a
total of 723,444 dependency relationships. Our key result is as follows: 2.7% of the depen-
dencies directly declared are bloated, 15.4% of the inherited dependencies are bloated, and
57% of the transitive dependencies of the studied artifacts are bloated. In other words, it is
feasible to reduce the number of dependencies of Maven artifacts to 1/4 of its current count.
Our qualitative assessment with 30 notable open-source projects indicates that developers
pay attention to their dependencies when they are notified of the problem. They are willing
to remove bloated dependencies: 21/26 answered pull requests were accepted and merged
by developers, removing 140 dependencies in total: 75 direct and 65 transitive.

Keywords Dependency management · Software reuse · Debloating · Program analysis

1 Introduction

Software reuse, a long time advocated software engineering practice (Naur and Randell
1969; Krueger 1992), has boomed in the last years thanks to the widespread adoption of
build automation and package managers (Cox 2019; Soto-Valero et al. 2019). Package man-
agers provide both a large pool of reusable packages, a.k.a. libraries, and systematic ways to
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declare what are the packages on which an application depends. Examples of such package
management systems include Maven for Java, npm for Node.js, or Cargo for Rust. Build
tools automatically fetch all the packages that are needed to compile, test, and deploy an
application.

Package managers boost software reuse by creating a clear separation between the
application and its third-party dependencies. Meanwhile, they introduce new challenges
for the developers of software applications, who now need to manage those third-party
dependencies (Cox 2019) to avoid entering into the so-called “dependency hell”. These
challenges relate to ensuring high quality dependencies (Salza et al. 2019), keeping the
dependencies up-to-date (Bavota et al. 2015), or making sure that heterogeneous licenses
are compatible (Wu et al. 2017).

Our work focuses on one specific challenge of dependency management: the exis-
tence of bloated dependencies. This refers to packages that are declared as dependencies
for an application, but that are actually not necessary to build or run it. The major
issue with bloated dependencies is that the final deployed binary file includes more
code than necessary: an artificially large binary is an issue when the application is
sent over the network (e.g., web applications) or it is deployed on small devices (e.g.,
embedded systems). Bloated dependencies could also embed vulnerable code that can be
exploited, while being actually useless for the application (Gkortzis et al. 2019). Overall,
bloated dependencies needlessly increase the difficulty of managing and evolving software
applications.

We propose a novel, unique, and large scale analysis of bloated dependencies. So far,
research on bloated dependencies has been only touched with a study of copy-pasted depen-
dency declarations by McIntosh et al. (2014), and a study of unused dependencies in the
Rust ecosystem by Hejderup et al. (2018). Our previous work gives preliminary results on
this topic in the context of Java (Harrand et al. 2019). Yet, there is no systematic analy-
sis of the presence of bloated dependencies nor about the importance of this problem for
developers in the Java ecosystem.

Our work focuses on Maven, the most popular package manager and automatic build
system for Java and languages that compile to the JVM. In Maven, developers declare
dependencies in a specific file, called the POM file. In order to analyze thousands of arti-
facts on Maven Central, the largest repository of Java artifacts, manual analysis is not a
feasible solution. To overcome this problem, we have developed DEPCLEAN, a tool that per-
forms an automatic analysis of dependency usage in Maven projects. Given an application
and its POM file, DEPCLEAN collects the complete dependency tree (the list of dependen-
cies declared in the POM, as well as the transitive dependencies) and analyzes the bytecode
of the artifact and all its dependencies to determine the presence of bloated dependencies.
Finally, DEPCLEAN generates a variant of the POM in which bloated dependencies are
removed.

Armed with DEPCLEAN, we structured our analysis of bloated dependencies in two
parts. First, we automatically analysed 9,639 artifacts and their 723,444 dependencies.
We found that 75.1% of these dependencies are bloated. We identify transitive depen-
dencies and the complexities of dependency management in multi-module projects as the
primary causes of bloat. Second, we performed a user study involving 30 artifacts, for
which the code is available as open-source on GitHub and which are actively maintained.
For each project, we used DEPCLEAN to generate a POM file without bloated dependen-
cies and submitted the changes as a pull request to the project. Notably, our work yielded
21 merged pull requests by open-source developers and 140 bloated dependencies were
removed.
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To summarize, this paper makes the following contributions:

– A comprehensive study of bloated dependencies in the context of the Maven package
manager. We are the first to quantify the magnitude of bloat on a large scale (9,639
Maven artifacts) showing that 75.1% of dependencies are bloated.

– A tool called DEPCLEAN to automatically analyze and remove bloated dependencies
in Java applications packaged with Maven. DEPCLEAN can be used in future research
on package management as well as by practitioners.

– A qualitative assessment of the opinion of developers regarding bloated dependencies.
Through the submission of pull requests to notable open-source projects, we show that
developers care about removing dependency bloat: 21/26 of answered pull requests
have been merged, removing 140 bloated dependencies.

The remainder of this paper is structured as follows. Section 2 introduces the key con-
cepts about dependency management with Maven and presents an illustrative example.
Section 3 introduces the new terminology and describes the implementation of DEPCLEAN.
Section 4 presents the research questions that drive our study, as well as the methodology
followed. Section 5 covers our experimental results for each research question. Sections 6
and 7 provide a comprehensive discussion of the results obtained and present the threats
to the validity of our study. Section 8 concludes this paper and provides future research
directions.

2 Background

We provide an overview of the Maven package management system and of the essential
terminology. We illustrate these concepts with a concrete example.

2.1 Maven DependencyManagement Terminology

Maven is a popular package manager and build automation tool for Java projects and other
languages that compile to the JVM (e.g., Scala, Kotlin, Groovy, Clojure, or JRuby). Maven
relies on a specific build file, known as the POM (acronym for “Project Object Model”),
where developers specify information about the project, its dependencies and its build pro-
cess. POM files can inherit from a base POM, known as the Maven parent POM. The
inheritance and declaration of dependencies is a design decision of developers.

Maven Project A Maven project includes source code files and build files. It can be a
single-module, or a multi-module project. The former has a single POM file, which includes
all the dependencies and build instructions to produce a single artifact (JAR file). The latter
allows to separately build multiple artifacts in a certain order through a so-called aggregator
POM. In multi-module projects, developers can define a parent POM that specifies the
dependencies used by all the modules.

Maven Artifact We refer to artifacts as compiled Maven projects that have been deployed
to a binary code repository. A Maven artifact is typically a JAR file that is uniquely iden-
tified with a triplet (G:A:V ), G, the groupId, identifies the organization that develops the
artifact,A, the artifactId, is the name of the artifact, and V corresponds to its version. Maven
Central is the most popular public repository to host Maven artifacts.
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Dependency Resolution Maven resolves dependencies in two steps: (1) based on the POM
file(s), it determines the set of required dependencies, and (2) it fetches dependencies that
are not present locally from external repositories such as Maven Central. Maven constructs
a dependency tree, that captures all dependencies and their relationships. Given one artifact,
we distinguish between three types of Maven dependencies: direct dependencies that are
explicitly declared in the POM file; inherited dependencies, which are declared in the parent
POM; and transitive dependencies obtained from the transitive closure of direct and inher-
ited dependencies. Dependency version management is a key feature of the dependency
resolution, which Maven handles with a specific dependency mediation algorithm.1

2.2 A Brief Journey in the Dependencies of the JXLS Library

We illustrate the concepts introduced previously with one concrete example: JXLS,2 an
open source Java library for generating Excel reports. It is implemented as a multi-
module Maven project with a parent POM in jxls-project, and three modules: jxls,
jxls-examples, and jxls-poi.

Listing 1 shows an excerpt of the POM file of the jxls-poi module, version 1.0.15. It
declares jxls-project as its parent POM (lines 1− 5) and a direct dependency towards
the poi Apache library (lines 10–14). Figure 1 depicts an excerpt of its Maven dependency
tree (we do not show testing dependencies here, such as JUnit, to make the figure more
readable). Nodes in blue, pink, and yellow represent direct, inherited, and transitive depen-
dencies, respectively, for the jxls-poi artifact (as reported by the dependency:tree
Maven plugin).

Listing 1 Excerpt of the POM
file corresponding to the module
jxls-poi of the multi-module
Maven project JXLS

The library jcl-over-slf4j declares a dependency towards slf4j-api,
version 1.7.12, which is omitted by Maven since it is already added from the
jxls-project parent POM. On the other hand, JXLS declares dependencies to ver-
sion 1.7.26 of jcl-over-slf4j and slf4j-api, but the lower version 1.7.12 was

1https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html.
2http://jxls.sourceforge.net
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Fig. 1 Excerpt of the dependency tree of the multi-module Maven project JXLS (dependencies used for
testing are not shown for the sake of simplicity)

chosen over it since it is nearer to the root in the dependency tree and, by default,
Maven resolves version conflicts with a nearest-wins strategy. Once Maven finishes
the dependency resolution, the classpath of jxls-poi includes the following arti-
facts: poi, commons-codec, commons-collections4, commons-jexl,
commons-logging, jxls, commons-jex13, commons-beanutils,
commons-collections, logback-core, jcl-over-slf4j, and slf4j-api.
The goal of our work is to determine if all the artifacts in the classpath of Maven projects
such as jxls-poi are actually needed to build and run those projects.

3 Bloated Dependencies

In this section, we introduce the idea of bloated dependency, which is the fundamental
concept presented and studied in the rest of this paper. We describe our methodology to
study bloated dependencies, as well as our tools to automatically detect and remove them
from Maven artifacts.

Dependencies among Maven artifacts form a graph, according to the information
declared in their POMs. This graph has been introduced in our previous work about the
Maven Dependency Graph (MDG) (Benelallam et al. 2019). The MDG is defined as
follows:

Definition 1 (Maven Dependency Graph) The MDG is a vertex-labelled graph, where ver-
tices are Maven artifacts (uniquely identified by their G:A:V coordinates), and edges repre-
sent dependency relationships among them. Formally, the MDG is defined as G = (V, E),
where:
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– V is the set of artifacts in the Maven Central repository
– E ⊆ V ×V represent the set of directed edges that determine dependency relationships

between each artifact v ∈ V and its dependencies

3.1 Novel Concepts

Each artifact in the MDG has its own Maven Dependency Tree (MDT), which is the
transitive closure of all the dependencies needed to build the artifact, as resolved by Maven.

Definition 2 (Maven Dependency Tree) The MDT of an artifact v ∈ V is a directed acyclic
graph of artifacts, with v as the root node, and a set of edges E representing dependency
relationships between them.

In this work, we introduce the novel concept of bloated dependency as follows:

Definition 3 (Bloated Dependency) An artifact p is said to have a bloated dependency
relationship εb ∈ E if there is a path in its MDT, between p and any dependency d of p,
such that none of the elements in the API of d are used, directly or indirectly, by p.

To reason about the bloated dependencies of an artifact, we introduce a new data
structure, called the Dependency Usage Tree (DUT) as follows.

Definition 4 (Dependency Usage Tree) The DUT of an artifact a, defined as DUTa =
(V, E,∇), is a tree, whose nodes are the same as the Maven Dependency for a and which
edges are all of the (a, ai), for all nodes ai ∈ DUTa . A labeling function ∇ assigns each
edge one of the following six dependency usage types:∇ : E → {ud, ui, ut, bd, bi, bt} such
that:

∇(〈p, d〉) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ud, if d is used and it is directly declared by p

ui, if d is used and it is inherited from a parent of p

ut, if d is used and it is resolved transitively by p

bd, if d is bloated and it is directly declared by p

bi, if d is bloated and it is inherited from a parent of p

bt, if d is bloated and it is resolved transitively by p

It is to be noted that, in the case of transitive dependencies, ∇ assigns the bt label to the
relationship (a, ai) if and only if two conditions hold: 1) a does not use any member of ai ,
and 2) none of the artifacts in the tree need to use ai to fulfill the requirements of a.

Given a Maven artifact a we build both the MDTa and the DUTa . Both trees include
exactly the same set of nodes, but the edges are different. In the MDTa , an edge (a1, a2)
exists when the POM of a1 declares a dependency towards a2. In the DUTa , all edges start
from a, and an edge (a, a1) means that a1 is an artifact in the MDTa . In the case a1 is not
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a direct dependency of a, then the edge (a, a1) does not exist in the MDTa , yet we need to
model it, since it is the relation (a, a1) that can be bloated or used.

3.2 Example

Figure 2 illustrates the dependency usage tree for the example presented in Fig. 1. Analyz-
ing the bytecode of jxls-poi, we find no references to any API member of the direct
dependencies commons-jexl (explicitly declared in the POM) and sl4j (inherited from
its parent POM). Therefore, these dependency relationships are labelled as bloated-direct
(bd) and bloated-inherited (bi) dependencies, respectively.

Now let us consider the dependency to commons-codec. In the MDT of jxls-poi
(cf. Fig. 1), we observe that commons-codec is a transitive dependency of jxls-poi,
through poi. From the perspective of bloat, what we want to know is the following:
is commons-codec necessary to build and run jxls-poi? Therefore, we are inter-
ested in the relationship between jxls-poi and commons-codec, which we model
in the DUT of jxls-poi (cf. Fig. 2). To answer the question of usage we need two
analyses. First, an analysis of the bytecode of jxls-poi reveals that it does not use
commons-codec directly. Second, we observe that jxls-poi uses some members
of poi, and that these members of poi do not use commons-codec. So, we con-
clude that the relationship between jxls-poi and commons-codec is bloated, and
the corresponding edge is labelled bt. It is important to note that a bloated transitive
dependency relationship between jxls-poi and commons-codec does not mean that
commons-codec is bloated for poi, but only for the subpart of poi that is necessary
for jxls-poi. Table 1 summarizes the labelling of all the dependency relationships of
jxls-poi.

Fig. 2 Dependency Usage Tree (DUT) for the example presented in Fig. 1. Edges are labelled according to
Definition 4 to reflect the usage status between jxls-poi and each one of its dependencies
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Table 1 Contingency table of the different types of dependency relationships studied in this work for the
example presented in Fig. 2

Used Bloated

Direct poi, jxls commons-jexl

Inherited jcl-over-sl4j sl4j-api

Transitive commons-beanutils,logback-core, commons-logging, commons-collections,

commons-collections4 commons-codec, commons-jexl3

3.3 DEPCLEAN: A Tool for Detecting and Removing Bloated Dependencies

For our study, we design and implement a specific tool called DEPCLEAN. An overview
of DEPCLEAN is shown in Fig. 3, it works as follows. It receives as inputs a built
Maven project and a repository of artifacts, then it extracts the dependency tree of

Fig. 3 Overview of the tool DEPCLEAN to detect and remove bloated dependencies in Maven projects.
Rounded squares represent artifacts, circles inside the artifacts are API members, arrows between API mem-
bers represents bytecode calls between artifacts, arrows between artifacts represent dependency relationships
between them
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the projects and constructs a DUT to identify the set of dependencies that are actu-
ally used by the project. DEPCLEAN has two outputs: (1) it returns a report with the
usage status of all types of dependencies, and (2) it produces an alternative version
of the POM file (POMd ) with all the bloated dependencies removed (i.e., the XML
node of the bloated dependency is removed). DEPCLEAN does not perform any mod-
ifications to the source code, bytecode, or configurations files in the project under
consideration.

Algorithm 1 details the main procedure of DEPCLEAN. The algorithm receives as
input a Maven artifact p that includes a set of dependencies in its dependency tree,
denoted as DT , and returns a report of the usage status of its dependencies and a
debloated version of its POM. Notice that DEPCLEAN computes two transitive closures:
over the Maven dependency tree (line 2) and over the call graph of API members
(line 3).

The algorithm first copies the POM file of p, resolving all its direct and transitive depen-
dencies locally, and obtaining the dependency tree (lines 1 and 2). If p is a module of a
multi-module project, then all the dependencies declared in its parent POM are included
as direct dependencies of p. Then, the algorithm proceeds to construct a set with the
dependencies that are actually used by p (line 3).

Algorithm 2 explains the bytecode analysis. The detection component statically analyzes
the bytecode of p and all its dependencies to check which API members are being refer-
enced by the artifact, either directly or indirectly. Notice that it behaves differently if the
included artifact is a direct, inherited, or a transitive dependency. If none of the API mem-
bers of a dependency d ∈ DT are called, even indirectly via transitive dependencies, then
d is considered to be bloated, and we proceed to remove it.
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In Maven, we remove bloated dependencies in two different ways: (1) if the bloated
dependency is explicitly declared in the POM, then we remove its declaration clause directly
(line 9 in Algorithm 1), or (2) if the bloated dependency is inherited from a parent POM or
induced transitively, then we excluded it in the POM (line 11 in Algorithm 1). This exclusion
consists in adding an <exclusion> clause inside a direct dependency declaration, with
the groupId and artifactId of the transitive dependency to be excluded. Excluded dependen-
cies are not added to the classpath of the artifact by way of the dependency in which the
exclusion was declared.

DEPCLEAN is implemented in Java as a Maven plugin that extends the
maven-dependency-analyzer3 tool, which is actively maintained by the Maven
team and officially supported by the Apache Software Foundation. For the construction of
the dependency tree, DEPCLEAN relies on the copy-dependencies and tree goals of
the maven-dependency-plugin. Internally, DEPCLEAN relies on the ASM4 library

3http://maven.apache.org/shared/maven-dependency-analyzer
4https://asm.ow2.io
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to visit all the .class files of the compiled projects in order to register bytecode calls
towards classes, methods, fields, and annotations among Maven artifacts and their depen-
dencies. For example, it captures all the dynamic invocations created from class literals
by parsing the bytecodes in the constant pool of the classes. DEPCLEAN defines a cus-
tomized parser that reads entries in the constant pool of the .class files directly, in case
it contains special references that ASM does not support. This allows the plugin to stati-
cally capture reflection calls that are based on string literals and concatenations. Compared
to maven-dependency-analyzer, DEPCLEAN adds the unique features of detecting
transitive and inherited bloated dependencies, and to produce a debloated version of the
POM file. DEPCLEAN is open-source and reusable from Maven Central, the source code is
available at https://github.com/castor-software/depclean.

4 Experimental Methodology

In this section, we present the research questions that articulate our study. We also describe
the experimental protocols used to select and analyze Maven artifacts for an assessment of
the impact of bloated dependencies in this ecosystem.

4.1 Research Questions

Our investigation of bloated dependencies in the Maven ecosystem is composed of four
research questions grouped in two parts. In the first part, we perform a large scale
quantitative study to answer the following research questions:

– RQ1: How frequently do bloated dependencies occur? With this research question,
we aim at quantifying the amount of bloated dependencies among 9,639 Maven arti-
facts. We measure direct, inherited and transitive dependencies to provide an in-depth
assessment of the dependency bloat in the Maven ecosystem.

– RQ2: How do the reuse practices affect bloated dependencies? In this research
question, we analyze bloated dependencies with respect to two distinctive aspects
of reuse in the Maven ecosystem: the additional complexity of the Maven depen-
dency tree caused by transitive dependencies, and the choice of a multi-module
architecture.

The second part of our study focuses on 30 notable Maven projects and presents the qual-
itative feedback about how developers react to bloated dependencies, and to the solutions
provided by DEPCLEAN. It is guided by the following research questions:

– RQ3: To what extent are developers willing to remove bloated-direct dependen-
cies? Direct dependencies are those that are explicitly declared in the POM. Hence,
those dependencies are easy to remove since it only requires the modification of a
POM that developers can easily change. In this research question, we use DEPCLEAN

to detect and fix bloated-direct dependencies. Then, we communicate the results to the
developers. We report on their feedback.

– RQ4: To what extent are developers willing to exclude bloated-transitive dependen-
cies? Transitive dependencies are those not explicitly declared in the POM but induced
from other dependencies. We exchange with developers about such cases. This gives
unique insights about how developers react to excluding transitive dependencies from
their projects.
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4.2 Experimental Protocols

4.2.1 Protocol of the Quantitative Study (RQ1 & RQ2)

Figure 4 shows our process to build a dataset of Maven artifacts in order to answer RQ1
and RQ2. Steps and focus on the collection of a representative set, according to the
number of direct dependencies, of Maven artifacts: we sample our study subjects from the
whole MDG, then we resolve the dependencies of each study subject. In steps and , we
analyze dependency usages with DEPCLEAN and compute the set of metrics to answer RQ1
and RQ2.

Filter Artifacts In the first step, we leverage the Maven Dependency Graph (MDG) from
previous research (Benelallam et al. 2019), a graph database that captures the complete
dependency relationships between artifacts in Maven Central at a given point in time.
Figure 5a shows the distribution of the number of direct dependencies of the artifacts with
at least one direct dependency in the MDG. The number of direct dependencies is a repre-
sentative measure that reflects the initial intentions of developers with respect to code reuse.
We select a representative sample that includes 14,699 Maven artifacts (Fig. 5b). Repre-
sentativeness is achieved by sampling over the probability distribution of the number of
direct dependencies per artifact in the MDG, per the recommendation of Shull (2007, Chap-
ter 8.3.1). From the sampled artifacts, we select as study subjects all the artifacts that meet
the following additional criteria:

– Public API: The subjects must contain at least one .class file with one or more public
methods, i.e., can be reused via external calls to their API.

– Diverse: The subjects all have different groupId and artifactId, i.e., they belong to
different Maven projects.

Fig. 4 Experimental framework used to collect artifacts and analyze bloated dependencies in the Maven
ecosystem
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Fig. 5 Distribution of the number of direct dependencies of the artifacts at the different stages of the data
filtering process

– Reused: The subjects are used by at least one client via direct declaration.
– Complex: The subjects have at least one direct dependency with compile scope, i.e., we

can analyze the dependency tree and the reused artifacts.
– Latest: The subjects are the latest released version at the time of the experiment

(October, 2019).

After this systematic selection procedure, we obtain a dataset of 9,770 Maven artifacts.
The density of artifacts with a number of direct dependencies in the range [3, 9] in our
dataset (Fig. 5c) is higher than in the MDG (Fig. 5a). This is a direct consequence of
our selection criteria where artifacts must have at least one direct dependency with com-
pile scope. This filter removes artifacts that contain only dependencies that are not shipped
in the JAR of the artifact (e.g., test dependencies). Therefore, the 9,770 artifacts used as
study subjects are representative of the artifacts in Maven Central that include third-party
dependencies in the JAR.

Resolve Dependencies In the second step, we download the binaries of all the selected
artifacts and their POMs from Maven Central and we resolve all their direct and transitive
dependencies to a local repository. To ensure the consistency of our analysis, we discard
the artifacts that depend on libraries hosted in external repositories. In case of any other
error when downloading some dependency, we exclude the artifact from our analysis. This
occurred for a total of 131 artifacts in the dataset obtained in the first step.

Table 2 shows the descriptive statistics about the 9,639 artifacts in our final dataset
for RQ1 and RQ2. The dataset includes 44,488 direct, 180,693 inherited, and 498,263
transitive dependency relationships (723,444 in total). We report about their depen-
dencies with compile scope, since those dependencies are necessary to build the
artifacts. Columns #C, #M, and #F give the distribution of the number of classes,
methods, and fields per artifact (we count both the public and private API mem-
bers). The size of artifacts varies, from small artifacts with one single class (e.g.,
org.elasticsearch.client:transport:6.2.4), to large libraries with thou-
sands of classes (e.g., org.apache.hive:hive-exec:3.1.0). In total, we analyze
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Table 2 Descriptive statistics of the 9,639 Maven artifacts selected to conduct our quantitative study of
bloated dependencies (RQ1 & RQ2)

API Members Dependencies

#C #M #F #D #I #T

Min. 1 1 0 1 0 0

1st-Q 10 63 21 2 0 6

Median 32 231 75 4 2 20

3rd-Q 111 891 279 7 18 59

Max. 47,241 435,695 129,441 148 453 1,776

Total 2,397,879 22,633,743 6,510,584 44,488 180,693 498,263

the bytecode of more than 30 millions of API members. Columns #D, #I, and #T
account for the distributions of direct, inherited, and transitive dependencies, respectively.
com.bbossgroups.pdp:pdp-system:5.0.3.9 is the artifact with the largest
number of declared dependencies in our dataset, with 148 dependency declarations in its
POM file, while be.atbash.json:octopus-accessors-smart:0.9.1 has the
maximum number of transitive dependencies: 1,776. The distributions of direct and transi-
tive dependencies are notably different: typically the number of transitive dependencies is
an order of magnitude larger than direct dependencies, with means of 20 and 4, respectively.

Dependency Usage Analysis This is the first step to answer RQ1 and RQ2: collect the
status of all dependency relationships for each artifact in our dataset. For each artifact, we
first unpack its JAR file, as well as its dependencies. Then, for each JAR file, we analyze
all the bytecode calls to API class members using DEPCLEAN. This provides a Dependency
Usage Tree (DUT) for each artifact, on which each dependency relationship is labeled with
one of the six categories as we illustrated in Table 1: bloated-direct (bd), bloated-inherited
(bi), bloated-transitive (bt), used-direct (ud), used-inherited (ui), or used-transitive (ut).

Collect Dependency Usage Metrics This last step consists of collecting a set of metrics
about the global presence of bloated dependencies. We define our analysis metrics with
the goals of studying 1) the dependency usage relationships in the DUT (RQ1), and 2) the
complexity resulting from the adoption of the multi-module Maven architecture (RQ2).

In RQ1, we analyze our dataset as a whole, looking at the usage status of dependency
relationships from two perspectives:

– Global distribution of dependency usage. This is the normalized distribution of each
category of dependency usage, over each dependency relationship of each of the 9,639
artifacts in our dataset.

– Distribution of dependency usage type, per artifact. For each of the six types of depen-
dency usage, we compute the normalized ratio over the total number of dependency
relationships for each artifact in our dataset.

In RQ2, we analyze how the specific reuse strategies of Maven relate to the presence of
bloated dependencies. First, we use the number of transitive dependencies and the height of
the dependency tree as a measure of complexity. The former measure is guided by the fact
that transitive dependencies are more difficult to handle by developers; the latter measure is
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guided by the idea that dependencies that are deeper in the dependency tree are more likely
to be bloated. We use the following metrics:

– Bloated dependencies w.r.t. the number of transitive dependencies. For each artifact that
has at least one transitive dependency, we determine the relation between the ratio of
transitive dependencies and the ratio of bloated dependencies.

– Bloated-transitive dependencies w.r.t. to the height of the dependency tree. Given an
artifact and its Maven dependency tree, the height of the tree is the longest path between
the root and its leaves. To compute this metric, we group our artifacts according to
the height of their tree. The maximum dependency tree height that we observed is 14.
However, there are only 152 artifacts with a tree higher than 9. Therefore, we group all
artifacts with height ≥ 9. For each subset of artifact with the same height, we compute
the size of the subset and the distribution of bloated-transitive dependencies of each
artifact in the subset.

Second, we distinguish the presence of bloated dependencies between single and multi-
module Maven projects, according to the following metrics:

– Global distribution of dependency usage in a single or multi-module project.We present
two plots that measure the distribution of each type of dependency usage in the set
of single and multi-module projects. It is to be noted that the plot for single-module
projects does not include bloated-inherited (bi) and used-inherited (ui) dependencies
since they have no inherited dependencies.

– Distribution of dependency usage type, per artifact, in a single or multi-module project.
We present two plots that provide six distributions each: the distribution of each type of
dependency usage type for artifacts that are in a single-module or multi-module project.

4.2.2 Protocol of the Qualitative Study (RQ3 & RQ4)

In RQ3 and RQ4, we perform a qualitative assessment of the relevance of bloated depen-
dencies for the developers of open-source projects. We systematically select 30 notable
open-source projects hosted on GitHub to conduct this analysis. We query the GitHub API
to list all the Java projects ordered by their number of stars. Then, we randomly select a set of
projects that fulfil all the following criteria: (1) we can build them successfully with Maven,
(2) the last commit was at the latest in October 2019, (3) they declare at least one depen-
dency in the POM, (4) they have a description in the README about how to contribute
through pull requests, and (5) they have more than 100 stars on GitHub.

Table 3 shows the selected 30 projects per those criteria, to which we submitted at least
one pull request. They are listed in decreasing order according to their number of stars on
GitHub. The first column shows the name of the project as declared on GitHub, followed
by the name of the targeted module if the project is multi-module. Notice that in the case of
jenkins we submitted two pull requests targeting two distinct modules: core and cli.
Columns two to four describe the projects according to its category as assigned to the cor-
responding released artifact in Maven Central, the number of commits in the master branch
in October 2019, and the number of stars at the moment of conducting this study. Columns
five to seven report about the total number of direct, inherited, and transitive dependencies
included in the dependency tree of each considered project.
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Table 3 Maven projects selected to conduct our qualitative study of bloated dependencies (RQ3 & RQ4)

Project Description Dependencies

Category #Commits #Stars #D #I #T

jenkins [core] Automation Server 29,040 14,578 51 2 87

jenkins [cli] Automation Server 29,040 14,578 17 2 0

mybatis-3 [mybatis] Relational Mapping 3,145 12,196 23 0 51

flink [core] Streaming 19,789 11,260 14 10 34

checkstyle [checkstyle] Code Analysis 8,897 8,897 18 0 36

auto [common] Meta-programming 1,081 8,331 8 0 24

neo4j [collections] Graph Database 66,602 7,069 8 2 21

CoreNLP NLP 15,544 6,812 23 0 45

moshi [moshi-kotlin] JSON Library 793 5,731 14 0 21

async-http-client [http-client] HTTP Client 4,034 5,233 29 16 130

error-prone [core] Defects Detection 4,015 4,915 44 0 35

alluxio [core-transport] Database 30,544 4,442 6 14 73

javaparser [symbol-solver-logic] Code Analysis 6,110 2,784 3 0 8

undertow [benchmarks] Web Server 4,687 2,538 10 0 19

wc-capture [driver-openimaj] Webcam 629 1,618 3 0 84

teavm [core] Compiler 2,334 1,354 9 0 9

handlebars [markdown] Templates 916 1,102 6 0 13

jooby [jooby] Web Framework 2,462 1,083 23 0 68

tika [parsers] Parsing library 4,650 929 81 0 67

orika [eclipse-tools] Object Mapping 970 864 3 0 3

spoon [core] Meta-programming 2,971 840 16 2 59

accumulo [core] Database 10,314 763 26 1 51

couchdb-lucene Text Search 1,121 752 25 0 112

jHiccup Profiling 215 519 4 0 1

subzero [server] Cryptocurrency 158 499 6 0 100

vulnerability-tool [shared] Security 1,051 324 6 4 2

para [core] Cloud Framework 1,270 310 47 2 112

launch4j-maven-plugin Deployment Tool 316 194 7 0 61

jacop CP Solver 1,158 155 7 0 9

selenese-runner-java Interpreter 1,688 117 23 0 148

commons-configuration Config library 3,159 100 31 0 49

We answer RQ3 according to the following protocol: 1) we run DEPCLEAN, we build
the artifact with the debloated POM file, 2) if the project builds successfully, we analyze the
project to propose a relevant change to the developers per the contribution guidelines, 3) we
propose a change in the POM file in the form of a pull request, and 4) we discuss the pull
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Fig. 6 Example of commit removing the bloated-direct dependency
org.apache.httpcomponents:httpmime in the project Undertow

request through GitHub. Figure 6 shows an excerpt of the diff of such a change in the POM
file. We note that the submitted pull requests contain a small modification in a single file:
the POM.

In the first step of the protocol, we use DEPCLEAN to obtain a report about the usage of
dependencies. We analyze dependencies with both compile and test scope. Once a bloated-
direct dependency is found, we remove it directly in the POM and proceed to build the
project. If the project builds successfully after the removal (all the tests pass), we submit the
pull request with the corresponding change. If after the removal of the dependency the build
fails, then we consider the dependency as used dynamically and do not suggest removing
it. In the case of multi-module projects, with bloated dependencies in several modules, we
submitted a single pull request per module.

For each pull request, we analyze the Git history of the POM file to determine when
the bloated dependency was declared or modified. Our objective is to collect information in
order to understand how the dependencies of the projects change during their evolution. This
allows us to prepare a more informative pull request message and to support our discussion
with developers. We also report on the benefits of tackling these bloated dependencies by
describing the differences between the original and the debloated packaged artifact of the
project in terms of the size of the bundle and the complexity of its dependency tree, when
the difference was significant. Each pull request includes an explanatory message. Figure 7
shows an example of the pull request message submitted to the project Undertow.5 The
message explains the motivations of the proposed change, as well as the negative impact of
keeping these bloated dependencies in the project.

To answer RQ4, we follow the same pull request submission protocol as for RQ3. We
use DEPCLEAN to detect bloated-transitive dependencies and submit pull requests suggest-
ing the addition of the corresponding exclusion clauses in each project POM. Figure 8
shows an example of a pull request message submitted to the project Apache Accumulo6,
while Fig. 9 shows an excerpt of the commit proposing the exclusion of the transitive
dependency org.apache.httpcomponents:httpcore from the direct dependency
org.apache.thrift:libthrift in its POM.

Additional information related to the selected projects and the research methodology
employed is publicly available as part of our replication package at https://github.com/
castor-software/depclean-experiments.

5https://github.com/undertow-io/undertow
6https://github.com/apache/accumulo
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Fig. 7 Example of message of a pull request sent to the project Undertow on GitHub

Fig. 8 Example of message in a pull request sent to the project Apache Accumulo on GitHub

Fig. 9 Example of commit excluding the bloated-transitive dependency
org.apache.httpcomponents:httpcore in the project Apache Accumulo
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5 Experimental Results

We now present the results of our in-depth analysis of bloated dependencies in the Maven
ecosystem.

5.1 RQ1: How Frequently do Bloated Dependencies Occur?

In this first research question, we investigate the status of all the dependency relationships
of the 9,639 Maven artifacts under study.

Figure 10 shows the overall status of the 723,444 dependency relationships in our dataset.
The x-axis represents the percentages, per usage type, of all the dependencies considered
in the studied artifacts. The first observation is that the bloat phenomenon is massive:
543,610 (75.1%) of all dependencies are bloated, they are not needed to compile and run
the code. This bloat is divided into three separate categories: 19,673 (2.7%) are bloated-
direct dependency relationships (explicitly declared in the POMs); 111,649 (15.4%) are
bloated-inherited dependency relationships from parent module(s); and 412,288 (57%) are
bloated-transitive dependencies. Figure 10 shows that 75.1% of the relationships (edges
in the dependency usage tree) are bloated dependencies. Note that this observation does
not mean that 543,610 artifacts are unnecessary and can be removed from Maven Central.
The same artifact can be present in several DUTs, i.e., reused by different artifacts, but be
part of a bloated dependency relationship only in some of these DUTs, and part of a used
relationship in the other DUTs.

Figure 11 shows the overall status of the dependencies with respect to the type of the
dependency relationship (direct, inherited, and transitive). We observe that approximately
1/3 of direct dependencies are bloated (34.23%), whereas inherited and transitive depen-
dencies have a higher percentage of bloat (61.79% and 82.5% of bloat, respectively). These
results indicate that artifacts with inherited and transitive dependencies are more likely to
have more bloated dependencies. They also confirm that transitive dependencies are the
most susceptible to bloat.

In the following, we illustrate the three types of bloated dependency relationships with
concrete examples.

Bloated-Direct We found that 2.7% of the dependencies declared in the POM file
of the studied artifacts are not used at all via bytecode calls. Recall that detect-
ing this type of bloated dependencies is good, because they are easy to remove

Fig. 10 Ratio per usage status of the 723,444 dependency relationships analyzed. Raw counts are inside
parentheses below each percentage
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Fig. 11 Ratio per dependency type of bloated and used dependencies of the 723,444 dependency relation-
ships analyzed

by developers with a single change in the POM file of the project under con-
sideration. As an example, the Apache Ignite7 project has deployed an artifact:
org.apache.ignite:ignite-zookeeper:2.4.0, which contains only one class
in its bytecode: TcpDiscoveryZookeeperIpFinder, and it declares a direct depen-
dency in the POM towards slf4j, a widely used Java logging library. However, if we
analyze the bytecode of ignite-zookeeper, no call to any API member of sl4j exists,
and therefore, it is a bloated-direct dependency. After a manual inspection of the commit
history of the POM, we found that sl4j was extensively used across all the modules of
Apache Ignite at the early stages of the project, but it was later replaced by a dedicated
logger, and its declaration remained intact in the POM.

Bloated-Inherited In our dataset, a total of 4,963 artifacts are part of multi-module Maven
projects. Each of these artifacts declares a set of dependencies in its POM file, and
also inherits a set of dependencies from a parent POM. DEPCLEAN marks those inher-
ited dependencies are either bloated-inherited or used-inherited. Our dataset includes a
total of 111,649 dependency relationships labeled as bloated-inherited, which represents
15.4% of all dependencies under study and 61.8% of the total of inherited depen-
dencies. For example, the artifact org.apache.drill:drill-protocol:1.14.0
inherits dependencies commons-codec and commons-io from its parent POM
org.apache.drill:drill-root:1.14.0, however, those dependencies are not
used in this module, and therefore they are bloated-inherited dependencies.

Bloated-Transitive In our dataset, bloated-transitive dependencies represent the major-
ity of the bloated dependency relationships: 412,288 (57%). This type of bloat is a
natural consequence of the Maven dependency resolution mechanism, which automat-
ically resolves all the dependencies whether they are explicitly declared in the POM
file of the project or not. Transitive dependencies are the most common type of depen-
dency relationships, having a direct impact on the growth of the dependency trees. This
type of bloat is the most common in the Maven ecosystem. For example, the artifact

7https://github.com/apache/ignite
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Listing 2 Code snippet of the class VerbDefinitionDropFilter present in the artifact
org.apache.streams:streams-filters:0.6.0. The library com.google.guava:guava:
20.0 is included in its classpath via transitive dependency and called from the source code, but no
dependency towards guava is declared in its POM

org.eclipse.milo:sdk-client:0.2.1 ships the transitive dependency gson in
its MDT, induced from its direct dependency towards bsd-parser-core. However, the
part of bsd-parser-core used by sdk-client does not call any API member of
gson, and therefore it is a bloated-transitive dependency.

In the following, we discuss the dependencies that are actually used. We observe that
direct dependencies represent only 3.4% of the total of dependencies in our dataset. This
means that the majority of the dependencies that are necessary to build Maven artifacts are
not declared explicitly in the POM files of these artifacts.

It is interesting to note that 85,975 of the dependencies used by the artifacts under
study are transitive dependencies. This kind of dependency usage occurs in two differ-
ent scenarios: (1) the artifact uses API members of some transitive dependencies, without
declaring them in its own POM file; or (2) the transitive dependency is necessary to provide
a functionality to another, actually used dependency, in the dependency tree of the artifact.

Listing 3 Code snippet of the class AuditTask present in the artifact org.duracloud:auditor:
4.4.3. The library org.codehaus.jackson:jackson-mapper-asl:1.6.2 is used indirectly
through the direct dependency org.duracloud:common-json:4.4.3

We now discuss an example of the first scenario based on the
org.apache.streams:streams-filters:0.6.0 artifact from the Apache
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Fig. 12 Distributions of the six types of dependency usage relationships for the studied artifacts. The thicker
areas on each curve represent concentrations of artifacts per type of usage

Streams8 project. It contains two classes: VerbDefinitionDropFilter and
VerbDefinitionKeepFilter. Listing 2 shows part of the source code of the class
VerbDefinitionDropFilter, which imports the class PreCondition from
library guava (line 2) and uses its static method checkArgument in line 8 of method
process. However, if we inspect the POM of streams-filters, we notice that
there is no dependency declaration towards guava. It declares a dependency towards
streams-core, which in turn depends on the streams-utils artifact that has a
direct dependency towards guava. Hence, guava is a used-transitive dependency of
streams-filters, called from its source code.

Let us now present an example of the second scenario. Listing 3 shows an excerpt of
the class AuditTask included in the artifact org.duracloud:auditor:4.4.3,
from the project DuraCloud.9 In line 6, the method getPropsSerializer
instantiates the JaxbJsonSerializer object that belongs to the direct depen-
dency org.duracloud:common-json:4.4.3. This object, in turn, creates
an ObjectMapper from the transitive dependency jackson-mapper-asl.
Hence, jackson-mapper-asl is a necessary, transitive provider for
org.duracloud:auditor:4.4.3.

Figure 12 shows the distributions of dependency usage types per artifact. The figure
presents superimposed log-scaled box-plots and violin-plots of the number of dependency
relationships corresponding to the six usage types studied. Box-plots indicate the stan-
dard statistics of the distribution (i.e., lower/upper inter-quartile range, max/min values, and
outliers), while violin plots indicate the entire distribution of the data.

We observe that the distributions of the bloated-direct (bd) and bloated-transitive (bt)
dependencies vary greatly. Bloated-direct dependencies are distributed between 0 and 1
(1st-Q and 3rd-Q), with a median of 0; whereas the second ranges between 2 and 41 (1st-
Q and 3rd-Q), with a median of 11. These values are in line with the statistics presented in

8https://streams.apache.org
9https://duraspace.org
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Table 2, since the number of direct and transitive dependencies in general differ approxi-
mately by one order of magnitude. Overall, from the 9,639 Maven artifacts studied, 3,472
(36%) have at least one bloated-direct dependency, while 8,305 (86.2%) have at least one
bloated-transitive.

On the other hand, the inter-quartile range of bloated-direct (bd) dependencies is more
compact than the used-direct (ud). In other words, the dependencies declared in the POM
are mostly used. This result is expected, since developers have more control over the edition
(adding/removing dependencies) of the POM file of their artifact.

The median number of used-transitive (ut) dependencies is significantly lower than the
median number of bloated-transitive (bt) dependencies (2, vs. 11). This suggests that the
default dependency resolution mechanism of Maven is suboptimal with respect to ensuring
minimal dependency inclusion.

The number of outliers in the box-plots differs for each usage type.
Notably, the bloated-direct dependencies have more outliers (in total, 25 arti-
facts have more than 100 bloated-direct dependencies). In particular, the artifact
com.bbossgroups.pdp:pdp-system:5.0.3.9 has the maximum number of
bloated-direct dependencies: 133, out of the 147 declared in its POM. The total number of
artifacts with at least one bloated-direct dependency in our dataset is 2,298, which repre-
sents 23.8% of the 9,639 studied artifacts.

5.2 RQ2: How do the Reuse Practices Affect Bloated Dependencies?

In this research question, we investigate how the reuse practices that lead to these distinct
types of dependency relationships are related to the bloated dependencies that emerge in
Maven artifacts.

Figure 13 shows the distributions, in percentages, of the direct, inherited, and transitive
dependencies for the 9,639 studied artifacts. The artifacts are sorted, from left to right, in
increasing order according to their ratio of direct dependencies. The y-axis indicates the
ratio of each type of dependency for a given artifact. First, we observe that 4,967 arti-
facts belong to multi-module projects. Among these artifacts, the extreme case (far left of
the plot) is org.janusgraph:janusgraph-berkeleyje:0.4.0, which declares
only 1.4% of its dependencies in its POM, while the 48.6% of its dependencies are inher-
ited from parent POM files, and 50% are transitive. Second, we observe that the ratio of
transitive dependencies is not equally distributed. On the right side of the plot, 879 (9.1%)
artifacts have no transitive dependency (they have 100% direct dependencies). Mean-
while, 5,561 (57.7%) artifacts have more than 50% transitive dependencies. The extreme
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Fig. 13 Distribution of the percentages of direct, inherited, and transitive dependencies for the 9,639 artifacts
considered in this study

case is org.apereo.cas:cas-server-core-api-validation:6.1.0, with
77.6% transitive dependencies.

In summary, the plot in Fig. 13 offers a big picture of the distribution of the three types of
dependency usage in our dataset. The inherited and transitive dependencies are a significant
phenomenon in Maven: 8,742 (90.7%) artifacts in our dataset have transitive dependen-
cies, and 51.5% of artifacts belong to multi-module projects. This observation confirms the
results of the previous section, most of the bloated dependencies in our dataset are either
transitive (57%) or inherited (15.4%).

5.2.1 Transitive Dependencies

Figure 14 plots the relation between the ratio of transitive dependencies and the ratio of
bloated dependencies. Each dot represents an artifact. Dots have a higher opacity in the
presence of overlaps.

The key insight in Fig. 14 is that the larger concentration of artifacts is skewed to the
top right corner, indicating that artifacts with a high percentage of transitive dependencies
also tend to exhibit higher percentages of bloated dependencies. Indeed, both variables are
positively correlated, according to the Spearman’s rank correlation test (ρ = 0.65, p-value
< 0.01).

Fig. 14 Relation between the percentages of transitive dependencies and the percentage of bloated depen-
dencies in the 9,639 studied artifacts
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Fig. 15 Distribution of the percentages of bloated-transitive dependencies for our study subjects with respect
to the height of the dependency trees. Height values greater than 10 are aggregated. The bar plot at the top
represents the number of study subjects for each height

Figure 15 shows the distribution of the ratio of transitive bloated dependencies according
to the height of the dependency tree. The artifact in our dataset with the largest height
is top.wboost:common-base-spring-boot-starter:3.0.RELEASE, with a
height of 14. The bar plot on top of Fig. 15 indicates the number of artifacts that have the
same height. We observe that most of the artifacts have a height of 4: 2,226 artifacts in total.
Considering the number of dependencies, this suggests that the dependency trees tend to be
wider than deep. This is direct consequence of the automatic dependency management by
Maven: any dependency that already appears at a level closer to the root will be omitted by
Maven if it is referred to at a deeper level.

Looking at the 58 artifacts with height ≥ 9, we notice that most of
them belong to multi-module projects, and declare other modules in the same
project as their direct dependencies. This is a regular practice of multi-module
projects, which allows to release each module as an independent artifact. Mean-
while, this increases the complexity of dependency trees. For example, artifact
org.wso2.carbon.devicemgt:org.wso2.carbon.apimgt.handlers:3.0.192
is the extreme case of this practice in our dataset, with two direct dependencies towards
other modules of the same project that in turn depend on other modules of this project.
As a result, this artifact has 342 bloated-transitive and 87 bloated-inherited dependencies,
a dependency tree of height 11, and is part of a multi-module project with a total of 79
modules released in Maven Central.

The plot in Fig. 15 shows a clear increasing trend of bloated-transitive dependencies as
the height of the dependency tree increases. Indeed, both variables are positively correlated,
according to the Spearman’s rank correlation test (ρ = 0.54, p-value ¡ 0.01). For artifacts
with a dependency tree of height greater than 9, at least 28% of their transitive dependen-
cies are bloated, while the median of the percentages of bloated-transitive dependencies for
artifacts with height larger than 5 is more than 50%.

This finding confirms and complements the results of Fig. 14, showing that the height
of the dependency tree is directly related to the occurrence of bloat. However, the height of
the tree may not be the only factor that causes the bloat. For example, we hypothesize that
number of transitive dependencies is another essential factor.

(2021) 26:Empir Software Eng 45 Page 25 of 44 44



In order to validate this hypothesis, we perform a Spearman’s rank correlation test
between the number of bloated-transitive dependencies and the size of the dependency tree,
i.e., the number of nodes in each tree. We found that there is a significant positive correla-
tion between both variables (ρ =0.67, p-value < 0.01). This confirms that the actual usage
of transitive dependencies decreases with the increasing complexity of the dependency tree.
This result is aligned with our previous study that suggest that most of the public API
members of transitive dependencies are not used by its clients (Harrand et al. 2019).

In summary, our results point to the excess of transitive dependencies as one of the
fundamental causes of the existence of bloated dependencies in the Maven ecosystem.

5.2.2 Single-Module vs. Multi-Module

Let us investigate on the differences between single and multi-module architectures with
respect to the presence of bloated dependencies. Figure 16 compares the distributions
of bloated and used dependencies between multi-module and single-module artifacts in
our dataset. We notice that, in general, multi-module artifacts have slightly more bloat
than single-module, precisely 3.1% more (the percentage of bloat in single-module is
5.8% + 67.3% = 73.1% vs. 0.9% + 24.2% + 51.1% = 76.2% in multi-module). More
interestingly, we observe that a majority of the inherited dependencies are bloated: 24.2%
of the dependencies among multi-module project are bloated-inherited (bi), while only 15%
are used-inherited (ui). This suggests that most of the dependencies inherited by Maven
artifacts that belong to multi-module artifacts are not used by these modules.

We observe that the percentage of bloated-direct dependencies in multi-module artifacts
is very small (0.9%) in comparison with single-module (5.8%). Meanwhile, the percentage
of bloated-transitive dependencies in single-module (67.3%) is larger than in multi-module
(51.1%). This is due to the “shift” of a part of direct and transitive dependencies into
inherited dependencies when using a parent POM. Indeed, the “shift” from direct to
inherited is the main motivation for having a parent POM: to have one single declara-
tion of dependencies for many artifacts instead of letting each artifact manage their own
dependencies.

Fig. 16 Comparison between multi-module and single-module artifacts according to the percentage status of
their dependency relationships. Raw counts are inside parentheses below each percentage
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This “shift” in the nature of dependencies between single and multi-module artifacts
is further emphasized in Fig. 17. This plot shows superimposed log scaled box-plots and
violin-plots comparing the distributions of the number of distinct dependency usage types
per artifact, for single-module (top part of the figure) and multi-module (bottom part).

We observe that multi-module artifacts have less bloated-direct (1st-Q = 0, median
= 0, 3rd-Q = 0) and less bloated-transitive (1st-Q = 2, median = 9, 3rd-Q = 40),
compared to single-modules, as shown in Fig. 17. However, multi-module artifacts
have a considerably larger number of bloated-inherited dependencies instead (1st-Q
= 1, median = 5, 3rd-Q = 20). The extreme case in our dataset is the artifact
co.cask.cdap:cdap-standalone:4.3.4, with 326 bloated-inherited dependen-
cies in total.

In summary, the multi-module architecture in Maven projects contributes to limit redun-
dant dependencies and facilitates the consistent versioning of dependencies in large projects.
However, it introduces two challenges for developers. First, it leads to the emergence of
bloated-inherited dependencies because of the friction of maintaining a common parent
POM file: it is more difficult to remove dependencies from a parent POM than from an
artifact’s own POM. Second, it is more difficult for developers to be aware of and under-
stand the dependencies that are inherited from the parent POM. This calls for better tooling
and user interfaces to help developer grasp and analyze the inherited dependencies in multi-
module projects, in order to detect bloated dependencies. To our knowledge, this type of
tools is absent in the current Java dependency management ecosystem.

Fig. 17 Comparison between multi-module and single-module projects according to their distributions of
dependency usage relationships
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5.3 RQ3: To what Extent are Developers Willing to Remove Bloated-Direct
Dependencies?

In this research question, our goal is to see how developers react when made aware of
bloated-direct dependencies in their projects. We do this by proposing the removal of
bloated-direct dependencies to lead developers of mature open-source projects, as described
in Section 4.2.2.

Table 4 shows the list of 19 pull requests submitted. Each pull request proposes the
removal of at least one bloated-direct dependency in the POM. We received response from
developers for 17 pull request. The first and second columns in the table show the name of
the project and the pull request on GitHub. Columns three and four represent the number of
bloated dependencies removed in the POM and the total number of dependencies removed
from the dependency tree with the proposed change, including transitive ones. The last
column shows the status of the pull request ( accepted, accepted with changes,
rejected, or pending). The last row represent the acceptance rate calculated with respect
to the projects with response, i.e., the total number of dependencies removed divided by
the number of proposed removals. For example, for project undertow we proposed the
removal of 6 bloated dependencies in its module benchmarks. As a result of this change,
17 transitive dependencies were removed from the dependency tree the module.

Overall, from the pull requests with responses from developers, 16/17 were accepted
and merged. In total, 75 dependencies were removed from the dependency trees of the
projects. This result demonstrates the relevance of handling bloated-direct dependencies for
developers, and the practical usefulness of DEPCLEAN.

Let us now summarize the developer feedback. First, all developers agreed on the impor-
tance of refining the projects’ POMs. This is reflected in the positive comments received.
Second, their quick responses suggest that it is easy for them to understand the issues asso-
ciated with the presence of bloated-direct dependencies in their projects. In 8/17 projects,
the response time was less than 24 hours, which is an evidence that developers consider this
type of improvement as a priority.

Our results also provide evidence of the fact that we, as external contributors to those
projects, were able to identify the problem and propose a solution using DEPCLEAN. In the
following, we discuss four cases of pull requests that are particularly interesting and the
feedback provided by developers.

5.3.1 Jenkins

DEPCLEAN detects that jtidy and commons-codec are bloated-direct dependen-
cies present in the modules core and cli of jenkins. jtidy is an HTML syntax
checker and pretty printer. commons-codec is an Apache library that provides an API to
encode/decode from various formats such as Base64 and Hexadecimal.

Developers were reluctant to remove jtidy due to their concerns of affect-
ing the users of jenkins, which could be potential consumers of this depen-
dency. After further inspection, they found that the class HTMLParser of the
nis-notification-lamp-plugin10 project relies on jtidy transitively for per-
forming HTML parsing.

10https://github.com/jenkinsci/nis-notification-lamp-plugin
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Developers also pointed out the fact that there is no classloader isolation in jenkins,
and hence all dependencies in its core module automatically become part of its public
API. A developer also referred to issues related to past experiences removing unused depen-
dencies. He argued that external projects have depended on that inclusion and their builds
were broken by such a removal. For example, the Git client plugin of jenkins mistak-
enly included Java classes from certain Apache authentication library. When they removed
the dependency, some downstream consumers of the library were affected, and they had to
include the dependency directly.

Consequently, we received the following feedback from an experienced developer of
jenkins:

We’re not precluded from removing an unused dependency, but I think that the project
values compatibility more than removal of unused dependencies, so we need to be
careful that removal of an unused dependency does not cause a more severe problem
than it solves.

After some discussions, developers agreed with the removal of commons-codec in
module cli. Our pull request was edited by the developers and merged to the master branch
one month after.

5.3.2 Checkstyle

DEPCLEAN identifies the direct dependency junit-jupiter-engine as bloated. This
is a test scope dependency that was added to the POM of checkstyle when migrating
integration tests to JUnit 5. The inclusion of this dependency was necessary due to the dep-
recation of junit-platform-surefire-provider in the Surefire Maven plugin.
However, the report of DEPCLEAN about this bloated-direct dependency was a false posi-
tive. The reason for this output occurs because junit-jupiter-engine is commonly
used through reflective calls that cannot be captured at the bytecode level.

Althoughthis pull request was rejected, developers expressed interest in DEPCLEAN,
which is encouraging. They also proposed a list of features for the improvement of our
tool. For example, the addition of an exclusion list in the configuration of DEPCLEAN for
dependencies that are known to be used dynamically, improvements on the readability of the
generated report, and the possibility of causing the build process to fail in case of detecting
the presence of any bloated dependency. We implemented each of the requested functional-
ities in DEPCLEAN. As a result, developers opened an issue to integrate DEPCLEAN in the
Continuous Integration (CI) pipeline of checkstyle, in order to automatically manage
their bloated dependencies.11

5.3.3 Alluxio

DEPCLEAN detects that the direct dependency grpc-netty, declared in the module
alluxio-core-transport is bloated. Figure 18 shows that this dependency also
induces a total of 10 transitive dependencies that are not used (4 of them are omitted by
Maven due to their duplication in the dependency tree). Developers accepted our pull request
and also manifested their interest on using DEPCLEAN for managing unused dependencies
in the future.

11https://github.com/checkstyle/checkstyle/issues/7307
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Fig. 18 Transitive dependencies induced by the bloated-direct dependency grpc-netty in the dependency
tree of module alluxio-core-transport. The tree is obtained with the dependency:treeMaven
goal

5.3.4 Undertow

DEPCLEAN detects a total of 6 bloated-direct dependencies in the benchmarks module
of the project undertow: undertow-servlet, undertow-websockets-jsr,
jboss-logging-processor, xnio-nio, jmh-generator-annprocess, and
httpmime. In this case, we received a rapid positive response from the developers two
days after the submission of the pull request. Removing the suggested bloated-direct
dependencies has a significant impact on the size of the packaged JAR artifact of the
undertow-benchmarks module. We compare the sizes of the bundled JAR before and
after the removal of those dependencies: the binary size reduction represents more than
1MB. It is worth mentioning that this change also reduced the complexity of the depen-
dency tree of the module.

5.4 RQ4: To what Extent are Developers Willing to Exclude Bloated-Transitive
Dependencies?

In this research question, our goal is to see how developers react when made aware of
bloated-transitive dependencies. We do this by proposing the exclusion of bloated-transitive
dependencies to them, as described in Section 4.2.2.

Table 5 shows the list of 13 pull requests submitted. Each pull request proposes the
exclusion of at least one transitive dependency in the POM. We received response from
developers for 9 pull requests. The first and second columns show the name of the project
and the pull request on GitHub. Columns three and four represent the number of bloated-
transitive dependencies explicitly excluded and the total number of dependencies removed
in the dependency tree as resulting from the exclusion. The last column shows the status of
the pull request ( accepted, rejected, or pending). The last row represents the accep-
tance rate with respect to the projects with response. For example, for the project spoon
we propose the exclusion of four bloated-transitive dependencies in its core module. As a
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result of this change, 31 transitive dependencies were removed from the dependency tree of
this module.

Overall, from the pull requests with responses from developers, 5 were accepted and 4
were rejected. In total, 65 bloated dependencies were removed from the dependency trees
of 5 projects. We notice that the accepted pull requests involve those projects for which
the exclusion of transitive dependencies also represents the removal of a large number of
other dependencies from the dependency tree. This result suggests that developers are more
careful concerning this type of contribution.

As in RQ3, we obtained valuable feedback from developers about the pros and cons of
excluding bloated-transitive dependencies. In the following, we provide unique qualitative
insights about the most interesting cases and explain the feedback obtained from developers
to the research community.

5.4.1 Jenkins

DEPCLEAN detects the bloated-transitive dependencies constant-pool-scanner and
eddsa in the module core of jenkins. These bloated dependencies were induced
through the direct dependencies remoting and cli, respectively. In the message of the
pull request, we explain how their exclusion contributes to make the core of jenkins
slimmer and its dependency tree clearer.

Although both dependencies were confirmed as unused in the core module of
jenkins, developers rejected our pull request. They argue that excluding such dependen-
cies has no valuable repercussion for the project and might actually affect its clients, which
is correct. For example, constant-pool-scanner is used by external components,
e.g., the class RemoteClassLoader in the remoting12 project relies on this library to
inspect the bytecode of remote dependencies.

As shown in the following quote from an experienced developer of Jenkins, there is a
consensus on the usefulness of removing bloated dependencies, but developers need strong
facts to support the removal of transitive dependencies:

Dependency removals and exclusions are really useful, but my recommendation
would be to avoid them if there is no substantial gain.

5.4.2 Auto

DEPCLEAN reports on the bloated-transitive dependencies listenablefuture and
auto-value-annotations in module auto-common of the Google auto project.
We proposed the exclusion of these dependencies and submitted a pull request with the
POM change.

Developers express several concerns related to the exclusion of these dependencies. For
example, a developer believes that it is not worth maintaining exclusion lists for dependen-
cies that cause no problem. They point out that although listenableFuture is a single
class file dependency, its presence in the dependency tree is vital to the project, since it
overrides the version of the guava library that have many classes. Therefore, the inclusion
of this dependency is a strategy followed by guava to narrow the access to the interface
ListenableFuture and not to the whole library.13

12https://github.com/jenkinsci/remoting
13https://groups.google.com/forum/#!topic/guava-announce/Km82fZG68Sw/discussion
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On the other hand, developers agree that auto-value-annotations is bloated.
However, they keep it, arguing that it is a test-only dependency, and they prefer to keep
annotation-only dependencies and let end users exclude them when desired.

The response from developers suggests that bloated dependencies with test scope are
perceived as less harmful. This is reasonable since test dependencies are only available
during the test, compilation, and execution phases and are not shipped transitively in the
JAR of the artifact. However, we believe that although it is a developers’ decision whether
they keep this type of bloated dependency or not, the removal of testing dependencies is
regularly a desirable refactoring improvement.

5.4.3 Moshi

DEPCLEAN detects that the bloated-transitive dependency kotlin-stdlib-common
is present in the dependency tree of modules moshi-kotlin,
moshi-kotlin-codegen, and moshi-kotlin-tests of project moshi. This
dependency is induced from a common dependency of these modules: kotlin-stdlib.

Developers rejected our pull requests, arguing that excluding such transitive depen-
dency prevents the artifacts from participating in the proper dependency resolu-
tion of their clients. They suggest that clients interested in reducing the size of
their projects can use specialized shrinking tools, such as ProGuard,14 for this
purpose.

Although the argument of developers is valid, we believe that delegating the task of
bloat removal to their library clients imposes an unnecessary burden on them. On the other
hand, recent studies reveal that library clients do not widely adopt the usage of dependency
analysis tools for quality analysis purposes (Nguyen et al. 2020).

5.4.4 Spoon

DEPCLEAN detects that the transitive dependencies org.eclipse.core.resources,
org.eclipse.core.runtime, org.eclipse.core.filesystem, and
org.eclipse.text org.eclipse.jdt.core are bloated. All of these
transitive dependencies were induced by the inclusion of the direct dependency
org.eclipse.jdt.core, declared in the POM of coremodule of the spoon library.

Table 6 shows how the exclusion of these bloated-transitive dependencies has a positive
impact on the size and the number of classes of the library. As we can see, by excluding
these dependencies the size of the jar-with-dependencies of the core module of
spoon is trimmed from 16.2MB to 12.7MB, which represents a significant reduction in
size of 27.6%. After considering this improvements, the developers confirmed the relevance
of this change and merged our pull request into the master branch of the project.

5.4.5 Accumulo

DEPCLEAN detects the bloated-transitive dependencies listenablefuture,
httpcore and netty in the core module of Apache accumulo. These dependencies
were confirmed as bloated by the developers. However, they manifested their concerns
regarding their exclusion, as expressed in the following comment:

14https://www.guardsquare.com/en/products/proguard
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Table 6 Comparison of the size and number of classes in the bundled JAR of the core module of spoon,
before and after the exclusion of bloated-transitive dependencies

JAR Size(MB) #Classes

Before 16.2 7,425

After 12.7 5,593

Reduction(%) 27.6% 24.7%

I’m not sure I want us to take on the task of maintaining an exclusion set of transitive
dependencies from all our deps POMs, because those can change over time, and we
can’t always know which transitive dependencies are needed by our dependencies.

After the discussion, developers decided to accept and merge the pull request. Overall,
developers considered that the proposal is a good idea. They suggest that it would be better
to approach the communities of each of the direct dependencies that they use, and encour-
age them to mark those dependencies as optional, thus they would not be automatically
inherited by their users.

5.4.6 Para

DEPCLEAN detects the bloated-transitive dependency flexmark-jira-converter.
This dependency is induced through the direct dependency flexmark-ext-emoji,
declared in the core module of the para project. Our further investigation on the Maven
dependency tree of this module revealed that this bloated dependency adds a total of 19
additional dependencies to the dependency tree of the project, of which 15 are detected as
duplicated by Maven.

Because of this large number (19) of bloated-transitive dependencies removed, develop-
ers accepted the pull request and merged the change into the master branch of the project
the same day of the pull request submission.

6 Discussion

In this section, we discuss the implications of our findings and the threats to the validity of
the results obtained.
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6.1 Implications of Results

Our results indicate that most of the dependency bloat is due to transitive dependencies and
the Maven dependency inheritance mechanism. This suggests that the Maven dependency
resolution strategy, which always picks the dependency that is closer to the root of the tree,
may not be the best selection criterion for minimizing transitive dependency bloat. The offi-
cial Maven dependency management guidelines15 encourage developers to take control over
the dependency resolution process via explicit declaration of dependencies in the POM file.
This is a good practice to provide better documentation for the project and to keep one’s
artifact dependencies independent of the choices of other libraries down the dependency
tree. Dependencies declared in this way have priority over the Maven mediation mecha-
nism, allowing developers to have a clear knowledge about which library version they are
expecting to be used through transitive dependencies. However, since backward compati-
bility is not always guaranteed, having fixed transitive dependency versions, and therefore
non-declared dependencies, still remains as a widely accepted practice. In this context, the
introduction of the module construct in Java 9 provides a higher level of aggregation above
packages. This new language element, if largely adopted, may help to reduce the transitive
explosion of dependencies. Indeed, this mechanism enables developers to fine tune public
access restrictions of API members, explicitly declaring what set of functionalities a mod-
ule can expose to other modules. This leads to two benefits: (1) it enables reuse declaration
at a finer grain than dependencies, and (2) it makes the debloat techniques described in this
work safer as it constrains reflection to white-listed modules.

Our results show that even notable open-source projects, which are maintained by devel-
opment communities with strict development rules, are affected by dependency bloat.
Developers confirmed and removed most of the reported bloated-direct dependencies
detected by DEPCLEAN. However, they are more careful about excluding bloated-transitive
dependencies. The addition of exclusion clauses to the POM files is perceived by some
developers as an unnecessary maintainability burden. Interestingly, our quantitative results
indicate that bloated-transitive dependency relationships represent the largest portion of
bloated dependencies, yet, our qualitative study reveals that these bloated relationships are
also the ones that developers find the most challenging to handle and reason about. Overall,
this work opens the door to new research opportunities on debloating POMs and other build
files.

6.2 Threats to Validity

In the following, we discuss construct, internal and external threats to the validity of our
study.

Construct Validity The threats to construct validity are related to the novel concept of
bloated dependencies and the metrics utilized for its measurement. For example, the DUT
constructed by DEPCLEAN could be incomplete due to issues during the resolution of the
dependencies. We mitigate this threat by building DEPCLEAN on top of Maven plugins to
collect the information about the dependency relationships. We also exclude from the study
those artifacts for which we were unable to retrieve the full dependency usage information.

15https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

(2021) 26:Empir Software Eng 4545 Page 36 of 44

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html


It is possible that developers repackage a library as a bundle JAR file along with its
dependencies, or copy the source code of dependencies directly into their source code,
in order to avoid dependency related issues. Consequently, DEPCLEAN will miss such
dependencies, as they are not explicitly declared in the POM file. Thus, the analysis of
dependencies can underestimate the part of bloated dependencies. However, considering the
size of our dataset and the feedback obtained from actively maintained projects, we believe
that these corner cases do not affect our main results.

Internal Validity The threats to internal validity are related to the effectiveness of DEP-
CLEAN to detect bloated dependencies. The dynamic features of the Java programming
language, e.g., reflection or dynamic class loading present particular challenges for any
automatic analysis of Java source code (Landman et al. 2017; Lindholm et al. 2014). Since
DEPCLEAN statically analyzes bytecode, anything that does not get into the bytecode is not
detected (e.g., constants, annotations with source-only retention police, links in Javadocs),
which can lead to false positives. To mitigate this threat, DEPCLEAN can detect classes
or class members that are created or invoked dynamically using basic constructs such
as class.forName("someClass") or class.getMethod("someMethod",
null).

To evaluate the impact of this limitation in practice, we ran DEPCLEAN on 10 addi-
tional popular projects. The experiment consists in running the test suite of the projects
with the debloated version of the POM files, i.e., relying on dynamic analysis as a vali-
dation mechanism. Table 7 shows the results obtained after running the test suite of the
version of the project without bloated dependencies. The first column shows the URL of the
project on GitHub, the second and third columns represent the number bloated-direct and
bloated-transitive dependencies detected by DEPCLEAN, and the fourth column is the result
of the test ( pass, or fail). As we observe, 9/10 projects pass the test suite, and only
one project fails: raft-java. We found that the reason of the failure was the dependency
org.projectlombok:lombok:1.18.4, which heavily relies on reflection and other
dynamic mechanisms of Java. To prevent the occurrence of false positives, the users of DEP-
CLEAN can add dependencies that are known to be used only dynamically to an exclusion
list. Once added this dependency to the exclusion list of DEPCLEAN, it is not considered as
bloated, and all the tests pass with the other bloated dependencies removed.

Table 7 Evaluation of the results of DepClean by checking if all the test pass after the removal of bloated
dependencies

URL (https://github.com/) #bd #bt Test result

pf4j/pf4j 3 3

apilayer/restcountries 5 13

modelmapper/modelmapper 2 14

xtuhcy/gecco 0 3

yaphone/itchat4j 1 1

electronicarts/ea-async 0 7

twitter/hbc 0 1

skyscreamer/JSONassert 0 1

wenweihu86/raft-java 2 8

liaochong/myexcel 0 2
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External Validity The relevance of our findings in other software ecosystems is one threat
to external validity. Our observations about bloated dependencies are based on Java and
the Maven ecosystem and our findings are restricted to this scope. More studies on other
dependency management systems are needed to figure out whether our findings can be
generalized. Another external threat relates to the representativeness of the projects consid-
ered for the qualitative study. To mitigate this threat, we submitted pull requests to a set of
diverse, mature, and popular open-source Java projects that belong to distinct communities
and cover various application domains. This means that we contributed to improving the
dependency management of projects that are arguably among the best of the open-source
Java world, which aims to get as strong external validity as possible.

7 RelatedWork

In this work, we propose the first systematic large-scale analysis of bloat in the Maven
ecosystem. Here, we discuss the related works in the areas of software debloating and
dependency management.

7.1 Analysis andMitigation of Software Bloat

Previous studies have shown that software tends to grow over time, whether or not there is
a need for it (Holzmann 2015; Quach et al. 2017). Consequently, software bloat appears as
a result of the natural increase of software complexity, e.g., the addition of non-essential
features to programs (Brooks 1987). This phenomenon comes with several risks: it makes
software harder to understand and maintain, increases the attack surface, and degrades the
overall performance. Our paper contributes to the analysis and mitigation of a novel type of
software bloat: bloated dependencies.

Celik et al. (2016) presented MOLLY, a build system to lazily retrieve dependencies in
CI environments and reduce build time. For the studied projects, the build time speed-up
reaches 45% on average compared to Maven. DEPCLEAN operates differently than MOLLY:
it is not an alternative to Maven as MOLLY is, but a static analysis tool that allows Maven
users to have a better understanding and control about their dependencies.

Yu et al. (2003) investigated the presence of unnecessary dependencies in header files
of large C projects. Their goal was to reduce build time. They proposed a graph-based
algorithm to statically remove unused code from applications. Their results show a reduction
of build time of 89.70% for incremental builds, and of 26.38% for fresh builds. Our work
does not focus on build performance, we analyze the pervasiveness of dependency bloat
across a vast and modern ecosystem of Maven packages.

In recent years, there has been a notable interest in the development of debloating tech-
niques for program specialization. The aim is to produce a smaller, specialized version of
programs that consume fewer resources while hardening security (Azad et al. 2019). They
range from debloating command line programs written in C (Sharif et al. 2018), to the spe-
cialization of JavaScript frameworks (Vázquez et al. 2019) and fully fledged containerized
platforms (Rastogi et al. 2017). Most debloating techniques are built upon static analy-
sis and are conservative in the sense that they focus on trimming unreachable code (Jiang
et al. 2016), others are more aggressive and utilize advanced dynamic analysis techniques
to remove potentially reachable code (Heath et al. 2019). Our work addresses the same
challenges at a coarser granularity. DEPCLEAN removes unused dependencies, which is,
according to our empirical results, a significant cause of program bloat.
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Qiu et al. (2016) empirically show evidence that a considerable proportion of API mem-
bers are not widely used, i.e., many classes, methods, and fields of popular libraries are
not used in practice. (Pham et al. 2016) implement a bytecode based analysis tool to learn
about the actual API usage of Android frameworks. Hejderup (2015) study the actual usage
of modules and dependencies in the Rust ecosystem, and propose PRÄZI, a tool for con-
structing fine-grained call-based dependency networks (Hejderup et al. 2018). Lämmel et al.
(2011) perform a large-scale study on API usage based on the migration of AST code seg-
ments. Other studies have focused on understanding how developers use APIs on a daily
basis (Roover et al. 2013; Bauer et al. 2014). Some of the motivations include improv-
ing API design (Myers and Stylos 2016; Harrand et al. 2019) and increasing developers
productivity (Lim 1994). All these studies hint at the presence of bloat in APIs. To sum
up, our paper is the first empirical study that explores and consolidates the concept of
bloated dependencies in the Maven ecosystem, and is the first to investigate the reaction of
developers to bloated dependencies.

Program slicing (Horwitz et al. 1988; Sridharan et al. 2007; Binkley et al. 2019) is
a program analysis technique used to compute the subset of statements (“slice”) that
affect the values of a given program. Static slicing removes unused code by computing a
statement-based dependence graph and identifies the statements that are directly or transi-
tively reachable from a seed on the graph. DEPCLEAN uses a similar approach for debloat,
where the slices are bytecode calls between dependencies computed by backtracking usages
between the artifact and its dependencies.

7.2 DependencyManagement in Software Ecosystems

Library reuse and dependency management has become mainstream in software develop-
ment. McIntosh et al. (2012) analyze the evolution of automatic build systems for Java (ANT
and Maven). They found that Java build systems follow linear or exponential evolution pat-
terns in terms of size and complexity. In this context, we interpret bloated dependencies as a
consequence of the tendency of build automation systems of evolving towards open-ended
complexity over time.

Decan et al. (2019, 2017) studied the fragility of packaging ecosystems caused by
the increasing number of transitive dependencies. Their findings corroborate our results,
showing that most clients have few direct dependencies but a high number of transitive
dependencies. They also found that popular libraries tend to have larger dependency trees.
However, their work focuses primarily on the relation between the library users and their
direct providers and does not take into account the inherited or transitive dependencies of
those providers. We are the first, to the best of our knowledge, to conduct an empirical anal-
ysis of bloated dependencies in the Maven ecosystem considering both, users and providers,
as potential sources of software bloat.

Bezemer et al. (2017) performed a study of unspecified dependencies, i.e., dependen-
cies that are not explicitly declared in the build systems. They found that these unspecified
dependencies are subtle and difficult to detect in make-based build systems. Seo et al.
(2014) analyzed over 26 millions builds in Google to investigate the causes, types of errors
made, and resolution efforts to fix the failing builds. Their results indicate that, inde-
pendent of the programming language, dependency errors are the most common cause
of failures, representing more than two thirds of fails for Java. Based on our results, we
hypothesize that removing dependency bloat would reduce spurious CI errors related to
dependencies.
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Jezek and Dietrich (2014) describe, with practical examples, the issues caused by tran-
sitive dependencies in Maven. They propose a static analysis approach for finding missing,
redundant, incompatible, and conflicting API members in dependencies. Their experiments,
based on a dataset of 29 Maven projects, show that problems related to transitive depen-
dency are common in practice. They identify the use of wrong dependency scopes as a
primary cause of redundancy. Our quantitative study extends this work to the scale of the
Maven Central ecosystem, and provides additional evidence about the persistence of the
dependency redundancy problem.

Callo Arias et al. (2011) performed a systematic review about dependency analysis solu-
tions in software-intensive systems. Bavota et al. (2015) studied performed an empirical
study on the evolution of declared dependencies in the Apache community. They found
that build system specifications tend to grow over time unless explicit effort is put into
refactoring them. Our qualitative results complement previous studies that present empir-
ical evidence that developers do not systematically update their dependency configuration
files (McIntosh et al. 2014; Kula et al. 2018).

8 Conclusion

In this work, we presented a novel conceptual analysis of a phenomenon originated from
the practice of software reuse, which we coined as bloated dependencies. This type of
dependency relationship between software artifacts is intriguing: from the perspective of
the dependency management systems that are unable to avoid it, and from the standpoint of
developers who declare dependencies but do not use them in their applications.

We performed a quantitative and qualitative study of bloated dependencies in the Maven
ecosystem. To do so, we implemented a tool, DEPCLEAN, which analyzes the bytecode of
an artifact and all its dependencies that are resolved by Maven. As a result of the analysis,
DEPCLEAN provides a report of the bloated dependencies, as well as a new version of its
POM file which removes the bloat. We use DEPCLEAN to analyze the 723,444 dependency
relationships of 9,639 artifacts in Maven Central. Our results reveal that 75.1% of them
are bloated (2.7% are direct dependencies, 15.4% are inherited from parent POMs, and
57% are transitive dependencies). Based on these results, we distilled two possible causes:
the cascade of unwanted transitive dependencies induced by direct dependencies, and the
dependency heritage mechanism of multi-module Maven projects.

We complemented our quantitative study of bloated dependencies with an in-depth qual-
itative analysis of 30 mature Java projects. We used DEPCLEAN to analyze these projects
and submitted the results obtained as pull request on GitHub. Our results indicated that
developers are willing to remove bloated-direct dependencies: 16 out of 17 answered pull
requests were accepted and merged by the developers in their code base. On the other hand,
we found that developers tend to be skeptical regarding the exclusion of bloated-transitive
dependencies: 5 out of 9 answered pull requests were accepted. Overall, the feedback from
developers revealed that the removal of bloated dependencies clearly worth the additional
analysis and effort.

Our study stresses the need to engineer, i.e., analyze, maintain, test POM files. The feed-
back from developers shows interest in DEPCLEAN to address this challenge. While the tool
is robust enough to analyze a variety of real-world projects, developers now ask questions
related to the methodology for dependency debloating, e.g., when to analyze bloat? (in every
build, in every release, after every POM change), who is responsible for debloat of direct
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or transitive dependencies? (the lead developers, any external contributor), how to properly
managing complex dependency trees to avoid dependency conflicts? These methodological
questions are part of the future work to further consolidate DEPCLEAN.
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ABSTRACT

We study the evolution and impact of bloated dependencies in a

single software ecosystem: Java/Maven. Bloated dependencies are

third-party libraries that are packaged in the application binary

but are not needed to run the application. We analyze the history

of 435 Java projects. This historical data includes 48,469 distinct

dependencies, which we study across a total of 31,515 versions of

Maven dependency trees. Bloated dependencies steadily increase

over time, and 89.2% of the direct dependencies that are bloated

remain bloated in all subsequent versions of the studied projects.

This empirical evidence suggests that developers can safely remove

a bloated dependency. We further report novel insights regarding

the unnecessary maintenance efforts induced by bloat. We find that

22 % of dependency updates performed by developers are made on

bloated dependencies, and that Dependabot suggests a similar ratio

of updates on bloated dependencies.
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1 INTRODUCTION

Software is bloated. From single Unix commands [14] toweb browsers

[23], most applications embed a part of code that is unnecessary to

their correct operation. Several debloating tools have emerged in

recent years [15, 22, 23, 25, 27, 30] to address the security and main-

tenance issues posed by excessive code at various granularity levels.

However, these works do not analyze the evolution of bloat over

time. Understanding software bloat in the perspective of software

evolution [13, 31, 33] is crucial to promote debloating tools towards
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software developers. In particular, developers, when proposed to

adapt a debloating tool, wonder if a piece of bloated code might be

needed in coming releases, or what is the actual issue with bloat.

This work proposes the first longitudinal analysis of software

bloat. We focus on bloat among software dependencies [5, 7, 11, 28]

in the Java/Maven ecosystem. Bloated dependencies are software

libraries that are unnecessarily part of software projects, i.e., when

the dependency is removed from the project, it still builds success-

fully. In previous work [30], we showed that the Maven ecosystem

is permeated with bloated dependencies, and that they are present

even in well maintained Java projects. Our study revealed that soft-

ware developers are keen on removing bloated dependencies, but

that removing code is a complex decision, which benefits from solid

evidence about the actual benefits of debloating.

Motivated by these observations about bloated dependencies,

we conduct a large scale empirical study about the evolution of

these dependencies in Java projects. We analyze the emergence of

bloat, the evolution of the dependencies statuses, and the impact of

bloat on maintenance. We have collected a unique dataset of 31,515

versions of dependency trees from 435 open-source Java projects.

Each version of a tree is a snapshot of one project’s dependencies,

for which we determine a status, i.e. bloated or used. We rely on

DepClean, the state-of-the-art tool to detect bloated dependencies

in Maven projects. We analyze the evolution of 48,469 distinct

dependencies per project and we observe that 40,493/48,469 (83.5 %)

of them are bloated at one point in time, in our dataset.

Our longitudinal analysis of bloated Java dependencies inves-

tigates both the evolution of bloat and, as well as its impact on

the maintenance of dependencies. We first show a clear increasing

trend in the number of bloated dependencies. Next, we investigate

how the usage status of dependencies evolves over time. This anal-

ysis is a key contribution of our work where we demonstrate that

a dependency that is bloated is very likely to remain bloated over

subsequent versions of a project. We present the first observations

about the impact of bloat on maintenance activities, and the role of

Dependabot, a popular dependencymanagement bot, on these activ-

ities. We observe that developers spend significant efforts updating

dependencies, either as part of their regular maintenance efforts,

or after a Dependabot suggestion, even though the dependency is

bloated. Furthermore, we systematically investigate the root of the

bloat emergence, and find that 84.3 % of the bloated dependencies

are bloated as soon as they are added in the dependency tree of a

project. To summarize, the contributions of this paper are:

• A longitudinal analysis of software dependencies’ usage

in 31,515 versions of Maven dependency trees of 435 Java

projects.

• Evidence about the stability of bloat: once they are bloated,

89.2 % of direct dependencies remain bloated. This is a strong

incentive to remove bloat.
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. . .
<dependencies>

<dependency>
<groupId>org.d1</groupId>
<artifactId>d1</artifactId>
<version>1.1.0</version>

</dependency>
<dependency>

<groupId>org.d2</groupId>
<artifactId>d2</artifactId>
<version>0.1.1</version>

</dependency>
<dependency>

<groupId>org.d3</groupId>
<artifactId>d3</artifactId>
<version>3.0.0</version>

</dependency>
</dependencies>
. . .

Figure 1: Dependency declaration.
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Figure 2: Dependency tree.
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Figure 3: Dependency usage.

• Evidence that developers spend some unnecessary mainte-

nance effort on bloated dependencies, includingmaintenance

suggested by Dependabot.

• A qualitative analysis of the origin of bloated dependencies,

which reveals that adding dependencies is the principal root

cause for this type of software bloat.

2 BACKGROUND

In this work, we consider a software project as a collection of Java

source code files and configuration files organized to be build with

Maven.1 In this section, we present the key concepts for the analysis

of a project 𝑝 in the context of the set of its software dependencies,

denoted as D.

Definition 2.1. Maven dependency: A Maven dependency de-

fines a relationship between a project 𝑝 and another compiled

project 𝑑 ∈ D. Dependencies are compiled JAR files, uniquely

identified with a triplet (G:A:V) where G is the groupId, A is the

artifactId, and V is the version. Dependencies are defined

within a scope, which determines at which phase of theMaven build

cycle the dependency is required (e.g., compile, test, runtime).

A Maven project declares a set of direct dependencies in a spe-

cific configuration file known as pom.xml (acronym for łProject

Object Modelž), located at the root of the project. Figure 1 shows an

excerpt of the dependency declaration in the pom.xml of a project

𝑝 . In this example, developers explicitly declare the usage of three

dependencies: 𝑑1, 𝑑2, and 𝑑3. Note that the pom.xml of a Maven

project is a configuration file subject to constant change and evolu-

tion: developers usually commit changes to add, remove, or update

the version of a dependency.

Definition 2.2. Direct dependency: The set of direct dependen-

ciesDdirect ⊂ D of a project 𝑝 is the set of dependencies declared in

𝑝’s pom.xml file. Direct dependencies are declared in the pom.xml

by the developers, who explicitly manifest the intention of using

the dependency.

Definition 2.3. Transitive dependency: The set of transitive de-

pendenciesDtransitive ⊂ D of a project 𝑝 is the set of dependencies

obtained from the transitive closure of direct dependencies. Tran-

sitive dependencies are resolved automatically by Maven, which

means that developers do not need to explicitly declare these de-

pendencies.

Definition 2.4. Dependency tree: The dependency tree of a

Maven project 𝑝 is a direct acyclic graph of the dependencies of

1https://maven.apache.org

𝑝 , where 𝑝 is the root node and the edges represent dependency

relationships between 𝑝 and the dependencies in D.

To construct the dependency tree, Maven relies on its specific

dependency resolution mechanism [1]. First, Maven determines

the set of declared dependencies based on the pom.xml file of the

project. Then, it fetches the JARs of the dependencies that are not

present locally from external repositories, e.g., Maven Central.2

Figure 2 illustrates the dependency tree of the project 𝑝 , which

pom.xml file is in Figure 1. The project has three direct dependen-

cies, as declared in its pom.xml, and three transitive dependencies,

as a result of the Maven dependency resolution mechanism. 𝑑4 and

𝑑5 are induced transitively from 𝑑1, whereas the transitive depen-

dency 𝑑6 is induced from 𝑑3. Note that all the bytecode of these

transitive dependencies is present in the classpath of project 𝑝 ,

and hence they will be packaged with it, whether or not they are

actually used by 𝑝 .

Definition 2.5. Bloated dependency: A dependency 𝑑 ∈ D

in a software project 𝑝 is said to be bloated if there is no path in

the dependency tree of 𝑝 , between 𝑝 and 𝑑 , such that none of the

elements in the API of 𝑑 are used, directly or indirectly, by 𝑝 .

We introduced the concept of bloated dependencies in 2020 [30].

Although they are present in the dependency tree of software

projects, bloated dependencies are useless and, therefore, devel-

opers can consider removing them.

Definition 2.6. Dependency usage status: The usage status of

a dependency 𝑑 ∈ D determines if 𝑑 is used or bloated w.r.t. to 𝑝 ,

at a specific time of the development of 𝑝 .

Figure 3 shows an hypothetical example of the dependency usage

tree of project 𝑝 . Suppose that 𝑝 directly calls two sets of instruc-

tions in the direct dependency 𝑑1 and the transitive dependency 𝑑6.

Then, the subset of instructions called in 𝑑1 also calls instructions

in 𝑑4. In this case, the dependencies 𝑑1, 𝑑4, and 𝑑6 are used by 𝑝 ,

while dependencies 𝑑2, 𝑑3, and 𝑑5 are bloated dependencies.

Figures 1, 2 and 3 illustrate the status of a project’s dependencies

at some point in time. Yet, the pom.xml file, the dependency tree,

and the status of dependencies are prone to change for several rea-

sons. For example, a dependency that was used can become bloated

after a dependency migration or after some refactoring activities

that remove the usage link between the project and some of its

dependencies. It is also possible that developers add dependencies

in the pom.xml file or that more transitive dependencies appear in

the tree, e.g., when updating the direct dependencies. This work

2https://mvnrepository.com/repos/central
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Figure 4: Overview of our data collection pipeline. From a set of 147,991 Java projects on GitHub, we analyze the usage status

of the dependencies in 435Maven projects over time, to produce a dataset of 31,515 dependency trees.

investigates these software evolution changes and their impact on

bloat and maintenance.

3 STUDY DESIGN

In this section, we present the research protocols that we follow

to conduct our empirical study, including the research questions

(RQs), the tooling utilized to detect bloated dependencies, the data

collection, and our methodology to address each RQ.

3.1 Research Questions

In this paper, we study four different aspects of bloated dependen-

cies. Our analysis is guided by the following research questions.

RQ1. How does the amount of bloated dependencies evolve

across releases?With this first question, we aim at consoli-

dating the body of knowledge about software bloat. Several

recent studies have shed light on the massive presence of

bloat in different types of software projects [6, 15, 22, 25, 27].

The growth of bloat is an important motivation for these

works. Yet, this growth has never been assessed nor quanti-

fied. Our first research question addresses this lack, analyzing

the evolution of the amount of bloat over time.

RQ2. Dobloated dependencies stay bloated across time?Tools

that remove bloated code are designed under the assumption

that a piece of code that is bloated at some point in time will

always be bloated, hence it makes sense to remove it. In this

second research question, we investigate whether this as-

sumption holds true in the case of bloated Java dependencies.

We analyze how the usage status of dependencies evolves

over time, from used to bloated, or vice versa.

RQ3. Dodevelopersmaintain dependencies that are bloated?

Bloated dependencies needlessly waste time and resources,

e.g., space on disk, build time, performance. However, one

of the major issues related to this type of dependency is the

unnecessary maintenance effort. In this research question,

we investigate how often developers modify the pom.xml to

update dependencies that are actually bloated.

RQ4. What development practices change the usage status

of dependencies? The emergence of bloat is due to various

code maintenance activities, e.g., refactoring the code, or

modifying the pom.xml. In this research question, we expand

the quantitative analysis of the status of each dependency

and perform an in-depth analysis of the causes of dependency

bloat.

3.2 Detection of Bloated Dependencies

To analyze the status of dependencies of Maven projects, we rely on

DepClean.3 This is an open-source tool that implements a practical

way of detecting bloated dependencies in the complete dependency

tree of a Java Maven project.DepClean runs a static analysis, at the

bytecode level, to detect the usage of direct and transitive depen-

dencies. To do so, DepClean constructs a static call-graph of API

members’ calls among the bytecode of the project and its dependen-

cies. Then, it determines which dependencies are referenced, either

directly by the project or indirectly via transitive dependencies. If

none of the API members of a dependency are referenced, Dep-

Clean reports the dependency as bloated, i.e., the dependency is not

necessary to build the project. DepClean generates a report with

the status of each dependency, a list of API members that are used

at least once, for each used dependency. The tool also generates a

modified version of the pom.xml without bloated dependencies.

3.3 Data Collection

The dataset used in our study consists of a collection of subsequent

versions of Maven dependency trees [9]. Each dependency in these

trees is analyzed in order to determine its status: used or bloated.

Figure 4 summarizes the process we follow to collect this dataset.

Rounded rectangles represent procedures, non-rounded rectangles

represent intermediate data results.

❶ Collect.Our data collection pipeline starts from the list of Java

projects extracted from GitHub by Loriot et al. [20]. The authors

queried the GitHub API on June 9th of 2020, and provide a list of

GitHub URLs including all projects that use Java as the primary

programming language. From this list, we keep only projects with

more than 5 stars. This initial dataset contains a total of 147,991

Java projects. Then, we inspect the projects’ files and select those

containing a single pom.xml file in the root of the repository, to

focus our longitudinal analysis on single-module Maven projects.

This first data collection step provides a set of 34,560 Java projects.

❷ Filter. In this second step, we check all the commits on the

pom.xml file to determine the version of the project declared in

the pom.xml. Each time the version of the project changes and it is

not a SNAPSHOT or a beta-version, we consider that the commit

represents a new release. We sort the list of projects by the num-

ber of releases and then we select the first 500 projects. We focus

on release commits since a release represents a stable version of

the project, which is a suitable moment to consider the presence

3https://github.com/castor-software/depclean
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Table 1: Descriptive statistics of the dependencies in the 435

analyzed projects.

Min 1st Qu. Median Avg. 3rd Qu. Max
# Months 5 48.5 75.5 81.01 109.5 235
# Analyzed commits 2 41.0 58.0 73.51 79.0 819
# Direct initial 0 3.0 5.0 8.28 10.0 120
# Transitive initial 0 2.0 10.5 46.77 56.0 300
# Direct final 0 5.0 10.0 13.97 18.0 111
# Transitive final 0 6.5 25.0 66.56 82.5 515

of bloated dependencies. In addition to the project releases, we

collect the commits that have been created by Dependabot,4 a pop-

ular software bot that automatizes the update of dependencies on

GitHub [8]. The goal is to determine how many bloated dependen-

cies have been updated as a result of a pull request not made by a

human. We identify 2,017 Dependabot commits for 143/500 (28.6 %)

projects. At the end of this step, we have a total of 500 projects, as

well as 49,293 commits, including 47,276 release commits.

❸ Analyze. The final and most complex step in our pipeline is

to analyze the status of dependencies in the 49,293 commits. We

perform the following tasks: 1) clone the repository and checkout

the commit, 2) compile the project using Maven, 3) if the project

compiles, then we execute DepClean on the commit to obtain the

dependency usage status. We analyze dependencies that have a

compile or test scope. The compilation task is the most crucial

and difficult task because it involves downloading dependencies,

having the correct version of Java and having a proper project state,

i.e., the Java code needs to be valid. We mitigate those problems

by compiling the projects with Java 11 and then with Java 8. By

trying to compile with Java 8 when the project does not compile

with Java 11, we increase the number of successful compilations

by around 20%. We also use a proxy for Maven that caches and

looks for dependencies in five different repositories to increase

the chances to resolve them. In total, the proxy cached 198,611

dependencies and 165Gb of data. As side effects, the proxy speeds

up the resolution of dependencies and increases the reproducibility

of the study, i.e., Maven will always resolve the same dependencies

even if we recompile the projects after several years.

This final step of our pipeline outputs the definitive dataset for

our longitudinal study: the dependency usage trees of 31,515 (63.9 %)

commits collected from 435 (87.0%) projects. These trees capture

the history of 48,469 dependency relationships, including 1,987

direct dependencies and 23,442 transitive dependencies. Among the

commits, 29,822 (63.1 %) are project releases and 1,693 (83.9 %) are

Dependabot commits. We have kept only the projects for which

we can successfully analyze at least two dependency tree versions.

The dataset consists of a JSON file per commit for each project,

containing the status of each dependency at every point in time. The

dataset and the scripts are available in our experiment repository.5

Table 1 shows descriptive statistics of our dataset. The 435 projects

have been active for periods ranging from five months to 235

months (12 years and 7 months), with most of them in the range

48.5 months (1st Qu.) to 109.5 months (3rd Qu.). The number of

dependency trees analyzed for each project ranges from 2 to 819

(Median = 58, 1st Qu. = 41, 3rd Qu. = 79). The table also reports

4https://dependabot.com
5https://github.com/castor-software/longitudinal-bloat

the number of direct dependencies in the oldest analyzed commit

(Median = 5, 1st Qu. = 3, 3rd Qu. = 10), and transitive dependencies

(Median = 10.5, 1st Qu. = 2, 3rd Qu. = 56). The last two lines in the

table give the number of direct dependencies in the most recent

analyzed commit (Median = 10, 1st Qu. = 5, 3rd Qu. = 18), and

transitive dependencies (Median = 25, 1st Qu. = 6.5, 3rd Qu. = 82.5).

3.4 Methodology for RQ1

In RQ1, we analyze the evolution of the number of bloated depen-

dencies over time. We start with a global analysis of the bloat trend

in direct and transitive dependencies. To do so, we aggregate the

total number of bloated dependencies in all projects on a monthly

basis and compute the average values. Next, we look at each project

separately and assign a bloat evolution trend to each of them. We

represent the number of dependencies at each commit in a project

as a time series. Let 𝑝 be a Maven project, B𝑝 = 𝑏1, 𝑏2, ...𝑏𝑛 repre-

sents a time series of length 𝑛. A time step in this series represents

one commit that modifies the pom.xml of 𝑝 . Each 𝑏𝑖 is the total

number of bloated dependencies reported by DepClean at the 𝑖𝑡ℎ

commit on the pom.xml. We collect two series for each project, for

bloated-direct and bloated-transitive dependencies.

For each project 𝑝 , we determine the overall trend for the evolu-

tion of the number of bloated dependencies: increase, decrease or

stable. The following function over B𝑝 shows how we determine

the trend for a project:

𝑓 (B𝑝 ) =





inc if 𝑠𝑙𝑜𝑝𝑒 (𝑙𝑚(B𝑝 )) > 0 ∧ ∃𝑏 𝑗 ∈ B𝑝 : 𝑏 𝑗 < 𝑏 𝑗−1

dec if 𝑠𝑙𝑜𝑝𝑒 (𝑙𝑚(B𝑝 )) < 0 ∧ ∃𝑏 𝑗 ∈ B𝑝 : 𝑏 𝑗 > 𝑏 𝑗−1

stable if ∀𝑏𝑖 ∈ B𝑝 : 𝑏𝑖 = 𝑏𝑖−1

We notice that several projects do not have a monotonic trend

in the number of bloated dependencies (i.e. the value increases

and decreases at different time intervals). To account for projects

that have a non-monotonic number of bloated dependencies, we

fit a simple linear regression model, denoted as lm, and determine

the trend of the time series based on the sign of the slope of the

regression line. A project labelled as inc is a project for which the

sign of the slope is positive, i.e., the number of bloated dependencies

increase over time. A project labelled as dec is a project for which the

sign of the slope is negative, i.e., the number of bloated dependencies

decreases over time. If the number of bloated dependencies is the

same across all the data points in the time series of a project, we

label it as stable.

3.5 Methodology for RQ2

In this research question, we analyze the evolution of the usage sta-

tus of the 48,469 dependencies in our dataset. Given a dependency

𝑑 ∈ D, present in the dependency tree of a project 𝑝 , we collect the

status of 𝑑 at each analyzed commit (see data collection Section 3.3).

This provides a sequence of usage statuses for 𝑑 and serves as the

basis to determine the occurrence of transitional patterns between

used and bloated statuses.

Let V𝑑 be a vector representing the history of usage statuses of

dependency 𝑑 across the releases of a project, where each release

is ordered by its date. We label the usage status of a dependency 𝑑

as B if it is a bloated dependency, or U if it is a used dependency.
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1.0.0 1.1.0 1.1.1 2.0.0

Used Bloated

time

Dependency status

Figure 5: Example of a dependency analyzed over time. It

has a transition of usage status: from used at version 1.1.0 to

bloated at 1.1.1 (RQ2). The dependency has two subsequent

updates after bloated: at versions 1.1.1 and 2.0.0 (RQ3).

Figure 5 illustrates a transition in the usage status of a depen-

dency from used (U) to bloated (B). In this case, the dependency

is identified as used at the two first releases of the project, then it

becomes bloated at the third release, and stays as such. Therefore,

the usage pattern for this dependency results in [U, U, B, B]. Since

we are interested in analyzing transitional patterns, the consecutive

elements of the same category in the vector can be compressed to

a single status, e.g., the previous example is represented as [U, B].

In this research question, we focus on analysing the occurrence

of five transitional patterns: [U], [B], [U,B], [B,U], and fluctuating.

In the cases where the usage status of a dependency flickers over

time, we consider the status of the dependency as fluctuating.

3.6 Methodology for RQ3

We conjecture that developers could save some maintenance efforts

in the absence of bloated dependencies. In this research question,

we investigate how many times developers update the version of

dependencies that are in fact bloated. This type of change in the

pom.xml of a project is an unnecessary engineering effort that

could be avoided. We analyze two types of commits: the commits

where the developers update the version of the project to a new sta-

ble version (e.g., 1.0.0), and the Dependabot commits. Dependabot6

is a dependency management bot very active on GitHub. It cre-

ates pull requests that update the dependencies to remove known

vulnerabilities. Dependabot was launched on May 26, 2017 with

support for Ruby and JavaScript, and now it is supporting more

than ten languages, including Java since August, 2018.

We analyze Dependabot commits because they only contain edits

on the dependency versions in the pom.xml. It provides a clean

point of analysis to detect the impact of a dependency update. And

it allows us to study how many bloated dependencies are updated

by developers as a result of the suggestion of automatic bots.

Figure 5 illustrates a typical case of a dependency that continues

to be updated even after it becomes bloated. The dependency is

used by the project until version 1.1.0. Afterward, the dependency

is no longer used, but it is still updated twice, to version 1.1.1 and

then to version 2.0.0.

To answer this research question, we consider the 15,230 com-

mits in our dataset that perform dependency updates in projects

that have at least one Dependabot commit. We obtain the number of

times a dependency is updated by a developer, by Dependabot, and

how many of those updates are performed on bloated dependencies.

For the dependency usage analysis, we tag each dependency as

6https://dependabot.com

used or bloated. We count every time the version of a direct depen-

dency is updated, and we count separately the number of updates

applied on bloated dependencies. In the example of Figure 5, we

count one update on a used dependency (when the used depen-

dency is updated to version 1.1.0), and two updates on a bloated

dependency (when the bloated dependency is updated to version

1.1.1 and version 2.0.0). Using this approach, we can compare the

ratio of updates made by developers and by Dependabot.

3.7 Methodology for RQ4

In this research question, we investigate the origins of bloated

dependencies. Each time a bloated dependency appears for the first

time in a project’s history, we first determine if it was used in the

commit that immediately precedes the apparition of bloat. If the

dependency was used in the previous commits, we determine in

which class it was used. By analyzing a dependency at the time it

appears as bloated, we can identify what causes the emergence of

bloat. We have identified four different situations:

(1) New dependency (ND): The bloated dependencywas not present

in the previously analyzed commit. It indicates that the depen-

dency was introduced in the project but never used.

(2) Removed code (RC): The bloated dependency was present in

the previously analyzed commit and all the classes where the

dependency was used are removed.

(3) Updated code (UC): The bloated dependency was present in the

previously analyzed commit, yet at least one class where the

dependency was used is still present in this commit. It means

that the code has been updated to remove the usage of the

dependency but the pom.xml still contains the dependency.

(4) New version (NV): The bloated dependency was present in the

previously analyzed commit and the version of the dependency

changed. In the case of transitive dependency, the parent de-

pendency has been updated and the project does not use the

transitive dependency anymore.

For each of the 31,515 dependency trees, we identify the bloated

dependencies. Then, we check the status of the dependency in the

previous commit. If the dependency is not present in the previous

commit, we consider the origin as ND. Otherwise, we check in the

previous commit in which classes the bloated dependency is used.

We then compare those classes with the new commit. If all classes

are removed, we consider the origin of the bloat as RC. If at least

one of the classes is still present, we consider the origin of the

bloat as UC. Additionally, we compare the version of the bloated

dependency with the previous commit. If the version changes, and

at least one class is still present, we mark the origin as UC and NV,

since both reasons could be the origin of the bloat.

4 RESULTS

In this section, we answer the four RQs presented in Section 3.1.

4.1 RQ1. Bloat Trend

In this research question, we analyze how the number of bloated

dependencies evolves over time. We hypothesize that this number

tends to grow. Following the protocol described in Section 3.3, we

analyze the usage status of each dependencies in 31,515 dependency

trees along the history of 435 projects, as reported by DepClean.
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We assign bloat trend labels to each project, according to the three

categories defined in Section 3.4.

Figure 6 shows the monthly evolution trend of the number of

bloated-direct and bloated-transitive dependencies, from January

2011 to November 2020. The y-axis is the average number of bloated

dependencies of the 435 projects. Each data point represents the

average of bloat measured each month. The lines represent linear

regression functions, fitted to show the trend of bloated-direct and

bloated-transitive dependencies, at a 95% confidence interval.

We observe that bloated-transitive dependencies have a clear ten-

dency to grow over time, whereas bloated-direct dependencies grow

at significantly lower pace. For example, the number of bloated-

transitive dependencies in 2011 was 1,695, and by the end 2020 this

number grew up to 286,228 (increase > 250×). The bloat is more

pervasive and variable (SD = 17.2) among transitive dependencies,

representing a larger share in comparison with direct dependencies

that are less numerous and less variable (SD = 1.3). We conclude

that, overall, the amount of bloat increases, being more notable for

transitive dependencies.

0

20

40

60

80

20
12

20
14

20
16

20
18

20
20

Date

A
vg

. 
#
 o

f 
b

lo
a
te

d
 d

ep
en

d
en

ci
es Dependency bloated-direct bloated-transitive

Figure 6: Trend of the average number of bloated-direct and

bloated-transitive dependencies per month.

Figure 6 shows an overall growing trend for the number of

bloated dependencies. Now, we look in more details at each project

separately. We count the number of projects that have different

trend of bloated dependencies. Figure 7 shows examples of time

series of projects in our dataset for which the bloated-direct de-

pendencies are labelled according to each category (increasing,

decreasing, and stable). The name of the projects correspond to

the <user>/<repository> on GitHub. The x-axis is the date of the

analyzed commits. The y-axis represents the number of bloated

dependencies detected. For instance, the time series of the project

zapr-oss/druidry has a total of 51 commits on the pom.xml (i.e.,

data points in the time series), and it is labelled as inc w.r.t. to both

the direct and transitive dependencies because both series tend to

continuously increase over time.

Figure 8 shows the distribution of the trend of bloated-direct and

bloated-transitive dependencies. The x-axis indicates the number of

projects with bloated-direct dependencies in each specific evolution

trend, given on the y-axis. Each bar in the plot is partitioned in three

parts that correspond to the share of projects with a given trend for

the number of bloated-transitive dependencies. For example, the top

bar of Figure 8 shows (i) that the number of bloated-direct depen-

dencies tends to increase for 245 (56.3%) projects; and (ii) among

these 245 projects, 180 also have a number of bloated-transitive
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Figure 7: Example of projects in the three classes of bloat

trend defined in Section 3.4.

dependencies that tends to increases, 59 of these projects have a de-

creasing number of bloated-transitive dependencies and 6 projects

have a stable number of bloated-transitive dependencies. The bar in

the middle of the figure indicates that the number of bloated-direct

dependencies tends to decrease for 106 (24.4%) projects and the

bottom bar shows that this type of bloat is stable for 84 (19.3%)

projects because no new bloated dependencies are introduced in

the pom.xml.

Looking at the partitions of each bar in Figure 8, we first observe

that whatever the trend for the number of bloated-direct dependen-

cies, the number of bloated-transitive dependencies can evolve in

any way. Yet, the majority of projects have an increasing number

of bloated dependencies among their transitive dependencies. In

total, 286 (65.7%) projects have an increasing number of bloated-

transitive, whereas for 113 (26.0 %) projects this number decreases.

The number of projects with stable transitive-dependencies, 36

(8.3 %), is relatively low.

Interestingly, from the 84 projects with a stable number of bloated-

direct dependencies, 41 (48.8%) of the bloated-transitive depen-

dencies increase and 18 (21.4%) decreases (e.g., as in the project

percy/percy-java-selenium in Figure 7). This result indicates that

the usage status of dependencies change regardless of the mod-

ification of the pom.xml. The transition from used to bloated in

transitive dependencies becomes unnoticed. In other words, even if

developers update only the version of direct dependencies, without
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Figure 8: Distribution of the number of projects with in-

creasing, decreasing, and stable trend of bloated-direct and

bloated-transitive dependencies.
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doing anything else, then the bloat grows naturally due to the in-

flation of the rest of the dependency tree. It happens, for example,

in the project jpmml/jpmml-sparkml when a developer updates

spark-mllib_2.11 from version 2.0.0 to 2.2.0, introducing 133

new transitives dependencies.

On the other hand, we observe that for 65 (61.3 %) out of the 106

projects with a decreasing number of bloated-direct dependencies,

the number of bloated-transitive increases. It indicates that even in

projects for which direct dependencies decreases, the number of

bloated-transitive dependencies can increase and eventually lead

to a global growth of bloated dependencies for the project.

Answer to RQ1: Bloated dependencies tend to naturally

emerge and grow through software evolution and main-

tenance. The number of bloated-direct dependencies and

bloated-transitive dependencies increases over time for 56.3 %

and 65.7 % of the projects, respectively.

4.2 RQ2. Bloated Across Time

This research question addresses an essential concern when devel-

opers think about removing bloat: is a piece of software identified as

bloat at one point in time prone to usage in future revisions? We an-

swer this question through a post-mortem analysis of the transition-

ing in the usage status of dependencies across the evolution of the

studied projects. Our hypothesis is that dependencies do not change

their usage status very frequently, i.e., a dependency that is used

in one commit is used in future commits, and similarly for bloated

dependencies. If our hypothesis holds, then it indicates that devel-

opers can be more confident when removing bloated dependencies.

We analyzed the five usage patterns described in Section 3.5. Fig-

ure 9 shows one concrete example for each pattern. The examples

are taken from our dataset and the patterns are illustrated on the

period January 2017 to December 2020. The y-axis shows the name

of the direct dependency, with the pattern in square brackets. For

example, we analyze the usage status of the direct dependency

h2 in the project dieselpoint/norm, from May 2018 to October

2020. As we can observe, this dependency was always reported

as bloated. On the other hand, the dependency json in project

PAXSTORE/paxstore-openapi-java-sdk was reported as bloated in

first four analyzed commits, September 2018 to November 2019,

and then it was used in all the subsequent releases of the project.

Figure 10 shows the distribution of the five transitional usage

patterns among the 1,987 direct and 23,442 transitive dependencies

in our dataset. The x-axis represents the percentage of occurrence

of each pattern with respect to the total. The top bar of the plot

indicates that 64.3% of the direct dependencies are used through

their whole lifespan, whereas 29.9 % are always bloated. This means

that 94.2 % of direct dependencies never change their status through

the evolution of the software projects. This also means that most

bloated-direct dependencies are bloated by the time they are added

in the dependency tree and are likely to remain bloated forever. We

conjecture that this happens as a side effect of some development

practices, such as copy-pasting of pom.xml files, the use of Maven

Archetypes, or the deliberate addition of dependencies when setting

up the development environment.

The bottom bar of the plot shows a similar stability for the status

of transitive dependencies: 91.1 % of transitive dependencies do not

change their usage status over their lifespan. A key difference here

is that most of the dependencies are always bloated: 78.3 % of the

transitive dependencies are bloated from the start, whereas 12.8 %

are always used. We hypothesize that most transitive dependencies

are unnoticed by the developers. Consequently, they are not man-

aged and stay in the dependency tree for no reason in most cases.
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Figure 9: Example of direct dependencies with distinct usage

patterns. Each dependency belongs to a different project, the

status of the dependency is analyzed at each commit that

changes the pom.xml of the project.

A key motivation for this research question is to determine

whether a dependency identified as bloated is likely to stay bloated.

We compute the percentage of dependencies bloated from the start

(B) or that remain bloated after being used (UB), with respect to the

total number of dependencies that are bloated at some point in the

future, i.e., (B+UB)/(B+UB+BU+fluctuating). We find that 89.2% of

bloated-direct dependencies and 93.3 % of bloated-transitive depen-

dencies remain bloated over time.

64.3%29.9% 5.8%

78.3% 12.8% 8.9%Transitive

Direct

0% 25% 50% 75% 100%

Percentage of occurrence

D
ep

en
d

en
cy

 t
y

p
e

Paern B U BU UB fluctuating

Figure 10: Percentage of occurrence of usage patterns of

bloated-direct and bloated-transitive dependencies.

Answer to RQ2: A dependency that is detected as bloated

most likely stays bloated: 89.2 % of direct-bloated dependen-

cies and 93.3 % of the transitive-bloated dependencies stay

bloated over time. This is strong evidence that developers

can confidently take a debloating action when detecting

bloated dependencies.

4.3 RQ3. Unnecessary Updates

In this research question, we investigate how the update of depen-

dencies, a regular maintenance practice for all software projects,
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Figure 11: Number of updates made by developers on direct

dependencies in projects that use Dependabot.
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Figure 12: Number of updatesmade byDependabot on direct

dependencies in projects that use Dependabot.

more and more encouraged by automatic bots, relates to bloated

dependencies. We hypothesize that developers invest some effort

in updating some of these dependencies, while this is not required.

To verify this hypothesis, we count how many times bloated-direct

dependencies are updated in the pom.xml and compare it to the

number of updates of used-direct dependencies. The methodology

for this count is described in Section 3.6. We analyze separately the

updates performed manually by developers and the updates sug-

gested by Dependabot that are eventually accepted by a developer.

Figures 11 and 12 present our main results for this research ques-

tion. Those plots present the number of dependency updates on

direct dependencies made by developers and by Dependabot re-

spectively. We focus on the 143 projects in our dataset that have at

least one Dependabot commit. All the projects do not use Depend-

abot since its Java support is relatively recent (August 2018). The

total number of updates on direct dependencies in these projects

is 15,230, of which 12,062 have been performed by humans and

3,168 have been suggested by Dependabot.

Figure 11 shows that, over a total of 12,062 updates on direct

dependencies made by developers, 9,403 (78.0 %) are preformed on

used dependencies, and 2,659 (22.0%) are made on bloated depen-

dencies. These 2,659 unnecessary updates represent a significant

effort, as updating dependencies is a non trivial maintenance task

[17]. Figure 12 shows the number of updates on direct dependencies

made by accepting a suggestion from Dependabot. From Figure 12,

2,452 (77.4 %) of Dependabot updates are performed on non-bloated

dependencies and 716 (22.6%) on bloated dependencies. Overall,

we observe that developers perform a significantly larger number

of dependency updates than Dependabot. Yet, the most interesting

fact is that developers and Dependabot perform the same ratio of

updates on bloated dependencies, 22.0 % and 22.6 % respectively.

The consequences of updating a bloated dependency are not

only about the time and effort wasted by the developer. We have

observed that a possible side-effect of these unnecessary updates

is the increase of the total number of bloated dependencies in the

project. In RQ1, we showed that the number of bloated dependencies

increases over time, with a strong trend for transitive dependencies.

In fact, a portion of this increasing transitive bloat is introduced

through the update of direct dependencies, i.e., the new version

has more dependencies. Note that this scenario can happen even

when updating a bloated-direct dependency. We have observed

this phenomenon in our dataset. The 6,091 updates on bloated-

direct dependencies have introduced 1,883 new bloated-transitive

dependencies.

Answer to RQ3:Maintenance effort is lost on bloated de-

pendencies: 22.0% of developer updates and 22.6% of De-

pendabot accepted updates are performed on bloated-direct

dependencies. This represents a total of 6,091 updates over

143 projects. This is novel evidence that software bloat arti-

ficially increases maintenance effort and that dependency

bots need to be improved to detect bloated dependencies.

4.4 RQ4. Bloat Origin

In this research question, we investigate what type of maintenance

activity is at the origin of bloat emergence. In other words, we per-

form an in-depth analysis of the usage patterns B and UB presented

in RQ2 by categorizing the origin of the bloat in four possible activ-

ities: new dependency (ND), removed code (RC), updated code (UC),

and new version (NV) as described in Section 3.7. Table 2 summa-

rizes the number of occurrences of activities that introduce bloat for

direct and transitive dependencies. In total, we analyze the 25,359

dependencies that become bloated at some point in time (1,987

directs, 23,442 transitives) and determine in what condition they

become bloated. This corresponds to 2,215 and 34,071 transitions

to bloat, on direct and transitive dependencies respectively.

We observe that the primary origin of bloat is the addition of

new dependencies ND, with 1,868 (84.3 %) such additions that lead

to more bloated-direct dependencies and 33,370 (97.9%) new de-

pendencies that introduce more bloated-transitive dependencies.

This result confirms our findings in RQ2, where we observed that

the status of most dependencies does not change over time, which

hinted to the fact that bloated dependencies are bloated as soon as

they appear in the dependency tree. Additionally, the larger num-

ber of ND that grow the number bloated-transitive dependencies is

consistent with the results of RQ1, where we showed a larger in-

crease of bloated-transitive dependencies than bloated-direct ones.

This new result consolidates the finding with the root cause of

the transitive bloat. The second most frequent origin of bloated

dependencies is different for direct and transitive dependencies.

The action of removing code RC is the second most frequent cause

of the emergence of bloated-direct dependencies, with 8, 8% of the

cases. Updating code UC is the second most important root cause

for bloated-transitive dependencies. While these two actions are

similar in nature (evolve the code base), we did not find a clear expla-

nation for the difference between the types of bloated dependencies.

Updating to a new version of a dependency NV is the least frequent

cause of bloat emergence. The rarity of this cause is explained by

the fact that it can only happen in very specific conditions, when

the new version of the dependency changes drastically.
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Table 2: Number of occurrence for each origin of bloat. The

occurrences are separated between the new bloated-direct

and transitive dependencies.

Origin Bloated-direct Bloated-transitive

New dependency (ND) 1,868 (84.3 %) 33,370 (97.9 %)

Removed code (RC) 194 (8.8 %) 206 (0.6 %)

Updated code (UC) 153 (6.9 %) 495 (1.5 %)

New version (NV) 47 (2.1 %) 124 (0.4 %)

We now illustrate the different situations of bloat introduction

with real-world case studies observed in our dataset. The most

frequent cause of bloat introduction is a new transitive depen-

dency in the dependency tree (ND), which is never used. For exam-

ple, this happens in the project couchbase/couchbase-java-client

at the commit 47ac44, where the dependency jackson-databind,

which is induced transitively when encryption:1.0.0 has been

added to the pom.xml. jackson-databind is used in the class

HashicorpVaultKeyStoreProvider which is never used by the

couchbase/couchbase-java-client and, therefore, jackson-databind

is a bloated-transitive dependency in this project.

This case occurs with direct dependencies as well. For example,

the direct dependency jackson-core is added as a direct depen-

dency in the pom.xml of project jenkinsci/elasticbox-plugin, at

commit 008358. Yet, the dependency is never used in the code of the

project. One year and 4 months later a pull-request, #41, fixes the

bloat issue by removing the dependency directly. However, at the

time of writing this paper, the pull-request has not been merged.

Projects are evolving, adding and removing code is part of the

life cycle of a project. A consequence of code removal can be to

eliminate the need for a dependency. Yet, developers currently have

no tool support to determine that a dependency can also be removed

as part of their maintenance activities. Consequently, the depen-

dency is likely to become bloated (RC). For example, we observed

that scenario happens in the project apache/commons-lang. The

commit def3c4 introduces the dependency bcel, which contains an-

notations to document thread safety. However, the commit 796b05

removes all classes where these annotations were used. According

to the commit, more discussions were needed to design the annota-

tion, and the maintainers reverted partially the changes to release

a new version. A developer removed the bloated dependency after

five months (see commit 66226e).

A similar scenario occurs when developers update classes (UC).

For example, the commit 62aad3 introduces the annotation Ignore

JRERequirement on a method in the project jenkinsci/remoting.

However, this method is updated and deprecated in the commit

49c67e. The annotation IgnoreJRERequirement is removed and

the dependency animal-sniffer-annotation became bloated.

The project apache/commons-dbcp contains an interesting case

of bloat introduced when a dependency is updated (NV). In the

commit 3550ad, the direct dependency geronimo-transaction

is detected as bloated. However, this dependency was not bloated

in the previous commit d7aa66, when the project was using the ver-

sion 1.2-beta of geronimo-transaction. The dependency was

updated to version 2.2.1 with commit 3550ad. This new version

brought major changes in the dependency and, in 2.2.1, all the

classes used by the project had been move in a transitive depen-

dency of geronimo-transaction. Therefore, the direct depen-

dency towards geronimo-transaction became bloated.

Answer to RQ4: The addition of new dependencies is the

root cause of the emergence of 84.3 % of the bloated-direct

dependencies. Meanwhile, 15.7% of bloated dependencies

appear after code updates or removals. This indicates that

new dependencies should be carefully reviewed the first time

they are added, and we recommend developers to check the

usage status of dependencies when removing code.

5 IMPLICATIONS

Our findings provide practical, empirically justified implications

for improving dependency maintenance [7, 11]. The results of RQ1

and RQ2 show that a dependency that is bloated is likely to remain

bloated in the future. This is empirical evidence that can motivate

developers and increase their confidence when they are faced with

the opportunity to remove bloated dependencies. Motivation comes

from the benefits associated with reducing the number of depen-

dencies of the project and hence reduce associated maintenance

activities. Confidence comes with the strong likelihood that the

dependency that is removed will not be necessary in the future.

Our results highlight several practical challenges to integrate the

management of software dependencies on the development lifecy-

cle. This can raise the awareness of developers about the importance

of understanding what dependencies are more likely to become

bloated, and how their projects can reduce the size of dependency

trees without breaking the build. In particular, the use of tools, such

as DepClean, to automatically detect and suggest changes in the

build files can contribute to a better awareness of developers about

the state of their dependencies. For example, we recommend to

include a bloat analysis when preparing a major release of a project,

to ensure that no bloat is shipped, distributed and deployed. This

reduces the size of the released binary and hence the resources that

are necessary to distribute it. This also reduces the number of tran-

sitive dependencies for all projects that depend on the new release.

In RQ3, we present original results of the negative impact of

bloated dependencies on the maintenance of the projects. In par-

ticular, we shed a new light on the limitations of dependency bots,

such as Dependabot, and provide evidence that developers accept

bots’ suggestions when updating dependencies without checking

if the dependency is actually used. Bot creators should consider

improving their tools to automatically detect bloat and suggest

the removal of unused dependencies. On the same line, compil-

ers and IDEs should also warn developers when dependencies are

not used anymore and when a dependency is introduced without

encountering its counterpart usage on code.

Our dataset and our case studies on the origin of bloat provide

valuable references for the rapid identification of practices that

result in dependency bloat. Those references can be used to build

dedicated bots that ask for additional checks, e.g. when a new de-

pendency appears in the dependency tree, or to establish guidelines

for developers when they maintain pom.xml files.
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6 THREATS TO VALIDITY

Internal Validity. The first internal threat relates to the detec-

tion of bloated dependencies. The results of our study are tied to

the accuracy of DepClean to find bloated dependencies in Maven

projects. This tool is based on advanced static analysis. Therefore,

some usages that rely on Java dynamic features might be missed,

reporting some used dependencies as bloated. For example, lombok

is a Java library that relies on annotations to manipulate the byte-

code at compilation time, adding boilerplate code constructs such

as getters and setters. This mechanism makes the dependency to be

flagged as bloated by DepClean, since no reference to this depen-

dency remains in the bytecode of the compiled project. Nevertheless,

we consider that DepClean is a solid tool, evaluated on millions

of dependencies, used in industry, and developers have removed

hundreds of bloated dependencies thanks to its analysis [30]. The

second threat relates to the representativeness of the data and the

analysis performed. We mitigate those threats by collecting a large

dataset of projects from multiple domains and released across sev-

eral years. This allows us to draw general conclusions about the

evolutionary trend of bloated dependencies, regardless of the exis-

tence of some false positives, which are known to be hard to detect

using static analysis [18, 19, 26].

External Validity. When conducting this study, we focus on

bloated Java dependencies in projects that build with Maven. As

explained in Section 3.3, the analysis of the dependency trees of 435

projects requires compiling and analyzing the bytecode at different

time periods. There were cases where the compilation failed for

several reasons, making it difficult to obtain the complete history of

dependency changes. As we consider a large number of open-source

projects, we believe our results are generalizable in this specific

domain. Meanwhile, additional studies with proprietary projects or

other programming languages should be considered to consolidate

these very first result about software bloat evolution.

Construct Validity. This threat is related to the rationality of

the questions asked. We investigate the evolution of bloated depen-

dencies over time. To achieve this goal, we focus on four aspects:

bloat trend, usage patterns, unnecessary updates, and bloat origins.

We believe that these are rational questions that provide unique

and novel insights for researchers and developers.

7 RELATED WORK

Software Bloat. Previous research on software bloat has mainly

focused on reducing C/C++ binaries to mitigate the security risks

associated with unnecessary code [22, 24, 27]. Holzmann [14] re-

ports the historical growth in the size of the true command in Unix

systems. Similarly, we observed that the number of bloated depen-

dencies tends to grow over time, whether or not there is a need

for it. In the last years, there is a recent resurgence of interest in

debloating Java bytecode [6, 15, 21, 29, 30]. These tools remove Java

bytecode using static and dynamic analysis. In contrast, our study

focuses on the evolution and the emergence of bloat in Java projects,

while spotting some of the current research gaps and tooling for

effective dependency management. Other studies have focused on

eliminating bloat in source code [34], binary shared libraries [2],

highly configurable programs [16], or containers [25]. Other works

have focused on improving the debloat process through various

optimizations techniques [3, 4, 12, 32, 36]. As far as we know, we

are the first to conduct a longitudinal study to analyze software

bloat.

Bloated Dependencies. Our work follows up on our previous

study of bloated dependencies [30]. Our quantitative and qualitative

study of bloated dependencies in theMaven ecosystem, revealed the

importance of the phenomenon in Maven Central. Our interactions

with software developers showed that removing bloated dependen-

cies is perceived as a valuable contribution. Here we extend this

previous study in two ways. First, we perform a study of bloated

dependencies with distinct study subjects on a chronological basis.

This brings novel insights on the evolution of bloated dependen-

cies through the history of software projects, corroborating the

importance of maintaining pom.xml files. We bring novel evidence

in favor of removing bloated dependencies. Second, we perform a

unique study on the interaction between maintenance activities and

the emergence of bloat. These new results contribute to understand-

ing the origin of bloat as well as estimating the maintenance effort

unnecessarily invested when performing dependency updates.

Software Bots. Erlenhov et al. [10] perform an empirical study

about the interaction between practitioners and software bots. They

found that there is currently a lack of general-purpose smart bots

that go beyond simple automation tools, such as dependency ver-

sion updating. This is in line with our results, as we have seen

that dependency bots do not perform advanced dependency usage

analysis, sending unnecessary warnings that could be avoided. Wes-

sel et al. [35] rise attention on the inconvenient side of software

bots. They present empirical evidence that pull requests made by

bots are, in some cases, perceived as disruptive and unwelcoming

by developers. Thus, motivating our work on reducing the num-

ber of warnings caused by bots dedicated to automatically update

dependencies.

8 CONCLUSION

This paper presented the first large-scale longitudinal study about

the evolution of software bloat, with a focus on bloated Java de-

pendencies. We collected a unique dataset of 31,515 dependency

tree versions, tagged with usage dependency status, from 435 Java

projects hosted on GitHub. Through the analysis of 48,469 depen-

dencies, we provided evidence about an essential phenomenon:

89.2 % of the dependencies that become bloated over evolution stay

bloated over time. As a consequence, developers spend significant

time updating dependencies that are actually bloated. We find that

22 % of dependency updates are made on bloated dependencies.

These updates include a significant number of updates suggested

by Dependabot. We also demonstrate that bloated dependencies

are primarily originated from the addition of new dependencies

that are never used, rather than from code changes.

Our work paves the way to better understand the importance

of debloating tools, such as DepClean, to handle the increasing

phenomenon of software bloat. In particular, evidence that bloated

code stays bloated is important for developers who need to decide

if they should remove code. Our novel findings about the role

of Dependabot on the unnecessary maintenance effort provide

concrete insights to improve the suggestions that this single bot

shares with developers.
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Coverage-Based Debloating for Java Bytecode

CÉSAR SOTO-VALERO, THOMAS DURIEUX, NICOLAS HARRAND, and
BENOIT BAUDRY, KTH Royal Institute of Technology

Software bloat is code that is packaged in an application but is actually not necessary to run the application.
The presence of software bloat is an issue for security, performance, and for maintenance. In this article,
we introduce a novel technique for debloating, which we call coverage-based debloating. We implement the
technique for one single language: Java bytecode.We leverage a combination of state-of-the-art Java bytecode
coverage tools to precisely capture what parts of a project and its dependencies are used when running with
a specific workload. Then, we automatically remove the parts that are not covered, in order to generate a
debloated version of the project. We succeed to debloat 211 library versions from a dataset of 94 unique open-
source Java libraries. The debloated versions are syntactically correct and preserve their original behaviour
according to the workload. Our results indicate that 68.3 % of the libraries’ bytecode and 20.3 % of their total
dependencies can be removed through coverage-based debloating.

For the first time in the literature on software debloating, we assess the utility of debloated libraries with
respect to client applications that reuse them. We select 988 client projects that either have a direct reference
to the debloated library in their source code or which test suite covers at least one class of the libraries that
we debloat. Our results show that 81.5 % of the clients, with at least one test that uses the library, successfully
compile and pass their test suite when the original library is replaced by its debloated version.

CCS Concepts: • Software and its engineering→ Software libraries and repositories; Software main-

tenance tools; Empirical software validation;

Additional KeyWords and Phrases: Software bloat, code coverage, program specialization, bytecode, software
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1 INTRODUCTION

Software systems have a natural tendency to grow in size and complexity over time [18, 22, 43, 56].
A part of this growth comes with new features or bug fixes, while another part is due to useless
code that accumulates over time. This phenomenon, known as software bloat, increases when

This work is partially supported by the Wallenberg AI, Autonomous Systems, and Software Program (WASP) funded by
Knut and Alice Wallenberg Foundation, as well as by the TrustFull and the Chains projects funded by the Swedish Foun-
dation for Strategic Research.
Authors’ address: C. Soto-Valero, T. Durieux, N. Harrand, and B. Baudry, KTH Royal Institute of Technology, Department
of Software and Computer Systems; emails: cesarsv@kth.se, tdurieux@kth.se, harrand@kth.se, baudry@kth.se.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
1049-331X/2023/03-ART38 $15.00
https://doi.org/10.1145/3546948

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 38. Pub. date: March 2023.

https://orcid.org/0000-0003-0541-6411
https://orcid.org/0000-0002-1996-6134
https://orcid.org/0000-0002-2491-2771
https://orcid.org/0000-0002-4015-4640
https://doi.org/10.1145/3546948
mailto:permissions@acm.org
https://doi.org/10.1145/3546948
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3546948&domain=pdf&date_stamp=2023-04-04


38:2 C. Soto-Valero et al.

building on top of software frameworks [3, 30, 44], as well as with code reuse [17, 50, 62]. Soft-
ware debloating consists of automatically removing unnecessary code [19]. Automatic debloating
poses several challenges: determine the location of the bloated parts [11, 42, 46], and remove these
parts while preserving the original behavior and providing useful features. The problem of safely
debloating real-world applications remains a long-standing software engineering endeavor today.
Most state-of-the-art debloating techniques target this problem using static analysis [26, 46, 49,

54] because it is scalable. Yet, the results lack precision in the presence of dynamic language fea-
tures, which are prevalent inmodern programming languages, and commonly used in practice [51].
Dynamic program analysis techniques outperform static approaches through the runtime collec-
tion of program usage information [11, 42]. However, capturing complete and precise dynamic
usage information for debloating is challenging, especially at scale.
In this article, we introduce coverage-based debloating for Java bytecode. Our new approach,

implemented in the Java Debloater (JDBL) tool, handles the challenge of capturing precise dy-
namic usage by leveraging the industry-standard dynamic analysis techniques implemented in
software coverage tools. Based on this information, JDBL automatically transforms the bytecode
of the compiled project to remove the bloated code. JDBL validates the syntactic correctness of
the debloated project, as well as its behavior. To do so, it rebuilds the debloated project with the
same configuration as the original and re-executes the test suite to check that the behavior of the
original project is preserved.
The key technical contribution of our work consists in collecting accurate code coverage to

minimize the risks of generating an ill-formed debloated software artifact (i.e., debloating and
packaging a software project for reuse). The loss of information in the compilation from source to
bytecode, as well as the existence of software elements that are required but are not executed, are
two essential challenges to precisely capturing the code that can be safely removed. Additionally,
coverage tools do not handle third-party libraries, which is a primary source of software bloat
[1, 50, 63]. In JDBL, we aggregate the coverage data collected by four coverage tools, to address
those challenges. The tools implement complementary, custom heuristics to cover the corner cases.
JDBL also extends the Maven build mechanism to collect coverage information for third-party
libraries.
We evaluate JDBL by debloating 211 versions from a dataset of 395 versions of 94 unique open-

source Java libraries. This represents a total of 10M+ lines of code analyzed, 103,032 classes, and
187 unique third-party dependencies. We assess the effectiveness of our technique to preserve
both syntactic correctness and the original behavior of these libraries. We quantify the impact of
coverage-based debloating on the libraries’ size at three granularity levels: number of removed
methods, classes, and dependencies. JDBL finds that 60.1 % of classes are bloated, and 20.3 % of the
third-party libraries can be completely removed. A comparison with JShrink [8], the state-of-the-
art tool for Java debloating, indicates that JDBL achieves significantly larger reduction rates, while
systematically preserving the original behavior.
For the first time in the literature of software debloating, we assess the usability of the debloated

libraries with respect to actual usages, by building client programs that declare a dependency on
these libraries. First, we check if the client program compiles correctly with the debloated library
to assess binary compatibility. Then, we check if the program’s test suite still passes. We evaluate
the utility of coverage-based debloating with respect to 988 programs that have at least one direct
reference to the debloated library in their source code. For 81.5 % of programs whose test suite
covers at least one class of the library the test suite passes with the debloated libraries.

JDBL is a Java debloating tool that combines diverse coverage data sources with bytecode re-
moval transformations. It validates the debloating results throughout the whole software build

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 38. Pub. date: March 2023.
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Fig. 1. Typical code reuse scenario in the Java ecosystem. The Java project, JProject, uses functionalities
provided by the library commons-configuration2, which has seven dependencies. Rectangles, in red, represent
Java artifacts. Circles inside artifacts, in green, represent API members used by JProject.

pipeline. Unlike existing Java debloating techniques [8, 26, 28, 50, 54], our approach exploits the
diversity of bytecode coverage tools to collect complete coverage information through the whole
dependency tree. The complete automation of the debloating procedure and our more reliable
approach for collecting usage information allows us to evaluate JDBL on the largest debloating
dataset up to date. Moreover, this is the first work in the debloating literature that assesses the
utility of the debloated libraries with respect to their clients. In summary, the contributions of this
article are the following:

— A practical, automated bytecode debloating approach for Java artifacts based on the collec-
tion of complete coverage information from multiple sources.

— An open-source tool, JDBL, which executes throughout the Maven build pipeline and auto-
matically generates debloated versions of Java artifacts.

— The largest empirical study on software debloating was performed with 211 debloated li-
braries and investigated code reduction at three granularity levels.

— The first assessment of the impact of debloated third-party libraries on their clients, with
988 clients of the libraries that JDBL successfully debloats.

2 MOTIVATING EXAMPLE

In this section, we illustrate the impact of software bloat in the context of a Java application with
dependencies. Figure 1 shows the dependency tree of a typical Java project. JProject implements
a set of features and reuses functionalities provided by third-party dependencies. To illustrate the
notion of software bloat, we focus on one specific functionality that JProject reuses: parsing a
configuration file located in the file system, provided by the commons-configuration2 library.1

In our example, JProject uses this library to read properties and json configuration files.
However, commons-configuration2 supports additional file formats, which are not necessary for
JProject to run correctly, i.e., they are considered as bloat. Yet, all the classes of the library must
be added to the classpath of JProject, as well as all the runtime dependencies of the library. The
green circles and red squared components in Figure 1 highlight this phenomenon: only the API
members in green are necessary for the JProject. All the code that belongs to the components
in red, which includes all the functionalities for parsing other types of files than properties and

1https://commons.apache.org/proper/commons-configuration2.
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json, are bloatedwith respect to JProject. This represents a considerable amount of bytecode from
commons-configuration2 that is included in JProject but is not needed. In addition, the dependency
towards commons-configuration2, implies that JProject has to include the classes of a total of seven
transitive dependencies in its classpath. Some classes in the dependency B are used to process the
file formats used by JProject, and parsing json files requires functionalities from dependencies C

and D. Notice that the classes in the dependencies E, F, G, and H, are not necessary for JProject.
This example illustrates the characteristics of Java projects: they are composed of a mainmodule

and import third-party dependencies. All the code of the main module, the dependencies, and the
transitive dependencies is packaged in the project’s JAR. Also, the existence of disjoint execution
paths makes Java projects susceptible to including unnecessary functionalities from third-party
libraries.
In this article, we focus on debloating functionalities from compiled Java projects and their

dependencies. This involves the detection and removal of the reachable bytecode instructions that
do not provide any functionalities to the project at runtime, both in the project’s own classes and
in the classes of its dependencies. The objective of this bytecode transformation is to reduce the
size of the project while still providing the same functionalities to its clients.
The main challenge for software debloating is to obtain precise usage information of the applica-

tion and identify which parts can be safely removed. In the next section, we describe our approach
to overcome these challenges using code coverage. We motivate our approach and introduce the
technical challenges. Then, we present the details of our technique.

3 COVERAGE-BASED DEBLOATING

Coverage-based debloating processes two inputs: a Java project, and coverage information col-
lected when running a specific workload on the project. Our debloating technique removes the
bytecode constructs that are not necessary to run the workload correctly. It produces a valid com-
piled Java project as output. The debloated artifact is executable and has the same behavior as the
original, w.r.t. the workload.

Definition 1 (Coverage-based Debloating). Let P be a program that contains a set of instructions
SP and a workload that exercises a set FP of instructions, where FP ⊆ SP . The coverage-based
debloating technique transforms P into a syntactically correct program P′, where |SP ′ | ≤ |SP |

and P′ preserve the same behavior as P when executing the workload.

The collection of accurate coverage information is a critical task for coverage-based debloating.
In the following section, we discuss some key challenges and limitations of current techniques to
collect complete Java bytecode coverage information. Then, we introduce the solutions that we
implement to address these technical challenges, which are part of our contributions.

3.1 Challenges of Collecting Accurate and Complete Coverage for Debloating

Java has a rich ecosystem of tools and algorithms to collect code coverage reports. These tools,
which rely on bytecode transformations [61], perform the following three key steps: (i) the byte-
code is enriched with probes at particular locations of the program’s control flow, depending on
the granularity level of the coverage; (ii) the instrumented bytecode is executed in order to col-
lect the information on which probes are activated at runtime; (iii) the activated regions of the
bytecode are mapped with the source code, and a coverage report is given to the user.
Existing code coverage techniques are implemented in mature, robust, and scalable tools, which

can serve as the foundation for coverage-based debloating. State-of-the-art tools for this purpose
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include JaCoCo,2 JCov,3 and Clover.4 Yet, all of them have two essential limitations when used for
debloating. First, different instrumentation strategies do not handle specific corner cases, while
capturing the program’s execution [32]. For example, JaCoCo does not generate a complete cov-
erage report for fields, methods that contain only one statement that triggers an exception, and
the compiler-generated methods and classes for Java enumerations. Second, by default, these tools
collect coverage only for the bytecode of a compiled project and do not instrument the bytecode of
third-party libraries. In the following, we discuss the corner cases for accurate coverage in detail.
In Section 3.2, we present our approach to address corner cases and collect coverage information
across the whole dependency tree.
Collecting code coverage involves several challenges related to source code compilation and

bytecode instrumentation. First, the bytecode instrumentation must be safe and efficient, i.e., it
must not alter the functional behavior of the application and have a limited runtime overhead.
Second, the instrumentation must generate a coverage report that is complete, i.e., all the bytecode
that is necessary to execute the workload should be reported as covered. This latter challenge is
the most critical for coverage-based debloating: a single class missed in the report means that a
necessary piece of bytecode will be removed, leading to an incorrect debloated application.
Three factors affect the completeness of the coverage. First, no code coverage tool currently cap-

tures the coverage information across the whole dependency tree of a Java project. This limits the
effect of debloating based on code coverage to the project’s sources only. Second, different tools
have various instrumentation strategies to handle the variety of existing bytecode constructs [23].
Consequently, these tools provide different reports for the same build setup. Third, the Java com-
piler transforms the bytecode, causing information gaps between source and bytecode, e.g., by
inlining constants or creating synthetic API members in certain situations [33, 52]. In this case,
it is not possible for coverage tools to collect information missing in the original bytecode. The
following examples illustrate five challenges that we identified:

Challenge #1 Implicit Exceptions Thrown From Invoked Methods. Listing 1 shows an example
of an incorrect coverage report caused by a design limitation of JaCoCo. Both methods m1 and m2

are executed at runtime and both should be reported as covered. Yet, m1 (lines 2–4) is missed by
JaCoCo, while it is clear that, if we remove it, the test in class FooTest fails (lines 11–15). This is
because the JaCoCo probe insertion strategy does not consider implicit exceptions thrown from
invoked methods.5 These exceptions are subclasses of the classes RuntimeException and Error,
and are expected to be thrown by the JVM itself at runtime. If the control flow between two probes
is interrupted by an exception not explicitly created with a throw statement, all the instructions in
between are missed by JaCoCo due to the non-existence of an instrumentation probe on the exit
point of the method. In conclusion, JaCoCo misses one corner case for coverage: methods with a
single-line invocation to other methods that throw exceptions.

Challenge #2 Implicit Methods in Enumerated Types. Listing 2 shows an example of incorrect
coverage due to the inability of JaCoCo to account for implicit methods in enumerated types.
FooEnum is a Java enumerated type declaring the string constant MAGIC with the value “forty

two” (line 2). The testmethod in the class FooEnumTest asserts the value of the constant in line 14.
However, the implicit method valueOf6 in FooEnum is not covered according to JaCoCo. The rea-
son is that, in Java, every enumerated type implicitly extends the class java.lang.Enum, which

2https://www.eclemma.org/jacoco.
3https://github.com/openjdk/jcov.
4https://openclover.org.
5https://www.eclemma.org/jacoco/trunk/doc/flow.html.
6https://docs.oracle.com/javase/7/docs/api/java/lang/Enum.html.
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implements the methods Enum.values() and Enum.valueOf(). These methods are generated by
the compiler, at compile-time. Therefore, they are not instrumented by coverage tools, which de-
grades the overall completeness of the produced coverage report.

Challenge #3 Java Compiler Optimizations. Listing 3 illustrates an example that is incorrectly
handled by all code coverage tools based on bytecode instrumentation. The variable MAGIC, initial-
ized with a final static integer literal in line 2, is used in the FooTest class as Foo.MAGIC (line 8).
Therefore, the class Foo is necessary for the correct compilation and execution of the test method
in the class FooTest. However, the class Foo is not detected as covered by JaCoCo or any other
code coverage tool based on bytecode instrumentation. The cause is a bytecode optimization im-
plemented in the javac compiler, which inlines constants at compilation time. This is shown in
Listing 4, which is the bytecode generated after compiling the sources of the FooTest class from
Listing 3. As we observe in lines 4–5, the value of the constant MAGIC is directly substituted by its
integer value, and hence the reference to the class Foo is lost during the compilation of the source
code. Note that, if we remove the class Foo, the program will not compile correctly.

Challenge #4 Java Interfaces. In Listing 5, the class Foo implements the method doMagic of
the interface Magic (lines 1–3). This class will not compile correctly if its interface is removed.
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However, JaCoCo does not instrument non-static methods in interfaces because they have no ex-
ecutable instructions. Interfaces, exceptions, enumerations, and annotations are constructs of the
Java language designed to facilitate software engineering tasks and most code coverage tools do
not report them as covered.

Challenge #5 Third-Party Dependencies. Listing 6 presents an example of a used class from a
third-party dependency that is not reported as covered by JaCoCo. The class Foo uses the method
byteCountToDisplaySize from the class FileUtils (line 5). FileUtils is provided by the third-
party dependency commons-io and imported in line 1. However, when executing JaCoCo, the
classes from this third-party are not instrumented. This happens because JaCoCo is designed to
cover only the project’s code.

3.2 Addressing Coverage Challenges for Debloating

This section describes our approach to tackle the bytecode coverage challenges presented in the
previous section. The goal is to consolidate coverage information that can be used for debloating.

3.2.1 Aggregating Coverage Reports. We address the bytecode tracing challenges by aggregat-
ing the coverage reports produced by diverse coverage tools. The baseline coverage report is col-
lected with JaCoCo. Then we consolidate this information as follows.
To handle the case of implicit exceptions, illustrated in Listing 1, we develop Yajta,7 a customized

tracing agent for Java. Yajta adds a probe at the beginning of themethods, including the default con-
structor. Yajta is based on Javassist8 for bytecode instrumentation. To handle compiler-generated
methods, illustrated in Listing 2, we include the reports of JCov. This pure Java implementation of
code coverage is officially maintained by Oracle and used for measuring coverage in the Java plat-
form (JDK). It maintains the version of Java which is currently under development and supports
the processing of large volumes of heterogeneous workloads.
We leverage the JVM class loader to obtain the list of classes that are loaded dynamically

and lead to errors discussed in Listing 3. The JVM dynamically links classes before executing

7https://github.com/castor-software/yajta.
8https://www.javassist.org.
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them. The -verbose:class option of the JVM enables logging of class loading and unloading at
runtime.

3.2.2 Keep All Necessary Bytecodes That Cannot Be Covered. The Java language contains spe-
cific constructs designed to achieve programming abstractions, e.g., interfaces, exceptions, enu-
merations, and annotations. These elements do not execute any program logic and cannot be in-
stantiated. Therefore, they cannot be covered at runtime, and pure dynamic debloating cannot
determine if they are a source of bloat. Yet, they are necessary for compilation.
To address this limitation, we always keep interfaces, enumeration types, exceptions, as well as

static fields in the bytecode. This approach significantly improves the syntactic correctness of the
debloated bytecode artifacts. Meanwhile, the impact on the size of the debloated code is minimal,
due to the small size of such language constructs.

3.2.3 Capturing Coverage Across the Whole Dependency Tree. To effectively debloat a Java
project, we need to analyze bytecode in the compiled project, as well as in its dependencies. To
do so, we extend the coverage information provided by JaCoCo to the level of dependencies. This
requires modifying the way JaCoCo interacts with Maven during the build.
We rely on the automated build infrastructure of Maven to compile the Java project and to

resolve its dependencies. Maven provides dedicated plugins for fetching and storing all the depen-
dencies of the project. Therefore, it is practical to rely on the Maven dependency management
mechanisms, which are based on the pom.xml file that declares the direct dependencies of the
project. These dependencies are JAR files hosted in external repositories (e.g., Maven Central [48]).9

Only dependencies in the runtime and compile classpath are packaged by Maven at the end
of the build process. Therefore, we focus on dependencies with these specific scopes. Once the
dependencies have been downloaded, we compile the Java sources and unpack all the bytecode of
the project and its dependencies into a local directory. Then, probes are injected at the beginning
and end of all Java bytecode methods of the classes in this directory. This code instrumentation is
performed offline, before theworkload execution and coverage collection. At runtime, the coverage
tool is notified when the execution hits an injected probe. This way, our coverage-based approach
captures the covered classes and methods in all dependencies.

3.3 Coverage-Based Debloating Procedure

In this section, we present the details of JDBL, our end-to-end tool for automated coverage-based
Java bytecode debloating. JDBL receives as input a Java project that builds correctly with Maven
and a workload that exercises the project. JDBL outputs a debloated, packaged project that builds
correctly and preserves the functionalities necessary to run that particular workload. The debloat-
ing procedure consists of three main phases. The coverage collection phase gathers usage informa-
tion based on dynamic analysis. The bytecode removal phase modifies the bytecode of the artifact,
based on coverage. The artifact validation phase assesses the correctness of the debloated artifact.
Algorithm 1 details the three subroutines, corresponding to each debloating phase. In the fol-

lowing subsections, we describe these phases in more detail.

3.3.1 ➊ Coverage Collection. JDBL collects a set of coverage reports that capture the set of
dependencies, classes, and methods actually used during the execution of the Java project. The
coverage collection phase receives two inputs: a compilable set of Java sources, and a workload,
i.e., a collection of entry-points and resources necessary to execute the compiled sources. The
workload can be a set of test cases or a reproducible production workload. The coverage collection

9https://repo.maven.apache.org/maven2.
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ALGORITHM 1: Coverage-based debloating procedure for a Java project.

Input: A correct program P that contains a set of source files S, and declares a set of dependencies D.
Input: A workloadW that exercises at least one functionality in P.
Output: A correct version of P, called P′, which is smaller than P and contains the necessary code to

executeW and obtain the same results as with P.
// ➊ Coverage collection phase

1 CP ← compileSources(S, P) ∪ getDependencies(D, P);

2 INST ← instrument(CP );

3 USG ← ∅;

4 foreach w ∈ W do

5 execute(w, INST );

6 foreach class ∈ INST do

7 if isExecuted(class) then

8 USG ← addKey(class,USG);

9 foreach method ∈ class do

10 if isExecuted(method) then

11 USG ← addVal(method, class,USG);

// ➋ Bytecode removal phase

12 foreach class ∈ CP do

13 if class � keys(USG) then

14 CP ← CP \ class ;

15 else

16 foreach method ∈ class do

17 if method � values(class,USG) then

18 CP ← CP \method ;

// ➌ Artifact validation phase

19 OBS ← execute(W, P);

20 if !buildSuccess(CP) | execute(W,CP) � OBS then

21 return ALERT ;

22 P′ ← package(CP );

23 return P′;

phase outputs the original, unmodified, bytecode and a set of coverage reports that account for
the minimal set of classes and methods required to execute the workload.
Lines 1 to 11 in Algorithm 1 show this procedure. It starts with the compilation of the input

project P, resolving all its direct and transitive dependencies D, and adding the bytecode to the
classpath CP of the project (line 1). Then, the whole bytecode contained in CP (line 2) is instru-
mented, and a data store is initialized to collect the classes and methods used when executing the
workloadW (line 3). JDBL executes the instrumented bytecode withW, and the classes and meth-
ods used are saved (lines 8 and 11). JDBL considersW to be the complete test suite of a Maven
project, where eachw ∈ W is an individual unit test executed by Maven.

3.3.2 ➋ Bytecode Removal. The goal of the bytecode removal phase is to eliminate the meth-
ods, classes, and dependencies that are not used when running the project with the workload
W. This procedure is based on the coverage information collected during the coverage collection
phase. The unused bytecode instructions are removed in two passes (lines 12–18 in Algorithm 1).
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First, the unused class files and dependencies are directly removed from the classpath of the
project (lines 14 and 18). Then, the procedure analyzes the bytecode of the classes that are cov-
ered. When it encounters a method that is not covered, the body of the method is replaced to
throw an UsupportedOperationException. We choose to throw an exception instead of removing
the entire method to avoid JVM validation errors caused by the nonexistence of methods that are
implementations of interfaces and abstract classes.
At the end of this phase, JDBL has removed the bloated methods, classes, and dependencies. A

method is considered bloated if it is not invoked while running the workload. A class is considered
bloated if it has not been instantiated or called via reflection and none of its fields or methods are
used. A third-party dependency is considered bloated if none of its classes or methods are used
when executing the project with a given workload.10

3.3.3 ➌ Artifact Validation. The goal of the artifact validation phase is to assess the syntactic
and semantic correctness of the debloated artifact with respect to the workload provided as input.
This is how we detect errors introduced by the bytecode removal, before packaging the debloated
JAR.

To assess syntactic correctness, we verify the integrity of the bytecode in the debloated version.
This implies checking the validity of the bytecode that the JVM has to load at runtime, and also
checking that no dependencies or other resources were incorrectly removed from the classpath
of the Maven project. We reuse the Maven tool stack, which includes several validation checks at
each step of the build process [34]. For example, Maven verifies the correctness of the pom.xml

file, and the integrity of the produced JAR at the last step of the build life cycle. To assess semantic
correctness, we check that the debloated project executes correctly with the workload.
Algorithm 1 (lines 19–23) details this last phase of coverage-based debloating. We run the orig-

inal version of P with the workloadW, to collect the program’s original outputs in the variable
OBS (line 19). Then, the algorithm performs two checks in line 20: (1) a syntactic check that passes
if the build of the debloated program is successful; and (2) a behavioral check that passes if the
debloated program produces the same output as P, withW. In other words, it treatsOBS as an or-
acle to check that the debloated project preserves the behavior of P. Finally, the debloated artifact
is packaged and returned in line 23.

3.3.4 Implementation Details. The core implementation of JDBL consists in the orchestration
of mature code coverage tools and bytecode transformation techniques. The coverage-based de-
bloating process is integrated into the different Maven building phases. We focus on Maven as it
is one of the most widely adopted build automation tools for Java artifacts. It provides an open-
source frameworkwith the APIs required to resolve dependencies automatically and to orchestrate
all the debloating phases during the project build.

JDBL gathers direct and transitive dependencies by using the maven-dependency11 plugin with
the copy-dependencies goal. This allows us to manipulate the project’s classpath in order to
extend code coverage tools at the level of dependencies, as explained in Section 3.2.3. For bytecode
analysis, the collection of non-removable classes, and the whole bytecode removal phase, we rely
on ASM,12 a lightweight, and mature Java bytecode manipulation and analysis framework. The
instrumentation ofmethods and the insertion of probes are performed by integrating JaCoCo, JCov,
Yajta, and the JVM class loader within the Maven build pipeline, as described in Section 3.2.1.

10In this work, we refer to Maven dependencies.
11https://maven.apache.org/plugins/maven-dependency-plugin.
12https://asm.ow2.io.
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JDBL is implemented as a multi-module Maven project with a total of 5K lines of code written
in Java. JDBL is designed to debloat single-module Maven projects. It can be used as a Maven
plugin that executes during the package Maven phase. Thus, JDBL is designed with usability in
mind: it can be easily invoked within the Maven build life-cycle and executed automatically, no
additional configuration or further intervention from the user is needed. To use JDBL, developers
only need to add the Maven plugin within the build tags of the pom.xml file. The source code of
JDBL is publicly available on GitHub, with binaries published in Maven Central. More information
on JDBL is available at https://github.com/castor-software/jdbl.

4 EMPIRICAL STUDY

In this section, we present our research questions, describe our experimental methodology, and
the set of Java libraries utilized as study subjects.

4.1 Research Questions

To evaluate our coverage-based debloating approach, we study its correctness, effectiveness, and
impact. We assess the debloating results through four different validation layers: compilation and
testing of the debloated Java libraries, and compilation and testing of their clients. Our study is
guided by the following research questions:

RQ1: To what extent can a generic, fully automated coverage-based debloating technique produce

a debloated version of Java libraries?

RQ2: To what extent do the debloated library versions preserve their original behavior w.r.t. the

debloating workload?

RQ1 and RQ2 focus on assessing the correctness of our approach. In RQ1, we assess the ability of
JDBL at producing a valid debloated JAR for real-world Java projects. With RQ2, we analyze the
behavioral correctness of the debloated artifacts.

RQ3: How much bytecode is removed in the compiled libraries and their dependencies?

RQ4: What is the impact of using the coverage-based debloating approach on the size of the

packaged artifacts?

RQ5: How does coverage-based debloating compare with the state-of-the-art of Java debloating

regarding the size of the packaged artifacts and behavior preservation?

RQ3, RQ4, and RQ5 investigate the effectiveness of our debloating procedure in producing a smaller
artifact by removing the unnecessary bytecode. We measure this effectiveness with respect to the
amount of debloated methods, classes, and dependencies, as well as with the reduction of the size
of the bundled JAR files.

RQ6: To what extent do the clients of debloated libraries compile successfully?

RQ7: To what extent do the clients behave correctly when using a debloated library?

In RQ6 and RQ7, we go one step further than any previous work on software debloating and
investigate how coverage-based debloating of Java libraries impacts the clients of these libraries.
Our goal is to determine the ability of dynamic analysis via coverage at capturing the behaviors
that are relevant for the users of the debloated libraries.

4.2 Data Collection

We have extracted a dataset of open-source Maven Java projects from GitHub, which we use to
answer our research questions. We choose open-source projects because accessing closed-source
software for research purposes is a difficult task. Moreover, the diversity of open-source software
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Table 1. Descriptive Statistics of the Dataset of Libraries and their Associated Clients

Min 1stQu. Median 3rdQu. Max Avg. Total

94 Libraries

# Versions 1 1 3.0 5.0 23.0 4.2 395
# Tests 1 139.8 378.0 1,108.2 24,946 1,830.6 713,932
# LOC 132 5,439.5 17,935.5 47,866.0 341,429 35,629.6 10,831,394
Total Class Coverage 2.7 % 74.6 % 94.0 % 99.0 % 100.0 % 84.8 % N.A

2,874 Clients
# Tests 1 4.5 20.0 74.0 11,415 107.7 211,116
# LOC 0 3,130.0 9,170.0 58,990.0 4,531,710 72,897.1 140,910,102
JaCoCo Coverage 0.0 % 2.1 % 20.24 % 57.7 % 100.0 % 31.4 % N.A

allows us to determine if our coverage-based debloating approach generalizes to a vast and rich
ecosystem of Java projects.
The dataset is divided into two parts: a set of libraries, i.e., Java projects that are declared as a

dependency by other Java projects, and a set of clients, i.e., Java projects that use the libraries from
the first set. The construction of this dataset is performed in five steps:

(1) We identify the 147,991 Java projects on GitHub that have at least five stars. We use the
number of stars as an indicator of interest [7].

(2) We select the 34,560 (23.4 %) Maven projects that are single-module. We focus on single-
module projects because they generate a single JAR. For this, we consider the projects that
have a single Maven build configuration file (i.e., pom.xml).

(3) We ignore the projects that do not declare JUnit as a testing framework, and we exclude the
projects that do not declare a fixed release, e.g., LAST-RELEASE, SNAPSHOT. We identify 155
(0.4 %) libraries, and 25,557 (73.9 %) clients that use 2,103 versions of the libraries.

(4) We identify the commit associated with the version of the libraries, e.g., commons-net:3.4
is defined in the commit SHA: 74a2282. For this step, we download all the revisions of the
pom.xml files to identify the commit for which the release has been declared. We success-
fully identified the commit for 1,026/2,103 (48.8 %) versions of the libraries. 143/155 (92.3 %)
libraries and 16,964/25,557 (66.4 %) clients are considered.

(5) We execute three times the test suite of all the library versions and all clients, as a sanity
check to filter out libraries with flaky tests. We keep the libraries and clients that have at
least one test and have all the tests passing: 94/143 (65.7 %) libraries, 395/1,026 (38.5 %) library
versions, and 2,874/16,964 (16.9 %) clients passed this verification. From now on, we consider
each library version as a unique library to improve the clarity of this article.

Table 1 summarizes the descriptive statistics of the dataset. The total class coverage of the li-
braries is computed based on the aggregation of the coverage reports of the tools presented in
Section 3.2.1. The number of LOC and the coverage of the clients are computed with JaCoCo. In
total, our dataset includes 395 Java libraries from 94 different repositories and 2,874 clients. The
395 libraries include 713,932 test cases that cover 80.83 % of the 10,831,394 LOC. One library in our
dataset can generate fake Pokemons [13]. The clients have 211,116 test cases that cover 20.24 % of
the 140,910,102 LOC. The dataset is described in detail in Durieux et al. [14].

4.3 Experimental Protocol

In this section, we introduce the experimental protocol that we use to answer our research ques-
tions. The goal is to examine the ability of JDBL to debloat Java projects configured to build with
Maven.
For our experiments, we use the test suite of the projects as a workload. Test suites are widely

available while obtaining a realistic workload for hundreds of libraries is extremely difficult.
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Another motivation is to integrate JDBL in the build process and deploy the debloated version,
which can then be directly used by the clients.

We experiment coverage-based debloating on 395 different versions of 94 libraries. An origi-
nal step in our experimental protocol consists of further validating the utility of the debloated
libraries with respect to their clients. This way, we check if coverage-based debloating preserves
the elements that are required to compile and successfully run the test suites of the clients.

4.3.1 Coverage-based Debloating Execution. To run JDBL at scale, we created an execution
framework that automates the execution of our experimental pipeline. The framework orches-
trates the execution of JDBL and the collection of data to answer our research questions. As JDBL
is implemented as a Maven plugin, most of the steps rely on the Maven build life cycle.
The execution of JDBL is composed of three main steps:

(1) Compile and test the original library. We build the original library (i.e., using mvn package) to
ensure that it builds correctly and that all its test cases pass. We configure the project to gen-
erate a JAR file that contains all the binaries of the project. This change of configuration may
be in conflict with the original project build configuration and therefore fail in some scenar-
ios. At the end of the execution of the test suite, a fat JAR file is produced, which contains the
bytecode of the library and all its dependencies. We also store the reports concerning test ex-
ecution and the corresponding logs. The data produced during this step is used as a reference
for further comparison with respect to the debloated version of the library, in RQ1 and RQ2.

(2) Configure the library to run JDBL. The second step injects JDBL as a plugin inside the Maven
configuration (pom.xml) and resets the configuration of the maven-surefire-plugin for
our experiments.13 This reset ensures that its original configuration is not in conflict with
the execution of the coverage collection phase of JDBL. A manual configuration of JDBL
could prevent this problem. Yet, we decided to standardize the execution for all the libraries
in order to scale up and automate the evaluation.

(3) Execute JDBL. The third of our experiment framework executes JDBL on the library, i.e., it
runs mvn package with JDBL configured in the pom.xml. At the end of this step, we collect
the report generated by JDBL with information about the debloated JAR (for RQ1, RQ3, and
RQ4), the coverage report, and the test execution report (for RQ2).

The execution was performed on a workstation running Ubuntu Server with an i9-10900K CPU
(16 cores) and 64GB of RAM.We set a maximum timeout constraint of 1:00:00 per project, which al-
lows scaling up our experiments without an excessive debloating time. It took 4 days, 8:39:09 to ex-
ecute the complete JDBL experiment on our dataset, and 1 day, 10:55:04 to only debloat the libraries.
Each debloating execution is performed inside a Docker image in order to eliminate any potential
side effects. The Docker image that we used during our experiment is available on DockerHub:
tdurieux/jdbl which uses JDBL commit SHA: c57396a. The execution framework is publicly avail-
able on GitHub [47], and the raw data obtained from the complete execution is available on Zenodo:
10.5281/zenodo.3975515. The JDBL execution framework is composed of 3K lines of Python code.

4.3.2 Debloating Correctness (RQ1 and RQ2). To answer RQ1 and RQ2, we run JDBL on each
of the 395 versions of 94 libraries. RQ1 assesses the ability of JDBL to produce a debloated JAR file,
i.e., to successfully build the debloated Maven project. For RQ2, we analyze whether the test suite
of the library has the same behavior before and after debloating.
Figure 2 illustrates the pipeline of RQ1 and RQ2. First, we check that the library compiles cor-

rectly before the debloat. If it does, then we verify if JDBL has generated a JAR (RQ1). If no JAR

13https://maven.apache.org/surefire/maven-surefire-plugin.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 38. Pub. date: March 2023.

https://hub.docker.com/repository/docker/tdurieux/jdbl
https://github.com/castor-software/jdbl/tree/c57396a5739e6ac3b0fa434342eb57b6f945914b
http://doi.org/10.5281/zenodo.3975515
https://maven.apache.org/surefire/maven-surefire-plugin


38:14 C. Soto-Valero et al.

Fig. 2. Pipeline of our experimental protocol to answer RQ1 and RQ2.

file is generated, then the debloating is considered as failed and the library is excluded for the rest
of the evaluation. The last step verifies that the test suite behaves the same before and after the
bytecode removal phase. This approach is consistent with previous works [8, 41] in which existing
tests are executed, and the results are used as a proxy for semantic preservation.
We compare the test execution reports produced during the first step of the JDBL execution (see

Section 4.3.1) and the test report generated during the verification step of JDBL. We consider that
the test suite has the same behavior on both versions if the number of executed tests is the same
for both versions, and if the number of passing tests is also the same. The number of executed
tests might vary between the two versions because we modify the maven-surefire-plugin

configuration to run as default in order to standardize and scale our experiments. If the number
of passing tests is not the same between the two reports, JDBL is considered as having failed and
the libraries are excluded for the rest of the evaluation. We manually analyze the execution logs
of the failing debloating executions to understand what happened.

4.3.3 Debloating Effectiveness (RQ3, RQ4, and RQ5). We assess the effectiveness of JDBL re-
garding two different aspects. The first aspect is related to code removal, checking the number of
classes, and methods that are debloated. The second aspect is the size on disk that JDBL allows
saving by removing unnecessary parts of the libraries.
To answer RQ3, RQ4, and RQ5, we use the debloating reports of the original and debloated JAR

files. These reports contain the list of all the methods and classes of the libraries (including the
dependencies), and if the element was debloated or not. For RQ3, we compute the ratio of methods
and classes that are debloated. For RQ4, we extract the original and debloated JAR, and we compare
the size in bytes of all the extracted files. To answer RQ5, we compare the bytecode size reduction
and the test results after debloating with JDBL and with JShrink. JShrink is the most recent tool
for debloating Java bytecode applications using dynamic analysis. The source code of JShrink is
publicly available, and its debloating capabilities for a benchmark of Java projects are presented
in its companion research article [8].
For RQ3 and RQ4, we consider the 211 library versions that successfully pass the debloating

correctness assessment. We separate the 141/211 (66.8 %) libraries that do not have dependencies
and the 70/211 (33.2 %) libraries that have at least one dependency. We decided to do so because
we observed that the libraries that have dependencies contain many more elements (bytecode and
resources), which may negatively impact the analysis compared to libraries that do not have a
dependency. For RQ5, we consider 17 Java projects in the original benchmark used to evaluate
JShrink and compare JDBL against the debloating results reported in the JShrink article [8].

4.3.4 Debloating Impact on Clients (RQ6 and RQ7). In the two final research questions, we an-
alyze the impact of debloating Java libraries on their clients. This analysis is relevant since we
are debloating libraries that are mostly designed to be used by clients. This analysis also provides
further information on the validity of this approach. As far as we know, this is the first time that a
software debloating technique is validated with the clients of the debloated artifacts. We perform
debloating validation from the clients’ side at two layers: client’s compilation and client’s testing.
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Fig. 3. Pipelines of our experimental protocol to answer RQ6 and RQ7.

For RQ6, we verify that the clients still compile when the original library is replaced by its
debloated version. We check that JDBL does not remove classes or methods in libraries that are
necessary for the compilation of their client. Figure 3(a) illustrates the pipeline for this research
question. First, we check that the client CP uses the library statically in the source code. To do so,
we analyze the source code of the clients. If there is at least one element from the library present
in the source code of a client, then we consider the library as statically used by the client.
If the library is used, we inject the debloated library and build the client again. If the client

successfully compiles, we conclude that JDBL debloated the library while preserving the useful
parts of the code that are required for compilation.
A debloated library stored on a disk is of little use compared to a debloated library that provides

the behavior expected by its clients. Therefore, with RQ7 we wish to determine if JDBL preserves
the functionalities that are necessary for the clients. Figure 3(b) illustrates the pipeline for this
research question. First, we execute the test suite of the client CP with the original version of the
library. We check that the library is covered by at least one test of the client. If this is true, we
replace the library with the debloated version and execute the test suite again. If the test suite
behaves the same as with the original library, we conclude that JDBL is able to preserve the func-
tionalities that are relevant to the clients.
To ensure the validity of this protocol, we perform additional checks on the clients. All the clients

have to use at least one of the 211 debloated libraries.We only consider the 988/1,354 (73.0 %) clients
that either have a direct reference to the debloated library in their source code or which test suite
covers at least one class of the library (static or dynamic usage). The 988 clients that statically use
the library serve as the study subjects to answer RQ6. The 281/988 (28.4 %) clients that have at
least a test that reaches the debloated library serve as the study subjects to answer RQ7.

5 RESULTS

We present our experimental results on the correctness, effectiveness, and impact of coverage-
based debloating for automatically removing unnecessary bytecode from Java projects.

5.1 Debloating Correctness (RQ1 and RQ2)

In this section, we report on the successes and failures of JDBL to produce a correct debloated
version of Java libraries.
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Fig. 4. Number of libraries for which JDBL succeeds or fails to produce a debloated JAR file.

5.1.1 RQ1. To what extent can a generic, fully automated coverage-based debloating technique

produce a debloated version of Java libraries? In the first research question, we evaluate the ability
of JDBL at performing automatic coverage-based debloating for the 395 libraries in our initial
dataset. Here, we consider the debloating procedure to be successful if JDBL produces a valid
debloated JAR file for a library. To reach this successful state, the project to be debloated must go
through all the build phases of the Maven build life-cycle, i.e., compilation, testing, and packaging,
according to the protocol described in Section 4.3.2.
Figure 4 shows a bar plot of the number of successfully debloated libraries. It also displays the

number of cases where JDBL does not produce a debloated JAR file, due to failures in the build.
For the 395 libraries of our dataset, JDBL succeeds in producing a debloated JAR file for a total

of 302 libraries and fails to debloat 93 libraries. Therefore, the overall debloating success rate of
JDBL is 76.5 %. When considering only the libraries that were originally compiled, JDBL succeeds
in debloating 85.3 % of the libraries. We manually identify and classify the causes of failures in
four categories:

— Not compiled. As a sanity-check, we compile the project before injecting JDBL in its Maven
build. The only modification consists in changing the pom.xml to request the generation of
a JAR that contains the bytecode of the project, along with all its runtime dependencies. If
this step fails, the project does not compile, and it is ignored for the rest of the evaluation.

— Crash. We run a second Maven build, with JDBL. This modifies the bytecode to remove
unnecessary code. In certain situations, this procedure causes the build to stop at some phase
and terminate abruptly, i.e., due to accessing invalid memory addresses, using an illegal
opcode, or triggering an unhandled exception.

— Time-out. JDBL utilizes various coverage tools that instrument the bytecode of the project
and its dependencies. This process induces an additional overhead in the Maven build pro-
cess. Moreover, the incorrect instrumentation with at least one of the coverage tools may
cause the test to enter into an infinite loop, e.g., due to blocking operations.

— Validation error. Maven includes dedicated plugins to check the integrity of the produced
JAR file. JDBL alters the behavior of the project build by packaging the debloated JAR using
the maven-assembly-plugin. Some other plugins may not be compatible with JDBL (e.g.,
when using customized assemblies), triggering validation errors during the build life-cycle.
Moreover, we observe that for some libraries, the tests in the debloated JAR are not correctly
executed due to particular library configurations in the maven-surefire-plugin.

We manually investigate the causes of the validation errors for the 10 libraries that fall into
this category. We found that Maven fails to validate the execution of the tests, either due to errors
when running the instrumented code to collect coverage or incompatibilities among plugins that
exercise the instrumented version of the library. For example, in the case of org.apache.commons:

collection:4.0, the MANIFEST.MF file is missing in the debloated JAR due to an incompatibility with
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Fig. 5. Number of debloated libraries for which the test suite passes; number of debloated libraries for which
the number of executed tests does not match the original test execution (ignored for the research question);
number of debloated libraries that have at least one failing test case.

library plugins. Therefore, Maven fails to package the debloated bytecode. As another example,
the Maven build of org.yaml:snakeyaml:1.17 fails because of Yajta’s instrumentation. This tool
relies on Javassist for inserting probes in the bytecode. In this case, JDBL changes a class that was
frozen by Javassist when it was loaded. Consequently, Javassist crashes because further changes
in a frozen class are prohibited.14

Answer to RQ1: JDBL successfully produces a debloated JAR file for 302 libraries in our dataset,
which represents 85.3 % of the libraries that compile correctly. This is the largest number of
debloated subjects in the literature.

5.1.2 RQ2. To what extent do the debloated library versions preserve their original behavior w.r.t.

the debloating workload? Our second research question evaluates the behavior of the debloated
library with respect to its original version. This evaluation is based on the test suite of the project.
We investigate if the code debloated by JDBL affects the results of the tests of the 302 libraries for
which JDBL produces a valid JAR file. This behavioral correctness assessment corresponds to the
last phase in the execution of JDBL.
Figure 5 summarizes the comparison between the test suite executed on the original and the

debloated libraries. From the 302 successfully debloated, 211 (69.9 %) preserve the original behavior
(i.e., all the tests pass). In the case of 30 (9.9 %) libraries, we observe at least one test failure. This
high test success rate is a fundamental result to ensure that the debloated version of the artifact
preserves the behavior of the library. A table with the full list of the 211 successfully debloated
libraries that pass all the tests is available in the replication package of this article.15

We excluded 61 (20.2 %) libraries because the numbers of executed tests before and after the
debloating did not match. This is due to changes in the tests’ configuration after injecting JDBL
into the build of the libraries. We excluded those libraries since different numbers of test runs
imply a different test-based specification for the original and the debloated version of the library.
Consequently, the results of the tests do not provide a sound basis for behavioral comparison. The
manual configuration of the libraries is a solution to handle this problem (expected usage of JDBL),
yet it is impractical in our experiments because of the large number of libraries that we debloat.
In total, we execute 342,835 unique tests, from which 341,430 pass and 1,405 do not pass (973

fail, and 432 result in an error). This represents an overall behavior preservation ratio of 99.59 %,
considering the total number of tests. This result shows that our code-coverage debloating ap-
proach is able to capture most of the project behavior, as observed by the tests while removing the
unnecessary bytecode.

14https://www.javassist.org/tutorial/tutorial.html.
15https://github.com/castor-software/jdbl-experiments/blob/master/list_of_libs_succesfully_debloated_with_jdbl.md.
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We investigate the causes of test failures in the 30 libraries that have at least one failure. To do
so, we manually analyze the logs of the tests, as reported by Maven. We find the following five
causes:

— NoClassDefFound (NCDF): JDBL mistakenly removes a necessary class.
— TestAssertionFailure (TAF): the asserting conditions in the test fail for multiple reasons,
e.g., flaky tests, or test configuration errors.

— UnsupportedOperationException (UOE): JDBL mistakenly modifies the body of a neces-
sary method, removing bytecode used by the test suite.

— NullPointerException (NPE): a necessary object is referenced before being instantiated.
— Other: The tests are failing for another reason than the ones previously mentioned.

Table 2 categorizes the test failures for the 30 libraries with at least one test that does not pass.
They are sorted in descending order according to the percentage of tests that fail on the debloated
version. The first column shows the name and version of the library. Columns 2–7 represent the
five causes of test failure according to our manual analysis of the tests’ logs: TAF, UOE, NPE, NCDF,
and Other. The column labeled as Other shows the number of test failures that we were not able
to classify. The last column shows the percentage of tests that do not pass with respect to the total
number of tests in each library. For example, equalsverifier:3.4.1 has the largest number of test
failures. After debloating, we observe 605 test failures out of 921 tests (283 TAF, 221 NCDF, and 1
Other). These test failures represent 65.7 % of the total number of tests in equalsverifier:3.4.1. This
is an exceptional case, as for most of the debloated libraries, the tests that do not pass represent
less than 5% of the total.
The most common cause of test failure is NCDF (735), followed by TAF (592). We found that these

two types of failures are related to each other: when the test uses a non-covered class, the log shows
a NCDF, and the test assertion fails consequently. We notice that NCDF and UOE are directly related to
the removal procedure during the debloating procedure, meaning that JDBL is removing necessary
classes and methods, respectively. This occurs because there are some Java constructs that JDBL
does not manage to cover dynamically, causing an incomplete debloating result, despite the union
of information gathered from different coverage tools. Primitive constants, custom exceptions, and
single-instruction methods are typical examples. These are ubiquitous components of the Java
language, which are meant to support robust object-oriented software design, with little or no
procedural logic. They are important for humans and they are useless for the machine to run the
program. Consequently, they are not part of the executable code in the bytecode, and cannot be
covered dynamically.

JDBL can generate a debloated program that breaks a few test cases. These cases reveal some lim-
itations of JDBL concerning behavior preservation, i.e., it fails to cover some classes and methods,
removing necessary bytecode. One of the explanations is that the coverage tools modify the byte-
code of the libraries. Those modifications can cause some test failures. A failing test case stops the
execution of the test and can introduce a truncated coverage report of the execution. Since some
code is not executed after the failing assertion, some required classes or methods will not be cov-
ered and therefore debloated by JDBL. For example, in the reflections library, a library that provides
a simplified reflection API, some tests verify the number of fields of a class extracted by the library.
However, JaCoCo injects a field in each class, which will invalidate the asserts of reflections tests.
More generally, this reveals the remaining challenges of coverage-based debloating for real-

world Java applications when using the test suite as a workload. For this study, handling these
challenging cases to achieve 100 % correctness requires significant engineering effort, providing
only marginal insights. Therefore, we recommend always using our validation approach to be safe
of semantic alterations when performing aggressive debloating transformations.
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Table 2. Classification of the Tests that Fail for the 30 Libraries
that do not Pass All the Tests

Library T
A
F

U
O
E

N
P
E

N
C
D
F

O
t
h
e
r

Test failures
jai-imageio-core:1.3.1 3 3/3 (100.0 %)
jai-imageio-core:1.3.0 3 3/3 (100.0 %)
reflectasm:1.11.7 3 11 14/16 (87.5 %)
equalsverifier:3.3 273 315 1 589/894 (65.9 %)
equalsverifier:3.4.1 283 321 1 605/921 (65.7 %)
spark:2.0.0 3 22 25/57 (43.9 %)
logstash-logback-encoder:6.2 74 36 110/307 (35.8 %)
reflections:0.9.9 3 3/63 (4.8 %)
reflections:0.9.10 3 3/64 (4.7 %)
reflections:0.9.12 3 3/66 (4.5 %)
reflections:0.9.11 3 3/69 (4.3 %)
commons-jexl:2.0.1 6 2 8/223 (3.6 %)
commons-jexl:2.1.1 5 3 8/275 (2.9 %)
jackson-dataformat-csv:2.7.3 3 3/129 (2.3 %)
sslr-squid-bridge:2.7.0.377 1 1/43 (2.3 %)
jline2:2.14.3 2 2/141 (1.4 %)
jackson-annotations:2.7.5 1 1/77 (1.3 %)
commons-bcel:6.0 1 1/103 (1.0 %)
commons-bcel:6.2 1 1/107 (0.9 %)
commons-compress:1.12 2 1 2 5/577 (0.9 %)
commons-net:3.4 2 2/271 (0.7 %)
commons-net:3.5 2 2/274 (0.7 %)
jline2:2.13 1 1/141 (0.7 %)
commons-net:3.6 2 2/283 (0.7 %)
kryo-serializers:0.43 1 1/660 (0.2 %)
jongo:1.3.0 1 1/551 (0.2 %)
commons-codec:1.9 1 1/616 (0.2 %)
commons-codec:1.10 1 1/662 (0.2 %)
commons-codec:1.11 1 1/875 (0.1 %)
commons-codec:1.12 1 1/903 (0.1 %)
Total 592 11 5 735 61 1,405 (15.0 %)
We identified five causes of failures through the manual inspection of the Maven build testing
logs: TestAssertionFailure (TAF), UnsupportedOperationException (UOE), NullPointerException
(NPE), NoClassDefFound (NCDF), and other unknown causes (Other).

Answer to RQ2: JDBL automatically generates a debloated JAR that preserves the original
behavior of 211 (69.9 %) libraries. A total of 341,430 (99.59 %) tests pass on 241 libraries. This
behavioral assessment of coverage-based debloating demonstrates that JDBL preserves a large
majority of the libraries’ behavior, which is essential to meet the expectations of the libraries’
users.

5.2 Debloating Effectiveness (RQ3, RQ4, and RQ5)

In this section, we report on the effects of debloating Java libraries with JDBL in terms of bytecode
size reduction.
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Fig. 6. Percentage of classes kept and removed in (a) libraries that have no dependencies, and (b) libraries
that have at least one dependency. Percentage of methods kept and removed in (c) libraries that have no
dependencies, and (d) libraries that have at least one dependency.

5.2.1 RQ3. How much bytecode is removed in the compiled libraries and their dependencies? To
answer our third research question, we compare the status (kept or removed) of dependencies,
classes, and methods in the 211 libraries correctly debloated with JDBL. The goal is to evaluate the
effectiveness of JDBL to remove these bytecode elements through coverage-based debloating.
Figure 6 shows area charts representing the distribution of kept and removed classes and meth-

ods in the 211 correctly debloated libraries. To analyze the impact of dependencies, we separate the
libraries into two sets: the libraries that have no dependency (Figure 6(a) and (c)), and the libraries
that have at least one dependency (Figure 6(b) and (d)). In each figure, the x-axis represents the
libraries in the set, sorted in increasing order according to the number of removed classes, whereas
the y-axis represents the percentage of classes (Figure 6(a) and (b)) or methods (Figure 6(c) and (d))
kept and removed. The order of the libraries, on the x-axis, is the same for each figure.
Figure 6(a) shows the comparison between the percentages of kept and removed classes in the

141 libraries that have no dependency. A total of 116 libraries have at least one removed class. The
library with the largest percentage of removed classes is jfree-jcommon:1.0.23 with the 86.7 % of
its classes considered as bloated. On the other hand, Figure 6(b) shows the percentage of removed
classes for the 70 libraries that have at least one dependency. We observe that the ratio of removed
classes in these libraries is significantly higher with respect to the libraries with no dependencies.
All the libraries that have dependencies have at least one removed class, and 45 libraries have more
than 50% of their classes bloated. This result hints at the importance of reducing the number of
dependencies to mitigate software bloat.
Figure 6(c) shows the percentage of kept and removed methods in the 141 libraries that have

no dependencies. We observe that libraries with a few removed classes still contain a significant
percentage of removed methods. For example, the library net.iharder:base64:2.3.9 has 42.2 % of its
methods removed in the 99.4 % of its kept classes. This suggests that a fine-grained debloat, to the
level of methods, is beneficial for some libraries. The used classes may still contain a significant
number of bloated methods. On the other hand, Figure 6(d) shows the percentage of kept methods
in libraries with at least one dependency. All the libraries have a significant percentage of removed
methods. As more bloated classes are in the dependencies, the artifact globally includes more
bloated methods.
Now we focus on determining the difference between the bloat that is caused exclusively by the

classes in the library, and the bloat that is a consequence of software reuse through the declaration
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Fig. 7. Distribution of the percentage of bloated classes that belong to libraries, and bloated classes that
belong to dependencies. The strip chart (white marks) in between represents the libraries that belong to
each of the two groups. The two vertical bars represent the average value for each group.

Table 3. Summary of the Number of
Dependencies, Classes, and Methods

Removed in the 211 Libraries Correctly
Debloated with JDBL

Removed (%)
Dependencies 38/187 (20.3 %)
Classes 61,929/103,032 (60.1 %)
Methods 411,997/693,703 (59.4 %)

of dependencies. Figure 7 shows a beanplot [29] comparing the distribution of the percentage of
bloated classes in libraries, with respect to the bloated classes in dependencies. The density shape
at the top of the plot shows the distribution of the percentage of bloated classes that belong to the
211 libraries. The density shape at the bottom shows this percentage for the classes in the depen-
dencies of the 70 libraries that have at least one dependency. The average bloat in libraries is 27.3 %,
whereas in the dependencies it is 59.8 %. Overall, the average of bloated classes removed for all the
libraries, including their dependencies, is 32.5 %. We perform a two-samples Wilcoxon test, which
confirms that there are significant differences between the percentage of bloated classes in the
two groups (p-value < 0.01). Therefore, we reject the null hypothesis and confirm that the ratio of
bloated classes is more significant among the dependencies than among the classes of the artifacts.
Table 3 summarizes the debloating results for the dependencies, classes, and methods. Interest-

ingly, JDBL completely removes the bytecode for 20.3 % of the dependencies. In other words, 38
dependencies in the dependency tree of the projects are not necessary to successfully execute the
workload in our dataset. At the class level, we find 60.1 % of bloat, from which we determine that
36.7 % belong to dependencies. JDBL debloats 59.4 % of the methods, from which 41.8 % belong to
dependencies.

Answer to RQ3: JDBL removes bytecode in all libraries. It reduces the number of dependen-
cies, classes, and methods by 20.3 %, 60.1 %, and 59.4 %, respectively. This result confirms the
relevance of the coverage-based debloating approach for reducing the unnecessary bytecode
of Java projects, while preserving their correctness.
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Table 4. Size in Bytes of the Elements
in the JAR Files

Metrics Size in bytes (%)
Resources 257,982,707 (22.4 %)
Bytecode 893,531,088 (77.6 %)
Non-bloated classes 283,424,921 (31.7 %)
Bloated classes 596,337,540 (66.7 %)
Bloated methods 13,768,627 (1.5 %)
Total size 1,151,513,795

5.2.2 RQ4. What is the impact of using the coverage-based debloating approach on the size of the

packaged artifacts? We consider all the elements in the JAR files before the debloating, and study
the size of the debloated version of the artifact, with respect to the original bundle. Decreasing the
size of JAR files by removing bloated bytecode has a positive impact on saving space on disk, and
helps reduce overhead when the JAR files are shipped over the network.

JAR files contain bytecode, as well as additional resources that depend on the functionalities of
the artifacts (e.g., HTML, DLL, SO, and CSS files). JAR files also contain resources required by Maven
to handle configurations and dependencies (e.g., MANIFEST.MF and pom.xml). However, JDBL is
designed to debloat only executable code (class files). Therefore, we assess the impact of bytecode
removal with respect to the executable code in the original bundle.
Table 4 summarizes themainmetrics related to the content and size of the JAR files in our dataset.

We observe that the additional resources represent 22.4 % of the total JAR size, whereas 77.6 % of
the size is dedicated to the bytecode. This observation supports the relevance of debloating the
bytecode in order to shrink the size of the Maven artifacts.
Overall, the bloated elements in the compiled artifacts in our dataset represent 610.3/893.7MB

(68.3 %) of pure bytecode: 596.5MB of bloated classes and 13.8MB of bloated methods. The used
bytecode represents 31.7 % of the size. Interfaces, enumeration types, annotations, and exceptions
represent 15.8% of the size on the disk of all the class files. In comparison with the classes, the
debloat of methods represents a relatively limited size reduction. This is because we are reporting
the removal of methods in the classes that are not entirely removed by JDBL. Furthermore, the
methods cannot be completely removed, only the body of the method is replaced by an exception
as detailed in Section 3.3.
Figure 8 shows a beanplot comparing the distribution of the percentage of bytecode reduction

in the libraries that have no dependency, with respect to the libraries that have at least one
dependency. From our observations, the average bytecode size reduction in the libraries that
have dependencies (46.7 %) is higher than in the libraries with no dependencies (14.5 %). Overall,
the average percentage of bytecode reduction for all the libraries is 25.8 %. We performed a
two-sample Wilcoxon test, which shows that there are significant differences between those
two groups (p-value < 0.01). Therefore, we reject the null hypothesis that the coverage-based
debloating approach has the same impact in terms of reduction of the JAR size for libraries that
declare dependencies, and libraries that do not.
We perform a Spearman’s rank correlation test between the original number of classes in

the libraries and the size of the removed bytecode. We found that there is a significant positive
correlation between both variables (ρ = 0.97, p-value < 0.01). This result confirms the intuition
that projects with many classes tend to occupy more space on disk due to bloat. However,
the decision of what is necessary or not heavily depends on the library, as well as on the
workload.
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Fig. 8. Distribution of the percentage of reduction of the JAR size in libraries that have no dependencies and
libraries that have at least one dependency, with respect to the original bundle.

Answer to RQ4: JDBL removes 68.3 % of pure bytecode in JAR files, which represents an aver-
age size reduction of 25.8 % per library JAR file. The JAR size reduction is significantly higher
in libraries with at least one dependency compared to libraries with no dependency.

5.2.3 RQ5. How does coverage-based debloating compare with the state-of-the-art of Java debloat-

ing regarding the size of the packaged artifacts and behavior preservation? In this research question,
we compare the debloating results of JDBL with respect to JShrink. The comparison is based on
two metrics: the reduction of bytecode size after debloat, and the preservation of test results af-
ter debloat. The JShrink benchmark includes 25 Java projects. To answer RQ5, we discard eight
projects: Six that are multi-module (JDBL is designed to debloat single-module Maven projects),
and two projects whose builds fail due to test errors caused by unavailable network resources.
Therefore, our comparison of JDBL and JShrink is based on 17 projects in total. For each project,
we configure it to execute JDBL and generate a debloated version of the fat JAR. To validate the
semantic correctness of the debloated artifact, we execute the project’s test suite on the debloated
version.

Table 5 describes the benchmark along with the debloating results obtained with JShrink and
JDBL. The first column shows the name of the project as it appears on GitHub. The second col-
umn shows the commit SHA of the project, which is the same used in the companion article of
JShrink [8]. The third column is the size of the original packaged JAR of the project, which in-
cludes all its dependencies with a compile scope. Projects are sorted in decreasing order according
to their original size.
We report the bytecode size reduction of the debloated version of the projects achieved with

JShrink and JDBL. The average size reduction achieved with JDBL is 35.1 %, which is more than
double the size reduction obtained with JShrink. An explanation is that JShrink makes a more
conservative debloating decision by setting all public methods, main methods, and test methods
of libraries as entry points to approximate possible usages, whereas JDBL debloats according to
a workload (i.e., the coverage information collected by running the test suite of the library). We
observe that the percentage of reduction varies greatly among the projects depending on their size.
We performed a Spearman’s rank correlation test between the size of the original compiled project
and the percentage of size reduction obtained with JShrink and JDBL. We found that there is a
significant positive correlation between both variables for JShrink (ρ = 0.52, p-value < 0.05) and
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Table 5. Debloating Results of JShrink and JDBL in the Benchmark of Bruce et al. [8]

JShrink JDBL
Project Name Commit SHA Size (kB) #Tests Size #Test Size #Test

Reduction Failures Reduction Failures
lanterna 5982dbf 18,050.3 34 2.0 % ✓ (0) 66.4 % ✓ (0)
AutoLoadCache 06f6754 14,845.8 11 20.2 % ✗ (9) 66.8 % ✓ (0)
gwt-cal e7e5250 13,059.8 921 17.5 % ✓ (0) 42.2 % ✓ (0)
maven-config-processor-plugin c92e588 5,762.4 77 29.8 % ✓ (0) 73.0 % ✓ (0)
Bukkit f210234 4,781.3 906 18.5 % ✓ (0) 61.5 % ✓ (0)
Mybatis-PageHelper 525394c 4,272.3 106 23.9 % ✗ (55) 66.4 % ✓ (0)
RxRelay 82db28c 2,295.9 58 17.5 % ✓ (0) 10.0 % ✓ (0)
RxReplayingShare fbedd63 2,117.6 20 22.1 % ✓ (0) 7.3 % ✓ (0)
qart4j 70b9abb 1,869.0 1 46.8 % ✓ (0) 59.1 % ✓ (0)
retrofit1-okhttp3-client 9993fdc 718.9 9 11.5 % ✓ (0) 21.9 % ✓ (0)
junit4 67d424b 407.1 1,081 6.8 % ✗ (13) 4.7 % ✓ (0)
gson 27c9335 235.8 1,050 5.5 % ✓ (0) 1.7 % ✓ (0)
zt-zip 6933db7 134.3 121 11.3 % ✓ (0) 10.3 % ✓ (0)
TProfiler 8344d1a 102.8 3 10.2 % ✓ (0) 83.1 % ✓ (0)
Algorithms 9ae21a5 99.9 493 5.5 % ✓ (0) 12.2 % ✓ (0)
http-request 2d62a3e 36.1 163 6.6 % ✓ (0) 7.5 % ✓ (0)
DiskLruCache 3e01635 22.7 61 1.7 % ✓ (0) 2.9 % ✓ (0)
Total N.A 6,881,194.8 5,115 N.A 77 N.A 0
Median N.A 1,869.0 77 11.5 % 0 21.9 % 0
Avg. N.A 4,047.8 300.9 15.14 % 4.53 35.1 % 0

JDBL (ρ = 0.52, p-value < 0.05). This result confirms the results obtained in RQ4 where we show
that larger libraries are prone to become more bloated.
To assess the behavior preservation of the debloated projects w.r.t. their original version, we

run existing test cases before and after debloating. Table 5 shows the semantic preservation
capabilities of JShrink and JDBL on the benchmark of 17 projects. We consider a debloated
project to have broken semantics if at least one of its tests fails after debloating. A project with
no broken semantic is denoted by ✓, while ✗ denotes the presence of at least one test failure after
debloating. JShrink causes test failures in three projects (77 failures in total). On the contrary,
JDBL preserves the behavior of all the projects on this benchmark, according to the results of the
tests.

Answer to RQ5: JDBL successfully debloats the 17 single-module Java projects in the bench-
mark of Bruce et al. [8], with a size reduction of 35.1 % on average, and preserves the behavior
according to the tests. JShrink reduces size by 15.1 % on average. This is evidence that coverage-
based debloating is a promising technique that advances the state-of-the-art of Java bytecode
debloating.

5.3 Impact of Debloating on Library Clients (RQ6 and RQ7)

In this section, we study the repercussions of performing coverage-based debloating on library
clients. To the best of our knowledge, this is the first experimental report that measures the impact
of debloating libraries on the syntactic and semantic correctness of their clients.

5.3.1 RQ6. To what extent do the clients of debloated libraries compile successfully? In this re-
search question, we investigate how debloating a library with a coverage-based approach impacts
the compilation of the library’s clients. We hypothesize that the essential functionalities of the
library are less likely to be debloated, limiting the syntactic negative impact on their clients.
As described in Section 4.3.4, we consider the 1,354 clients that use the 211 debloated libraries

that pass all the tests. We check that the clients use at least one class in the library through
static analysis. We identify 988/1,354 (73.0 %) clients that satisfy this condition. Figure 9 shows the
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Fig. 9. Results of the compilation of the 988 clients that use at least one debloated library in the source code.

Table 6. Frequency of the Errors for the 38 Unique Clients that have Compilation Errors

Description # Libraries # Clients Occurrence
Cannot find class 12/19 (63.2 %) 20/38 (52.6 %) 314/640 (49.1 %)
Unmappable character for encoding UTF8 1/19 (5.3 %) 1/38 (2.6 %) 100/640 (15.6 %)
Package does not exist 6/19 (31.6 %) 13/38 (34.2 %) 78/640 (12.2 %)
Cannot find variable 7/19 (36.8 %) 9/38 (23.7 %) 77/640 (12.0 %)
Cannot find method 1/19 (5.3 %) 1/38 (2.6 %) 28/640 (4.4 %)
Static import only from classes and interfaces 1/19 (5.3 %) 1/38 (2.6 %) 14/640 (2.2 %)
Method does not override a method from a supertype 2/19 (10.5 %) 2/38 (5.3 %) 12/640 (1.9 %)
Processor error 2/19 (10.5 %) 11/38 (28.9 %) 11/640 (1.7 %)
Cannot find other symbol 2/19 (10.5 %) 2/38 (5.3 %) 4/640 (0.6 %)
UnsupportedOperationException 1/19 (5.3 %) 1/38 (2.6 %) 1/640 (0.2 %)
Plugin verification 1/19 (5.3 %) 1/38 (2.6 %) 1/640 (0.2 %)
11 Unique errors 19 Unique libraries 38 Unique clients 640 Compilation errors

Note that a client can have multiple errors from different categories.

results obtained after attempting to compile the clients with the debloated library. JDBL generates
debloated libraries for which 950 (96.2 %) of their clients successfully compile.
From the 988 clients that use at least one class of the library, we only observe compilation failures

in 38 (3.8 %) clients. Table 6 shows our manual classification of the errors, based on the analysis
of the Maven build logs. The first column describes the error message, columns 2–3 represent the
number of libraries that trigger this kind of error, the number of clients that are affected, and the
percentage relative to the number of libraries or clients impacted by a compilation error. Note that
a client can be impacted by several different errors. The fourth column represents the occurrence
of the error in the clients, as quantified from the Maven logs.
The causes of compilation errors are diverse. However, they are primarily due to errors related

to missing packages, classes, methods, and variables (79.8 % of all the compilation errors). The
debloating procedure directly causes those errors, as the bytecode elements are removed, and the
clients do not compile. We detect 640 errors in total. Most of them occur for similar causes. Indeed,
20/38 (52.6 %) clients are not compiling because of one single error cause (which can be unique for
each client). Moreover, when a client fails for a library, the other clients of the same library are
generally failing for the same reason. It means that a single action can solve most of the client’s
problems, i.e., by adding the missing element to the debloated library.
Several clients face compilation issues because of their plugins. In order to have the client use

the debloated library, we inject the debloated library inside the bytecode folder of the clients. Un-
fortunately, some plugins of the clients will also analyze the bytecode of the debloated library
thatmay not follow the same requirements. Plugin verification error, Unmappable character

for encoding UTF8, and Processor error are related to this type of bytecode validation.
In the list of errors, we also observe a runtime exception: UnsupportedOperationException.

This error is unexpected since the compilation should not execute code and therefore should not
trigger a runtime exception. It happens during the build of jenkinsci/warnings-plugin, which uses
the commons-io:2.6 library. In this case, the compilation itself of this client does not fail, but the
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Fig. 10. Results of the tests on the 281 clients that cover at least one debloated library.

Table 7. Frequency of the Exceptions Thrown During the Execution of the Tests for the
52 Unique Clients that have Failing Test Cases

Exception # Libraries # Clients Occurrence
UnsupportedOperationException 27/37 (73.0 %) 40/52 (76.9 %) 609/716 (85.1 %)
IllegalStateException 1/37 (2.7 %) 2/52 (3.8 %) 55/716 (7.7 %)
NoClassDefFoundError 6/37 (16.2 %) 6/52 (11.5 %) 24/716 (3.4 %)
Assert 5/37 (13.5 %) 5/52 (9.6 %) 12/716 (1.7 %)
ExceptionInInitializerError 4/37 (10.8 %) 4/52 (7.7 %) 4/716 (0.6 %)
TargetHostsLoadException 1/37 (2.7 %) 1/52 (1.9 %) 4/716 (0.6 %)
NullPointerException 1/37 (2.7 %) 1/52 (1.9 %) 3/716 (0.4 %)
TimeoutException 1/37 (2.7 %) 1/52 (1.9 %) 2/716 (0.3 %)
PushSenderException 1/37 (2.7 %) 1/52 (1.9 %) 2/716 (0.3 %)
AssertionError 1/37 (2.7 %) 1/52 (1.9 %) 1/716 (0.1 %)
10 Unique exceptions 37 Unique libraries 52 Unique clients 716 Failing tests
Note that a client can have multiple exceptions from different categories.

Maven build does. One of the Maven plugins of this project relies on one method that is debloated
in apache/commons-io, therefore, the compilation does not fail because of the source code of the
client but because of one particular Maven plugin used by the client.

Answer to RQ6: JDBL preserves the syntactic correctness of 950 (96.2 %) clients that use a
library debloated by JDBL. This is the first empirical demonstration that debloating can preserve
essential functionalities to successfully compile the clients of debloated libraries.

5.3.2 RQ7. To what extent do the clients behave correctly when using a debloated library? In this
research question, we analyze another facet of debloating that may affect the clients: the distur-
bance of their behavior. To do so, we use the test suite of the clients as the oracle for assessing
correct behavior. If a test in the client fails with the debloated library, then the coverage-based
debloating breaks the behavior of the client.
We consider 1,354 clients to answer this question. They use the 211 debloated libraries that pass

all the tests. We check that the client tests cover at least one class in the library, through dynamic
code coverage. We identify 281/1,354 (20.8 %) clients that satisfy this condition.
Figure 10 presents the test results after building the clients with the debloated library. In total,

229 (81.5 %) clients pass all their tests, i.e., they behave the same with the original and with the
debloated library. There are 52 (18.5 %) clients that have more failing test cases with the debloated
library than with the original. However, the number of tests that fail is only 716/44,357 (1.6 %)
of the total number of tests in the clients. This indicates that the negative impact of debloated
libraries, as measured by the number of affected client tests, is marginal.
We investigate the causes of the test failures. Table 7 quantifies the exceptions thrown by the

clients. The first column shows the 10 types of exceptions that we find in the Maven logs. Columns
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2–3 represent the number of libraries involved in the failure and the number of clients affected.
Column 4 represents the occurrence of the exception, as quantified from the logs.

UsupportedOperationException is the most frequent exception, with 609 occurrences in the
failing tests, affecting 76.9 % of clients with errors. This exception is triggered when one of the
debloated methods is executed. The second most common exception is IllegalStateException,
with a total of 55 occurrences. This exception happens when the client tries to load a bloated
configuration class and fails. The third most frequent exception, with 24 occurrences, is NoClass
DefFoundError. Similar to UsupportedOperationException, it happens when the clients try to
load a debloated class in the library.
Interestingly, there are only 12 assertion-related exceptions (11 Assert and 1 AssertionError).

Having runtime exceptions that are triggered during the executions of the clients is less harmful
than having behavior changes. The runtime exceptions can be monitored and handled while
running the client, while a behavior change can stay hidden and corrupt the state of the clients.

Answer to RQ7: JDBL preserves the behavior of 229 (81.5 %) clients of debloated libraries. The
52 other clients still pass 43,684 (98.5 %) of their test cases. In these cases, 99.1 % of the test
failures are due to a missing class or method, which can be easily located and fixed. This exper-
iment shows that the risks of removing code in software libraries are limited for their clients.

6 DISCUSSION

In this section, we discuss key aspects of the design for coverage-based debloating. Then, we ad-
dress the threats to the validity of the evaluation of JDBL.

6.1 Complementarity of Code-Coverage Tools

As presented in Section 3.3, we leverage the diversity of implementations of code coverage tools
and the dynamic logging capabilities of the JVM class loader to collect precise coverage informa-
tion. Now, we discuss the advantages of using this approach for debloating.
We collect and aggregate the coverage reports of the four tools used by JDBL to capture class

usage information: JaCoCo, JCov, Yajta, and the JVM class loader. We consider a class as covered if
it is reported as used by at least one of these tools. Figure 11 shows a Venn diagram of the classes
reported as covered by each tool. There are a total of 76,549 classes covered by at least one tool
in our dataset of 211 successfully debloated libraries. One key observation is that JaCoCo covers
only 59,934 (78.3 %) of the classes that are used when running our workloads. This means that if
we rely on JaCoCo only, the state-of-the-art coverage tool for Java, we would capture a significant
share of false positive cases of bloated classes. This is critical, since removing these classes would
produce a debloated project that cannot be properly used to run the workload. Another interesting
observation is about the diversity of behaviors in modern coverage tools. There are only 34,582
(45.2 %) classes that are covered by the four tools. The JVM class loader is the one that captures the
largest number of unique classes: 14,972 (19.6 %). This is because it logs the usage of dynamically
loaded classes at runtime. In contrast, the other coverage tools can provide more fine-grained cov-
erage information (e.g., methods and instruction) but miss usages of dynamically loaded resources
(e.g., classes loaded via the Java reflection mechanism). The addition of JCov and Yajta improves
the coverage of used classes, accounting for 2 and 662 unique covered classes, respectively.
This is evidence that combining the features of several coverage tools is relevant to accurately

capture the code that is used at runtime. Capturing the complete coverage of classes that are neces-
sary for a workload is critical for debloating. Failing to do so leads to the generation of a debloated
project that does not compile, or even worse, that leads to runtime errors when client projects use
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Fig. 11. Number of classes covered by the diverse tools used to collect coverage information in our dataset
of 211 successfully debloated libraries.

debloated libraries. A more in-depth analysis of the similarities and differences of code coverage
tools is a promising direction for future research on Java bytecode debloating.

6.2 Execution Time

The vision for debloating is to integrate it as part of building pipelines. In this context, execution
time is an important consideration. Here, we discuss whether the execution time of JDBL makes
coverage-based debloating feasible for everyday software development. In our experiments, we
executed JDBL on 395 libraries, for a total of 1 day and 10:55:00 h. This represents an average de-
bloating time of 5.3 minutes per library. Table 8 shows the execution times of JDBL and JShrink,
with the benchmark of Bruce et al. [8]. The first and second columns show the projects’ names
and commit SHAs, respectively. The third and fourth columns show the execution time of JDBL
and JShrink for each project, measured in seconds and sorted in decreasing order according to
the results of JDBL. The comparison is made on the same hardware as the main JDBL experi-
ment, described in Section 4.3. We observe that it took a total of 2,685 seconds (less than one
hour) to debloat the benchmark with JDBL, whereas JShrink took a total of 29,397 seconds (more
than eight hours). The average debloating time for this benchmark using JDBL is 157.9s (less than
3 minutes per project), which is 11 times faster than JShrink.
With times in the range of minutes, coverage-based debloating with JDBL can be used in a

daily build. We also show that JDBL significantly improves the state-of-the-art of Java debloating,
regarding execution time. This is an important contribution toward the integration of debloating
into regular development processes.

6.3 Threats to Validity

6.3.1 Internal Validity. The threats to internal validity relate to the effectiveness of JDBL on
generic real-world Java projects, as well as the design decisions that can influence our results.
Coverage-based debloating has some inherent limitations, e.g., inadequate test cases and random
behaviors. To mitigate these threats, we use as study subjects libraries with high coverage (see
Table 1), and execute the test suite three times to avoid test randomness. If the test suite does
not capture all desired behaviors, some necessary code might not be executed and be removed.
The debloated libraries can also have non-deterministic test cases. For example, tests that use the
current date and time to perform an action or not. Due to these behaviors, executing the application
multiple times with the same input may lead to different coverage results.
As explained in Section 3.3, JDBL relies on a complex stack of existing bytecode coverage tools.

It is possible that some of these tools may fail to instrument the classes for a particular project.
However, since we rely on a diverse set of coverage tools, the failures of one specific tool are
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Table 8. Execution Time of JDBL and JShrink in the Benchmark
of Bruce et al. [8]

JDBL JShrink
Project Commit SHA Execution Time (s) Execution Time (s)
maven-config-processor-plugin c92e588 612 1,159
lanterna 5982dbf 365 1,628
AutoLoadCache 06f6754 347 5,941
gwt-cal e7e5250 293 2,075
Bukkit f210234 143 10,452
Mybatis-PageHelper 525394c 128 1,749
RxRelay 82db28c 109 502
RxReplayingShare fbedd63 95 753
junit4 67d424b 80 352
retrofit1-okhttp3-client 9993fdc 77 506
qart4j 70b9abb 72 2,137
DiskLruCache 3e01635 66 223
http-request 2d62a3e 63 616
gson 27c9335 63 842
zt-zip 6933db7 60 111
TProfiler 8344d1a 56 98
Algorithms 9ae21a5 56 253
Total N.A 2,685 29,397
Median N.A 80 753
Avg. N.A 157.9 1,729.2

likely to be corrected by the others. JDBL relies on the official Maven plugins for dependency
management and test execution. Still, due to the variety of existing Maven configurations and
plugins, JDBL may crash at some of its phases due to conflicts with other plugins. To overcome
this threat and to automate our experiments, we set the maven-surefire-plugin to its default
configuration, and use the maven-assembly-plugin to build the fat JAR of all the study subjects.

6.3.2 External Validity. The threats to external validity are related to the generalizability of our
findings. Our observations in Section 5 about bloat are made on single-module Maven projects and
the Java ecosystem. Our findings are valid for software projects with these particular characteris-
tics. Meanwhile, coverage-based debloating in different languages could yield different conclusions
than ours. Moreover, our debloating results are influenced by the coverage of the libraries and
clients used as study subjects. However, we took care to select open-source Java libraries available
on GitHub, which cover projects from different domains (e.g., logging, database handling, encryp-
tion, IO utilities, metaprogramming, and networking).16 To the best of our knowledge, this is the
largest set of study subjects used in software debloating experiments.

6.3.3 Construct Validity. The threats to construct validity are related to the relation between
the coverage-based debloating approach and the experimental protocol. Our analysis is based on
a diverse set of real-world open-source Java projects, with minimal modifications to run JDBL
(only the pom.xml file is modified). We assume that all the plugins involved in the Maven build
life-cycle are correct, as well as all the generated reports. Note that, if a dependency is not resolved
correctly by Maven, then its bytecode will not be instrumented. Thus, the quality of the debloat
result depends on the effectiveness of the Maven dependency resolution mechanism.
The applicability of coverage-based debloating depends on the quality of the workload. In our

experiments, we rely on the projects’ test suite. Consequently, our observations partly depend on
the coverage of the projects. As explained in Section 4.2, the coverage of the libraries in our dataset
is high. On the other hand, the coverage of the clients is lower (20.24% on average), which may
cause some used functionalities in the debloated libraries that are not executed by the clients’ tests.
However, we believe this does not affect our results because we assess the semantic correctness of

16See https://github.com/castor-software/jdbl-experiments/blob/master/dataset/data/jdbl_dataset.json.
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the client applications when using the debloated version of a library based on the client’s usage
intent expressed by its test suite.

7 RELATED WORK

In this section, we present the works related to software debloating techniques and dynamic
analysis.

7.1 Software Debloating

Research interest in software debloating has grown in recent years, motivated by the reuse of large
open-source libraries designed to provide several functionalities for different clients [15, 27]. Sem-
inal work on debloating for Java programs was performed by Tip et al. [53, 54]. They proposed a
comprehensive set of transformations to reduce the size of Java bytecode including class hierarchy
collapsing, name compression, constant pool compression, and method inlining. Recent works in-
vestigate the benefits of debloating Java frameworks and Android applications using static analysis.
Jiang et al. [26] presented JRed, a tool to reduce the attack surface by trimming redundant code
from Java binaries. RedDroid [25] and PolyDroid [20] propose debloating techniques for mobile
devices. They found that debloating significantly reduces the bandwidth consumption used when
distributing the application, improving the performance of the system by optimizing resources.
Other works rely on debloating to improve the performance of the Maven build automation sys-
tem [9], removing bloated dependencies [50], and mitigating runtime bloat [59]. More recently,
Haas et al. [19] investigate the use of static analysis to detect unnecessary code in Java applica-
tions based on code stability and code centrality measures. Most of these works show that static
analysis, although conservative by nature, is a useful technique for debloating in practice.
To improve the debloating results of static analysis, recent debloating techniques drive the re-

moval process using information collected at runtime. In this context, various dynamic analysis
strategies can be adopted, e.g., monitoring, debugging, or performance profiling. This approach
allows debloating tools to collect execution paths, tailoring programs to specific functionalities by
removing unused code [21, 45, 55]. Unfortunately, most of the existing tools currently available for
this purpose do not target large Java applications, focusing primarily on small C/C++ executable
binaries. Sharif et al. [46] propose Trimmer, a debloating approach that relies on user-provided
configurations and compiler optimization to reduce code size. Qian et al. [42] present RAZOR, a
tool for debloating program binaries based on test cases and control-flow heuristics. However, the
authors do not provide a thorough analysis of the challenges and benefits of using code coverage
to debloat software. More recently, Bruce et al. [8] propose JShrink, a tool to dynamically debloat
modern Java applications. However, JShrink is not directly automatable within a build pipeline
and the effect of debloating on the library clients is not studied. These previous works assess the
impact of debloating on the size of the programs, yet, they rarely evaluate to what extent the
debloating transformations preserve program behavior.
This work contributes to the state-of-the-art of software debloating.We propose an approach for

debloating Java libraries based on the usage of code coverage to identify unused software parts. Our
tool, JDBL, integrates the debloating procedure into the Maven build life-cycle, which facilitates
its evaluation and its integration in most real-world Java projects. We evaluate our approach on
the largest set of programs ever analyzed in the debloating literature, and we provide the first
quantitative investigation of the impact of debloating on the library clients.

7.2 Dynamic Analysis

Dynamic analysis is the process of collecting and analyzing the data produced from executing
a program. This long-time advocated software engineering technique is used for several tasks,
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Table 9. Comparison of Existing Java Debloating Techniques, w.r.t. this Work

Tool Target Analysis Scale
Granularity Correctness evaluation criteria

F M C D
lib lib’s lib’s clients

compiles tests pass tests pass
DepClean [50] Source Static 30 libs ✗ ✗ ✗ ✓ ✓ ✓ ✗

Jax [54] Bytecode Static 13 libs ✓ ✓ ✓ ✗ ✓ ✗ ✗

JRed [26] Bytecode Static 9 libs ✗ ✓ ✓ ✗ ✓ ✗ ✗

J-Reduce [28] Bytecode Dynamic 3 libs ✗ ✗ ✓ ✗ ✓ ✓ ✗

JShrink [8] Bytecode Hybrid 26 libs ✓ ✓ ✓ ✗ ✓ ✓ ✗

JDBL Bytecode Dynamic
395 libs and
1,370 clients

✗ ✓ ✓ ✓ ✓ ✓ ✓

Target is the type of artifact considered for debloating; Analysis refers to the type of code analysis performed for
debloating; Scale provides the number of study subjects used to evaluate the technique; Granularity is the code
level at which debloating is performed: field (F), method (M), class (C) or dependency (D); the last columns enumerate
the three ways found in the state-of-the-art to assess the validity and utility of the debloated artifact.

such as program slicing [2], program comprehension [12], or dynamic taint tracking [4]. Through
dynamic analysis, developers can obtain an accurate picture of the software system by exposing
its actual behavior. For example, trace-based compilation uses dynamically-identified frequently-
executed code sequences (traces) as units for optimizing compilation [16, 24]. Mururu et al. [37]
implemented a scheme to perform demand-driven loading of libraries based on the localization of
call sites within its clients. This approach allows reducing the exposed code surface of vulnerable
linked libraries, by predicting the near-exact set of library functions needed at a given call site dur-
ing the execution. Palepu et al. [40] use dynamic analysis to effectively summarize the execution
and behavior of modern applications that rely on large object-oriented libraries and components.
In this work, we employ dynamic analysis for bytecode reduction, as opposed to runtime memory
bloat, which was the target of previous works [5, 35, 36, 38, 39, 58, 60].
In Java, dynamic analysis is often used to overcome the limitations of static analysis. Land-

man [31] performed a study on the usage of dynamic features and found that reflection was used
in 78 % of the analyzed projects. Recent work from Xin et al. [57] utilizes execution traces to iden-
tify and understand features in Android applications by analyzing their dynamic behavior. In order
to leverage dynamic analysis for debloating, we need to collect a very accurate coverage report,
which guides the debloating procedure.

Our work contributes to the state-of-the-art of dynamic analysis for Java programs. Our tech-
nique combines information obtained from four distinct code coverage tools through bytecode
instrumentation [6]. The composition of these four types of observations allows us to build a very
accurate and complete coverage report, which is necessary to identify exactly what parts of the
code are used at runtime and which ones can be removed. To collect coverage, we rely on the test
suite of the libraries. This approach is similar to other dynamic analyses, e.g., for finding backward
incompatibilities [10].
Table 9 summarizes the state-of-the-art of published techniques for debloating Java applications

in comparison with JDBL. As observed, most existing techniques target bytecode instead of source
code. DepClean [50] is the exception, which focuses on debloating pom.xml files based on static
bytecode analysis. JShrink [8] uses a combination of static and dynamic analysis to address the
potential unsoundness of static analysis in the presence of new language features. To our knowl-
edge, JDBL is the first fully automatic debloating technique that also debloats code in third-party
dependencies, and that assesses the correctness of debloating with respect to both the successful
build of the debloated library and the successful execution of the library’s clients. Furthermore,
our experiments are at least one order of magnitude larger than previous works.
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8 CONCLUSION

In this work, we introduce coverage-based debloating for Java applications.We have addressed one
key challenge of dynamic debloating: collect accurate and complete coverage information that in-
cludes the minimum set of classes and methods that are necessary to execute the program with a
given workload. We implemented coverage-based debloating in an open-source tool called JDBL.
We have performed the largest empirical validation of Java debloating in the literature with 354
libraries and 1,354 clients that use these libraries. We evaluated JDBL using an original experimen-
tal protocol that assessed the impact of debloating on the libraries’ behavior, their size, as well
as on their clients. Our results indicate that JDBL can reduce 68.3 % of the bytecode size and that
211 (69.9 %) debloated libraries compile and preserve their test behavior. We also show that JDBL
outperforms JShrink regarding size reduction and behavior preservation when used on the same
benchmark as in the JShrink article. For the first time in the literature, we assess the utility of
debloated libraries for their clients: 81.5 % of the clients can successfully compile and run their test
suite with a debloated library.
Our results provide evidence of the massive presence of unnecessary code in software applica-

tions and the usefulness of debloating techniques to handle this phenomenon. Furthermore, we
demonstrate that dynamic analysis can be used to automatically debloat libraries while preserving
the functionalities that are necessary for their clients.
The next step of coverage-based debloating is to specialize applications with respect to usage

profiles collected in production environments, extending the debloating to other parts of the pro-
gram stack, e.g., to the Java Runtime Environment (JRE), program resources, or containerized ap-
plications. As for the empirical investigation of the impact of debloating, we aim at evaluating the
effectiveness of coverage-based debloating in reducing the attack surface of modern applications.
These are major milestones towards full-stack debloating for software hardening.
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COVER FEATURE SOFTWARE SUPPLY CHAINS
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Ethereum is the single largest programmable blockchain 

platform today. Ethereum nodes operate the blockchain, relying 

on a vast supply chain of third-party software dependencies. 

In this article, we perform an analysis of the software supply 

chain of Java Ethereum nodes and distill the challenges of 

maintaining and securing this blockchain technology.  

Ethereum is a spearhead of the blockchain para-
digm, with its smart contract infrastructure sup-
porting a vibrant decentralized finance ecosys-
tem1 and a blooming art scene.2 Since the release 

of Bitcoin in 2008,3 the adoption of blockchain-based 
solutions has grown significantly, mainly driven by the 
promise of secure, reliable, and decentralized monetary 

and financial transactions.4 There are several public 
blockchains running today (for example, Bitcoin, Ethe-
reum, Litecoin, and NEO), each one of them serving a 
particular purpose and solving specific problems. In this 
article, we focus on the single case of Ethereum as it is 
the largest blockchain platform by most notable metrics.

Ethereum is a feature-rich platform, considered by 
some as the avant-garde of blockchain technologies.5 It 
has its own cryptocurrency (Ether), its own consensus 
protocol, and its own smart contract platform. Ethereum 
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digital assets and contracts are exe-
cuted in a distributed manner in nodes 
that support the Ethereum Virtual 
Machine execution model. Due to this 
functionality, the Ethereum platform 
is often compared to a globally dis-
tributed supercomputer. In January 
2022, the Ethereum blockchain held 
more than hundreds of billions of U.S. 
dollars in digital assets, and an aver-
age of 250 new smart contracts are 
deployed and verified on Etherscan 
every day (https://etherscan.io/chart/
verified-contracts).   

The research community has con-
tributed to the creation and evolution 
of blockchain technologies. The recent 
work focuses on three aspects6: the 
theoretical foundations, scalability, 
and engineering of smart contracts. 
However, one key aspect of the block-
chain has been completely overlooked: 
its software supply chain.

The software supply chain of an 
ecosystem is the set of all software 
libraries, tools, and third-party mod-
ules that compose it.7 In the context of 
Ethereum, the software supply chain 
is first and foremost formed of the dif-
ferent open source implementations 
of Ethereum nodes in Go, Rust, Java, 
and other languages.8 The node imple-
mentations themselves depend on 
hundreds of components. Overall, the 
software supply chain of Ethereum is 
composed of libraries and tools, as well 
as dependencies, to develop, deploy, 
and run Ethereum nodes.

Recent studies have shown that 
a large network of software depen-
dencies, such as in Ethereum nodes, 
can turn into an application’s Achil-
les heel.9 On the one hand, malicious 
actors may infect a target application 
from within a reused component.10 On 
the other hand, entire software systems 
may crash because of a bug somewhere 

deep in the reuse chain.11 The major 
stakeholders in the Ethereum ecosys-
tem want it to be resistant to attackers 
and robust with respect to bugs.12 Con-
sequently, understanding and hard-
ening its software supply chain has 
become of utmost importance.

In this article, we take a deep dive 
into the software supply chain of the 
two main Ethereum nodes written in 

Java, namely Besu and Teku. Our focus 
on Java is motivated by the strong 
presence of Java in banks and finan-
cial institutions, an essential target 
group of Ethereum, as well as by the 
availability of advanced tools for ana-
lyzing and hardening the supply chain 
in Java.11

We analyze the software supply 
chains of two Java Ethereum nodes, 
looking at their dependencies and 
their evolution over time. This pro-
vides the community with the first 
ever description of a mission-criti-
cal software supply chain for block-
chain. Next, we provide actionable 
results and show that we can harden 
a complex software supply chain with 
relevant tools. Our results reveal a 
number of key insights and techni-
cal challenges both for researchers in 
software supply chains as well as for 
developers and stakeholders of the 
Ethereum community.

THE SUPPLY CHAIN OF  
JAVA ETHEREUM NODES

Overview
Ethereum is a public distributed sys-
tem of nodes supporting a ledger. As 
a distributed system, Ethereum nodes 
agree on a consensus protocol to ver-
ify the validity of transactions. The 
protocol for Ethereum v1.0 (Eth1) is 

based on proof of work, and for Ethe-
reum v2.0 (Eth2), it is based on proof of 
stake. Ethereum nodes communicate 
peer-to-peer without a central organiz-
ing institution. They run smart con-
tracts and receive transactions from 
client applications. This is what is 
depicted in the outer parts of Figure 1.

The top part of Figure 1 illustrates 
the network of Ethereum nodes. The 
left part of the figure illustrates the 
three main categories of clients of the 
Ethereum blockchain: an individual 
user, a crypto exchange marketplace, 
and a bank. The individual user is, for 
example, an artist who relies on the 
blockchain to distribute her artwork.13 
The crypto exchange marketplace 
provides deposits and withdrawals of 
the Ether cryptocurrency. The bank 
uses Ethereum to accelerate payments 
across borders, opening up the pos-
sibility to help underbanked popu-
lations.14 The central part of Figure 1 

IN THIS ARTICLE, WE TAKE A DEEP DIVE 
INTO THE SOFTWARE SUPPLY CHAIN 

OF THE TWO MAIN ETHEREUM NODES 
WRITTEN IN JAVA, NAMELY BESU  

AND TEKU.
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focuses on one single Ethereum node 
and provides a deep dive into its soft-
ware supply chain.

From now on, we assume that this 
node runs the Java implementation of 
Ethereum called Besu. Figure 1 shows 
the graph of dependencies for the 
core module of Besu, which is only 
one of the 41 modules of Besu, focus-
ing on its direct dependencies. Such a 
large number of software dependen-
cies is a potential source of vulnera-
bilities and supply chain attacks.15 In 
the context of Ethereum, this means 
that the software dependencies of 
Besu represent a potential source of 
risk for the financial system and art 
market built on top of it. In the rest 
of this article, we study potential 
countermeasures.

Besu
Besu is the leading Java implementa-
tion for Ethereum Eth1. Besu is led by 
the Hyperledger Foundation, a non-
profit organization for open source 
enterprise blockchain tools, which 
started in December 2015 as a spin-off 
of the Linux Foundation. As of Janu-
ary 2022, there are at least 44 nodes of 
Besu running on the Ethereum Main-
net public network, according to Eth-
ernodes (https://w w w.ethernodes. 
org). The source code of Besu is avail-
able on GitHub (https://github.com/
hyperledger/besu). It is a reasonably 
sized and active project, containing 
a total of 268,356 lines of code writ-
ten in Java, contributed through 3,125 
commits. Besu is an active project; 
its code base is developed and main-
tained by a total of 115 contributors 
with a unique GitHub account (of 
which 29 are listed as official main-
tainers). The contributors reported 
and closed 916 issues and merged 
a total of 739 pull requests in 2021. 

More than half of the contributors 
work at Hyperledger, according to 
their GitHub profiles.

In Table 1, we capture some key 
statistics about the software sup-
ply chain of dependencies for Besu 
v21.10.6, released on 5 January 2022. 
The raw data and analysis scripts 
are available online (https://github.
com/chains-project/ethereum-ssc). We 
collected those dependencies using 
the Gradle dependencies’ resolution 
plugin. On the analyzed release, Besu 
is made of 41 Gradle modules. These 
modules are internal  dependencies 
since their development, mainte-
nance, and release lifecycles are under 
the direct control of the Besu develop-
ers. In addition to these 41 modules, 
Besu relies on 355 unique third-party 
dependencies provided by 165 dis-
tinct supplying organizations. This 
number represents the number of 
different third-party Java libraries in 

the dependency tree of Besu without 
considering the different versions of 
a dependency. The supplier organi-
zations are in charge of maintaining 
these artifacts and releasing new ver-
sions to external repositories, with no 
formal ties with Hyperledger and Besu 
for most of them.

In the central part of Figure 1, we 
zoom into the dependency tree of one of 
the 41 modules of Besu: besu-core. The 
compilation of this module depends on 
29 internal dependencies, shown on 
the far left of the figure, as well as on 51 
third-party dependencies that are also 
necessary for compilation. The third-
party dependencies are colored accord-
ing to the name of the supplier orga-
nization. For example, the third-party 
dependencies in dark yellow are han-
dled by the supplier “Netty.” Overall, 
the supply chain of besu-core is made 
of libraries maintained by 16 distinct 
suppliers. We note that: 

TABLE 1. Descriptive statistics of the software supply chain of 
the two major enterprise Java Ethereum nodes: Besu v20.10.4 

(commit ID 120d0d4) and Teku v21.1.0 (commit ID dcfb0eb).

Besu (Eth1) Teku (Eth2)

Lines of Java code 268,356 209,860 

Commits 3,125 3,142 

Contributors 115 65 

Unique internal dependencies 41 57

Unique third-party dependencies 355 293 

Unique suppliers 165 146 

Unique third-party dependencies introduced since January 2021 127 79 

Unique third-party suppliers introduced since January 2021 49 22 

Unique third-party dependency versions modified since  
January 2021

171 150 

https://www.ethernodes.org
https://www.ethernodes.org
https://github.com/hyperledger/besu
https://github.com/hyperledger/besu
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1. Many suppliers are large orga-
nizations with high code-qual-
ity standards (for example, 
Apache, Google, and JetBrains), 
which are trusted and relied on 
by many clients. 

2. There are partner suppliers, 
such as the quorum-mainnet 
-launcher library developed by 
ConsenSys. Although not being 
maintained by Hyperledger, 
the developers are close to the 
professional network of Besu 
developers. 

3. Some libraries in the supply 
chain of besu-core belong to 
personal GitHub accounts, such 
as picocli and snappy-java. They 
are maintained and released by 
a single developer and cannot 
arguably be trusted as much 
as dependencies from big 
tech organizations or partner 
suppliers.16

Teku
Teku is the leading Eth2 Java node 
built to meet enterprise requirements. 
For example, Teku provides enter-
prise features, such as monitoring 
with Prometheus, Representational 
State Transfer application program-
ming interfaces for managing Eth2 
node operations, and external key 

management to handle validator sign-
ing keys. Teku is an open source project 
under active development on GitHub 
(https://github.com/ConsenSys/teku).   
The first commit to the Teku code base 
was made on 9 September 2018. Since 
then, the project has seen a rapid de -
velopment pace, accounting for 3,142 
commits contributed by a total of 
65 developers.

Table 1 shows the descriptive sta-
tistics for the software supply chain of 
Teku v22.1.0, released on 3 January 2022. 
The project contains a total of 57 unique 

internal dependencies and relies on 293 
unique third-party dependencies. Like 
Besu, Teku ships a large body of code 
coming from third-party dependencies 
with each new release. As with Besu, 
they are provided by 146 distinct sup-
pliers with different code quality and 
security standards. For the Ethereum 
ecosystem, the security and reliability 
of Besu’s and Teku’s supply chains are 
equally important. One crashing bug 
or successful attack on either of them 
would potentially be devastating.

Supply chain evolution
In the bottom part of Table 1, we give 
novel insights about the evolution 
of the Java Ethereum software sup-
ply chains. We built the dependency 
t rees of bot h supply cha i ns f rom 

January 2021: Besu v20.10.4 (commit 
ID 120d0d4) and Teku v21.1.0 (com-
mit ID dcf b0eb). We compare these 
trees with the versions released one 
year later, in January 2022. We collect 
the number of dependencies intro-
duced and modified in the supply 
chain of Besu and Teku as well as the 
number of additional suppliers that 
have appeared along the evolution 
of these supply chains. We found 127 
unique dependencies in the depen-
dency tree of Besu and 79 dependen-
cies in the dependency tree of Teku 
that are present in 2022 and that were 
not in the tree of 2021. This represents 
a significant growth of both supply 
chains, indicating the need for regu-
lar monitoring and assessment of the 
projects’ dependencies.

The growth also holds for the num-
ber of suppliers of dependencies. In 
one year, there have been 49 and 22 
new suppliers in the supply chains of 
Besu and Teku, respectively. This is 
clear evidence that a complex supply 
chain evolves fast. Consequently, an 
approach based on “allow” and “deny” 
lists of suppliers is not viable as it 
would necessitate frequent updates of 
these lists and potential delays in their 
assessments. The management of the 
software supplier risks must be sup-
ported by tools that regularly monitor, 
analyze, and assess the supply chain to 
cope with this evolution.

Supply chain diversity
The Ethereum community values and 
explicitly promotes the development 
and the maintenance of a diversity of 
node implementations.8 Ethereum 
experts consider that node diver-
sity is essential for the network to be 
healthy and secure. Besu and Teku are 
two different node implementations, 
built by different development teams, 

WE BELIEVE THAT THE SYSTEMATIC 
ASSESSMENT AND ENFORCEMENT OF 

DIVERSITY IN SOFTWARE SUPPLY CHAINS 
ARE IMPORTANT AND PROMISING 

RESEARCH AVENUES.

https://github.com/ConsenSys/teku
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following different development road 
maps. Meanwhile, their software de -
pendencies represent a large body of 
their code bases. We assess the diver-
sity among these implementations 
by looking into the diversity among 
their dependencies and suppliers. To 
do so, we extract the intersection of 
the dependencies of Besu and Teku. 
The supply chains of both nodes share 
a total of 190 third-party dependen-
cies, representing the 53.5 and 64.8% 
of the dependencies of Besu and Teku, 
respectively. This is illustrated in 
Figure 2. Furthermore, we observe 
that 92 suppliers are common to both 
node implementations. Even though 
Besu and Teku may look like entirely 
different node implementations, our 
results indicate that they actually 
carry out a large body of common code, 
a potential common failure point. This 
suggests that the Ethereum commu-
nity may work on supply chain diver-
sity in addition to node diversity for 
further increasing resilience.

Let us discuss the case of a depen-
dency that is shared by both Besu and 
Teku: the Apache logging library log4j. 
In December 2021, a new Common 
Vulnerabilities and Exposures (CVE) 
was published, documenting an exploit 
affecting all versions of log4j from ver-
sion 2.0 to 2.14.1 (CVE-2021-44228).17 
This caused a major disruption on the 
web as log4j is a third-party depen-
dency in thousands of software sup-
ply chains, including the ones of very 
critical services, such as Amazon and 
Microsoft Azure. This vulnerability 
allows an attacker to perform arbitrary 
remote code execution on the running 
application, exploiting the vulnera-
ble version of the log4j library. Now, 
assume that an attacker had had the 
time to exploit this vulnerability in 
Ethereum Java nodes. 

Since both nodes share the same 
dependency, it means that the scale 
of the repercussions would have 
been a mpl i f ied. T he whole Et he-
reum ecosystem (both Eth1 and Eth2) 
would have suffered from potential 
chain splits, violations of the consen-
sus protocol, and in the worst case, 
loss of funds and Bored Apes. If the 
two implementations had relied on 
diverse suppliers of logging facilities, 
the common failure risk would have 
been reduced. For example, Logback 
or Tinylog are trustworthy alterna-
tives to log4j. Migrating from log4j 
to Logback in Besu requires minimal 
engineering effort: fewer than 10 files 
need to be modified, thanks to mod-
ern Java logging architectures. This 
diversification would benefit Besu 
nodes by providing different logging 
implementations from different sup-
pliers, decreasing the chances of vul-
nerabilities with a blast effect. We 

believe that the systematic assessment 
and enforcement of diversity in soft-
ware supply chains are important and 
promising research avenues.

SUPPLY CHAIN 
REMEDIATIONS
The two enterprise Java Ethereum 
nodes, Besu and Teku, depend on 
hundreds of third-party dependen-
cies. Today, there exist tools that can 
automatically enforce dependency 
management policies. Those policies 
include license checking, supplier 
approval, update frequency, and secu-
rity. In this article, we focus on the 
solutions for the latter two: identify 
outdated dependencies and replace 
vulnerable dependencies.

The remediation of 
outdated dependencies
Third-party libraries constantly evolve 
to fix defects, patch vulnerabilities, 

FIGURE 2. The limited diversity among the software supply chains of Besu and Teku. 
The former includes 355 unique third-party dependencies, and the latter is made of 
293 dependencies, but 190 dependencies are shared by both supply chains. The shared 
dependencies represent 53.5 and 64.8% of the Besu and Teku supply chains. 

Blackhat
Exploiting log4j

Teku
(293 Dependencies)

Overlap
(190 Dependencies)

Besu
(355 Dependencies)
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and add features. To take full advan-
tage of third-party code, it is consid-
ered best practice to keep the depen-
dencies up to date. However, it is 
hard to stay up to date when the sup-
ply chain of a project includes a large 
number of dependencies, each of them 
having different lifecycles and release 
schedules. In a large dependency tree, 
it is not uncommon that there is one 
new version of some dependency in 
the tree released per day.

Keeping dependency up to date 
first means being aware of new ver-
sions (for example, due to a new release 
announcement or a security advisory). 
Once outdated dependencies are iden-
tified, the developers ensure that the 
update does not introduce breaking 
changes. Finally, they commit a change 
to bump the dependency version. To 
our knowledge, the developers of Besu 
and Teku currently perform this moni-
toring and update procedure manually. 

For instance, Listing 1 shows an exam-
ple of a manual dependency update 
where a Besu developer updated the 
dependency commons-codec from 
version 1.13 to 1.15. 

However, there exist software bots 
that automatically scan dependency 
trees and perform library updates, 
for example, Dependabot, Renovate, 
and Jared. To our knowledge, none of 
them are enabled in Besu and Teku. To 
assess their relevance in the context 
of these nodes, we performed a pilot 
experiment as follows. We forked their 
GitHub repositories and configured 
Dependabot and Renovate to identify 
and remediate outdated dependencies.

Table 2 shows the number of out-
dated third-party dependencies detected 
and reported by both dependency bots 
on 15 January 2022. Dependabot reports 
three and one outdated dependencies 
in Besu and Teku, respectively, whereas 
Renovate reports 49 and 19 outdated 
dependencies. Renovate identifies many 
more updates because 1) it supports var-
ious package managers and 2) it sug-
gests updating infrastructure depen-
dencies (in addition to application 
dependencies). Overall, both bots reveal 
several outdated dependencies that 
need to be acted upon. This confirms 
that using these state-of-the-art supply 
chain tools would allow Besu and Teku 
developers to be more up to date and 
more diligent in handling their depen-
dencies. From an economic perspective, 
it would avoid the engineering burden 
of manually checking new releases of 
their dependencies.

The remediation of 
vulnerable dependencies
Blackhat actors perform supply chain 
attacks.15 They purposefully compro-
mise one dependency to achieve mali-
cious goals, such as theft or denial of 

LISTING 1. An example of a commit diff from a manual pull request (PR #3235; see 
https://github.com/hyperledger/besu/pull/3235) made by a developer to update the 
dependency commons-codec in Besu.

@@ −−49,7 +49,7 @@ dependencyManagement {

−− dependency ‘commons−−codec:commons−−codec:1.13’

+ dependency ‘commons−−codec:commons−−codec:1.15’

TABLE 2. An overview of risk metrics in the software supply chain 
of Besu v20.10.4 (commit ID 120d0d4) and Teku v21.1.0 (commit 

ID dcfb0eb). The data were obtained in 15 January 2022.

Besu (Eth1) Teku (Eth2)

Outdated third-party dependency versions (Dependabot) 3 1 

Outdated third-party dependency versions (Renovate) 49 19 

Vulnerable third-party dependency versions (OWASP) 11 2 

Vulnerable third-party dependency versions (WhiteSource) 15 17 

LISTING 2. Commit diff (commit ID a52f376) showing a critical security update of the 
dependency log4j made to prevent a potential remote code exploit in Teku.

@@ −−96,7 +96,7 @@ dependencyManagement {

−− dependencySet(group: ‘org.apache.logging.log4j’, version:

     ’2.13.3’) {

+ dependencySet(group: ‘org.apache.logging.log4j’, version:

 ’2.15.0’) {

entry ‘log4j−−api’

entry ‘log4j−−core’

entry ‘log4j−−slf4j−−impl’
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service. To put it simply, vulnerable 
dependencies may cause a range of 
problems for Ethereum nodes related 
to their confidentiality, integrity, or 
availability. Indeed, in December 2021, 
the Teku development team urgently 
mobilized their engineers after an 
important vulnerability disclosure: 
that of log4j17 already mentioned ear-
lier. Listing 2 shows the commit made 
to fix this critical vulnerability. To 
our knowledge, no successful attacks 
have been performed on Besu or Teku 
thanks to this timely commit.

As with outdated dependencies, 
technology exists to remediate vul-
nerable dependencies swiftly, such as 
Open Web Application Security Project 
(OWASP) Dependency Checker, Snyk,   
or WhiteSource. The identification 
of vulnerable dependencies in a soft-
ware supply chain relies on scanning 
curated vulnerability databases, such 
as the National Vulnerability Data-
base, and mapping vulnerability iden-
tifiers to versions in package reposito-
ries. To our knowledge, the Teku team 
runs, as a crontab job, a vulnerability 
identification tool called Trivly but 
without automated remediation.

We searched for vulnerable depen-
dencies in Besu and Teku with two 
state-of-the-art tools, considered as 
among the best tools in this domain: 
the OWASP Dependency Checker 
and WhiteSource. Table 2 shows the 
results of the analysis, performed on 
15 January 2022. OWASP detects 11 and 
2 vulnerable dependencies in Besu and 
Teku, respectively, whereas White-
Source detects 15 and 17 vulnerable 
dependencies. These results show that 
each tool focuses on different aspects; 
thus, there is currently no silver bullet 
to identify dependency vulnerabili-
ties. Interestingly, OWASP and White-
Source both report the dependency 

netty-transport as affected by several 
vulnerabilities, which can be consid-
ered as a severe issue. Also, we note 
that some vulnerable dependencies 
exist in both Besu and Teku, which is 
further evidence of the need for supply 
chain diversity discussed previously.

Neither Besu nor Teku uses the 
OWA SP Dependenc y Checker or 
WhiteSource on a regular basis yet. 
Indeed, in January 2022, an active de -
veloper of Besu opened a pull request 
to add the OWASP dependency checker 
in the build pipeline of the project [see 
PR #3288 (https://github.com/hyper-
ledger/besu/pull/3288), not merged 
at the time of writing]. Installing the 
OWASP Dependency Checker in the 
continuous integration pipeline of 
Besu would allow analyzing its depen-
dency tree every time the node is built. 
This way, developers are notified 
early in the case of potential security 
issues related to third-party depen-
dencies. At the moment of writing 

this article, such an initiative has not 
been taken for Teku. We believe that 
both Besu and Teku will eventually 
embed vulnerable dependency check-
ing in their pipeline; this is inevitable 
for any major software project with a 
high stake.

In this article, we took a deep dive 
into the software supply chains of 
Besu and Teku. These two open source 

projects are the major enterprise Java 
Ethereum nodes, which are in charge 
of financial and artistic transactions 
worth billions of dollars. Our analy-
sis reveals that both Ethereum node 
implementations are large software 
projects that depend on hundreds of 
libraries provided by a variety of sup-
plier organizations.

Our work contributes to the state 
of the art of software supply chains, 
with unique insights about the com-
plex networks of dependencies. We 
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outlined the important growth of the 
software supply chains as well as the 
increase of the number of suppliers on 
which Besu and Teku rely. We showed 
where the state of the art lies with 
respect to remediation tools for hard-
ening the software supply chain.

While the Ethereum community 
stresses the importance of maintain-
ing and incentivizing a diversity of 
node implementations, we have shown 
that the supply chains of Besu and Teku 
share a majority of their third-party 
dependencies. This is a serious limita-
tion for the software diversity in the 
Ethereum ecosystem. Also, we have 
shown that dependency management 
for Besu and Teku can be improved with 
automated remediation. The signifi-
cance of our findings suggests that a 
similar analysis would be worthwhile 
for other Ethereum node implemen-
tations, such as Geth written in Go. 
Finally, we sincerely believe that our 
insights on the engineering of software 
supply chains hold for any blockchain 
that matters. 
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Abstract—Modern software systems rely on a multitude of third-party dependencies. This large-scale code reuse reduces development
costs and time, and it poses new challenges with respect to maintenance and security. Techniques such as tree shaking or shading can
remove dependencies that are completely unused by a project, which partly address these challenges. Yet, the remaining dependencies
are likely to be used only partially, leaving room for further reduction of third-party code. In this paper, we propose a novel technique to
specialize dependencies of Java projects, based on their actual usage. For each dependency, we systematically identify the subset of its
functionalities that is necessary to build the project, and remove the rest. Each specialized dependency is repackaged. Then, we
generate specialized dependency trees where the original dependencies are replaced by the specialized versions and we rebuild the
project. We implement our technique in a tool called DEPTRIM, which we evaluate with 30 notable open-source Java projects. DEPTRIM

specializes a total of 343 (86.6%) dependencies across these projects, and successfully rebuilds each project with a specialized
dependency tree. Moreover, through this specialization, DEPTRIM removes a total of 60,962 (47.0%) classes from the dependencies,
reducing the ratio of dependency classes to project classes from 8.7× in the original projects to 4.4× after specialization. These
results indicate the relevance of dependency specialization to significantly reduce the share of third-party code in Java projects.

Index Terms—Software specialization, software debloating, maven, software supply chain, software ecosystem

✦

1 INTRODUCTION

SOFTWARE projects are developed by assembling new fea-
tures and components provided by reusable third-party

libraries. Software reuse at large is a known best practice in
software engineering [1]. Its adoption has rocketed in the last
decade, thanks to the rapid growth of repositories of reusable
packages, along with the development of mature package
managers [2]. These package managers let developers declare
a list of third-party libraries that they want to reuse in their
projects. The libraries declared by developers form the set of
direct dependencies of the project. Then, at build time, the
package manager fetches the code of these libraries, as well
as the code of transitive dependencies, declared by the direct
dependencies. This forms a dependency tree that the build
system bundles with the project code into a package that can
be released and deployed.

The large-scale adoption of software reuse [3] is beneficial
for software companies as it reduces their delivery times and
costs [4]. Meanwhile, reuse today has reached a point where
most of the code in a released application actually originates
from third-party dependencies [5]. This massive presence of
third-party code in application binaries has turned software
reuse into a double-edged sword [6]. Recent studies have
highlighted the new challenges that third-party dependencies
pose for maintenance [7], [8], performance [9], code quality
[10], and security [11], [12].

Several techniques have emerged to address the chal-
lenges of dependency management. The first type of ap-
proach consists of supporting developers in maintaining a
correct and secure dependency tree. Software composition
analysis [13] and software bots [14] suggest dependency

updates and warn about potential vulnerabilities among
dependencies. Integrity-checking tools aim at preventing
packaging a dependency with code that may have been
tempered with. For example, the Go community maintains
a global database for authenticating module content [15]
and sigstore facilitates the procedure of signing third-party
libraries [16]. A second type of approach to maintain healthy
dependency trees consists in reducing it, removing the
dependencies that are completely unused. Examples of such
techniques include package debloating for Linux applications
[17] depedency debloating or shading for Java applications
[18], or tree shaking for JavaScript applications [19].

In this paper, we aim at advancing the state of the art
of dependency tree reduction with a novel technique that
specializes dependencies to the needs of an application.
While good tools exist to remove dependencies that are
completely bloated, i.e., none of their APIs is used by the
application, there is little support to remove unused code
from dependencies that are partially used. Yet, previous work
has shown that applications only reuse a small fraction of
the APIs within third-party libraries [20]. Early work on in-
depth analysis of the dependency tree [21] has also shown
evidence of the potentially large reduction of third-party
code [22]. Motivated by these previous results, we introduce
DEPTRIM, the first tool that specializes third-party libraries
in the dependency tree of Java applications.

DEPTRIM analyses the bytecode of a Java project, as well
as all its direct and transitive third-party dependencies. First,
it removes the dependencies that are completely bloated, and
identifies the non-bloated ones. Next, for each non-bloated
dependency, DEPTRIM identifies the classes for which at
least one member is reachable from the project. DEPTRIM

1

https://orcid.org/0000-0002-1996-6134
https://orcid.org/0000-0003-0293-2592
https://orcid.org/0000-0002-0209-2805
https://orcid.org/0000-0002-4015-4640


then removes the unused classes and repackages the rest into
a specialized version of the dependency. Finally, DEPTRIM
modifies the dependency tree of the project by replacing
the original dependencies with the specialized versions.
The output of DEPTRIM is a specialized dependency tree
of the project, with the maximum number of specialized
dependencies such that the project still builds correctly
(i.e., the project correctly compiles, and all its tests pass,
guaranteeing that the expected behavior of the project is
unchanged). DEPTRIM simplifies the reuse of specialized
dependencies by generating reusable JAR files, which can be
readily deployed to external repositories.

We demonstrate the capabilities of DEPTRIM by perform-
ing a study with 30 mature open-source Java projects that
are configured to build with MAVEN. DEPTRIM successfully
analyzes 135,343 classes across the 467 dependencies of the
projects. For 14 projects, it generates a dependency tree in
which all compile-scope dependencies are specialized. For
the 16 other projects, DEPTRIM produces a dependency tree
that includes all dependencies that can be specialized without
breaking the build, while keeping the others intact. In total,
DEPTRIM removes 60,962 (47.0%) unused classes from 343
third-party dependencies. The specialized dependencies are
deployed locally, as reusable JAR files. For each project,
DEPTRIM produces a specialized version of the pom.xml
file that replaces original dependencies with specialized ones,
such that the project still correctly builds.

In summary, our contributions are as follows:
• A novel assessment of the ratio of dependency classes

compared to project classes, based on actual class usages,
performed on 30 mature open-source projects at three
stages of the dependency tree: original, debloated, and
specialized.

• A fully automated technique to specialize the depen-
dency tree of Java projects at build time.

• The implementation of this technique in a tool called
DEPTRIM, which automatically builds MAVEN projects
with the largest subset of specialized dependencies.

• Empirical evidence that DEPTRIM successfully special-
izes the dependency tree of 14 projects in its entirety, and
16 partially, reducing the number of third-party classes
by 47.0%. The project classes to dependency classes
ratio is divided by two, from 8.7 × to 4.4 ×.

2 BACKGROUND

In this section, we introduce the essential terminology of
our work. Then, we illustrate the existing techniques to
reduce the amount of dependency code. This is followed
by a discussion about the opportunities for dependency
specialization, in the context of a real-world Java project.

2.1 Terminology

In this work, we consider a software project as a collection of
Java source code files and configuration files organized to be
built with MAVEN [23]. MAVEN is a build automation tool
for Java-based projects. It is primarily used for managing
the dependencies of a project, testing it, and packaging it,
as specified in the Project Object Model (POM) expressed
in a file called pom.xml. This file, located at the root of the

(a) MAVEN dependency resolution (default)

(b) DEPCLEAN dependency debloating (state-of-the-art)

(c) Classes actually used in the dependencies (determined
by static analysis)

Figure 1: Example of transformations in the dependency
tree of the project jacop v4.10.0, and the impact of such
transformations on the dependency classes to project classes
ratio. Dependencies have compile-scope by default if not
specified. Note that jacop reuses only a portion of its third-
party dependencies.

project, includes additional information such as the project
name and version. We now define the key concepts about
dependencies in the MAVEN ecosystem.

Definition 1. Maven dependency: A MAVEN dependency
defines a relationship between a project and another com-
piled project. Dependencies are compiled JAR files, uniquely
identified with a triplet (G:A:V) where G is the groupId, A
is the artifactId, and V is the version. Dependencies are
defined in the pom.xml within a scope, which determines the
phase of the MAVEN build cycle at which the dependency
is required. MAVEN distinguishes 6 dependency scopes:
compile, runtime, test, provided, system, and import.

For example, the constraint programming solver jacop
(6ed0cd0) is a MAVEN project. As illustrated in Figure 1a,
scala-library is one of its 11 dependencies. This is a
compile-scope dependency, which means that jacop can
use some functionalities of scala-library at compile time,
and will include all the code of scala-library within the
packaged binary of jacop. The testing framework junit is
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also declared as a dependency of jacop within the test
scope, indicating that this dependency is required only for
executing unit tests.

Definition 2. Dependency tree: The dependency tree of a
MAVEN project is a directed acyclic graph that includes
all the direct dependencies declared by developers in the
project pom.xml, as well as all the transitive dependencies, i.e.
dependencies in the transitive closure of direct dependencies.
For a MAVEN project, there exists a dependency resolution
mechanism that fetches both direct and transitive depen-
dency JAR files not present locally from external repositories
such as Maven Central [24]. The project becomes the root
node of the tree, while the edges represent dependency
relationships between its direct and transitive dependencies.

For example, in Figure 1a, scala-compiler is a direct
dependency of jacop because it is declared by developers in
the pom.xml. It depends on scala-reflect, which makes
scala-reflect a transitive dependency of jacop. The 6
direct and 5 transitive dependencies of jacop constitute its
dependency tree.

Definition 3. Bloated dependency: A dependency is said to
be bloated if none of the elements in its API are used, directly
or indirectly, by the project [25]. This means that, although
they are present in the dependency tree of software projects,
bloated dependencies are entirely unused. Developers are
therefore encouraged to remove them [26].

For example, Figure 1b presents the compile-scope
dependencies of jacop after the removal of its bloated
dependencies. The dependencies jline, jansi, sl4j-api,
sl4j-log4j12, and log4j are bloated and have been safely
removed, as no member of their APIs is exercised by jacop.

2.2 Example
We now illustrate the MAVEN dependency resolution mech-
anism and the concept of bloated dependencies. Figure 1
shows the example of the transformations of the dependency
tree of the project jacop. In Figure 1a, we see the dependency
tree of jacop as generated by the MAVEN dependency
resolution mechanism: it fetches JAR files from external repos-
itories while omitting duplication, avoiding conflicts, and
constructing a tree representation of the dependencies [27].
jacop has a total of 11 third-party dependencies: 6 are
direct and 5 are transitive. Direct dependencies are explicitly
declared by the developers in the pom.xml file of jacop, while
transitive dependencies are resolved automatically via the
MAVEN dependency resolution mechanism. MAVEN uses
the concept of scope to determine the visibility and lifecycle
of a dependency, i.e., whether it should be included in the
classpath of a certain build phase, as well as what the class-
path of an artifact should be during the execution of a build
phase. For example, jacop has 9 compile-scope dependencies
(the default) and 2 test scope dependencies. When jacop is
packaged for deployment as a jar-with-dependencies, its
JAR file will include the bytecode of all its 9 compile-scope
dependencies. These compile-scope dependencies include
8,487 class files, while the number of classes within jacop,
written and tested by its developers, is 833. As observed, the
number of classes contributed by third-party dependencies
is one order of magnitude (i.e., 10 ×) more than the number
of classes written by the jacop developers.

When we run DEPCLEAN, a state-of-the-art MAVEN
plugin that identifies and removes bloated dependencies [25],
[18], we find that 5 dependencies of jacop are never used,
and are therefore marked as bloated. Figure 1b shows the
dependency tree of jacop after test-scope dependencies
and bloated dependencies are removed. In this case, the
number of nodes in the tree is reduced from 11 to 4. The
reduction in the number of compile-scope dependencies
represents a removal of 504 (5.9%) third-party classes (e.g.,
removing sl4j-api leads to the removal of 34 classes). For
jacop, the removal of bloated dependencies has a minimal
impact on the reduction of third-party classes. Consequently,
while complete dependency debloating drastically reduces
the number of dependencies in the jar-with-dependencies
of jacop, it only leads to a modest reduction in the ratio of
dependency classes to project classes, from the original 10.2
× in Figure 1a to 9.6 ×.

To assess the opportunities of further reducing the
number of dependency classes, we analyze the JAR of each
non-debloated dependency of jacop. We compute the static
call graph of method calls between the classes in the JAR files.
Based on this graph, we get the list of dependency classes
that are reachable from the project at build time. Figure 1c
shows the number of reachable classes for each dependency
of jacop. Consider the direct dependency scala-compiler.
Of its 2,984 classes, only two are reachable from jacop. This
confirms that scala-compiler is not a bloated dependency
for jacop, and that it includes way more features than what
jacop actually needs. This is evidence of the opportunity to
specialize this dependency in the context of jacop. Similar
opportunities exist for 2 other non-bloated dependencies.
In fact, we find that 6,453/7,983 (80.8%) of the third-party
classes in these dependencies can be removed, and jacop can
still build successfully. After dependency specialization, the
ratio of the number of dependency classes to jacop’s classes
is 1.8 ×. This is a drastic reduction from 9.6 × which was the
ratio after debloating (Figure 1b), and even more significant
if we consider the original ratio of 10.2 × (Figure 1a).

The number of classes actually used in the dependencies
is significantly lower than the original number of classes
provided. This observation motivates us to extend the state-
of-the-art of Java dependency management with a novel tech-
nique to specialize non-bloated dependencies, by identifying
and removing unnecessary classes through bytecode removal.
In the next section, we present our approach and provide
details on DEPTRIM, a tool that automatically specializes the
dependencies of MAVEN projects.

3 DEPENDENCY SPECIALIZATION WITH DEPTRIM

This section presents DEPTRIM, an end-to-end tool for the
automated specialization of third-party Java dependencies.
We define the concept of dependency specialization, followed
by an explanation of the key phases of DEPTRIM.

3.1 Dependency Specialization
This work introduces the concept of specialized dependencies
and specialized dependency trees. We define them below.

Definition 4. Specialized dependency: A dependency is
said to be specialized with respect to a project if all the
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Figure 2: Overview of the dependency specialization approach implemented in DEPTRIM. Blue boxes are software artifacts,
pink rounded boxes are actions performed by the build engine, and each of the three main phases of DEPTRIM are indicated
within the green rounded box.

classes within the dependency are used by the project,
and all unused classes have been identified and removed.
Consequently, there is no class in the API of a specialized
dependency that is unused, directly or indirectly, by the
project or any other dependency in its dependency tree.

Recalling the example in Figure 1b and Figure 1c, jacop
uses 2 of the 2,984 classes in scala-compiler. Therefore,
scala-compiler could be specialized with respect to jacop,
by removing the 2,982 unused classes.

Definition 5. Specialized dependency tree: A specialized
dependency tree is a dependency tree where at least one
dependency is specialized and the project still correctly
builds with that dependency tree. This means that in at
least one of the used dependencies, unused classes have
been identified and removed. A specialized dependency tree
may be one of the following two types:

• Totally Specialized Tree (TST): A dependency tree where
all used dependencies are specialized and the project
build is successful.

• Partially Specialized Tree (PST): A dependency tree with
the largest possible number of specialized dependencies,
such that the project build is successful.

We discuss our approach for building a project with a TST
or PST with DEPTRIM in the following subsections. DEPTRIM
identifies unused classes within the non-bloated compile-
scope dependencies of MAVEN projects, and removes them
in order to produce specialized dependencies. Using these,
DEPTRIM prepares a specialized dependency tree for the
project such that the project still correctly builds. The
following subsections explain this technique in detail.

3.2 DEPTRIM

Figure 2 illustrates the complete pipeline of the dependency
specialization approach implemented in DEPTRIM. DEPTRIM
receives as inputs the source code and the pom.xml file of
a Java MAVEN project. The project must successfully build.
DEPTRIM outputs three elements: (i) a specialized version of
the pom.xml file, which removes the bloated dependencies
and includes the largest possible number of specialized
dependencies that keep the build passing; (ii) the set of
specialized dependencies as reduced JAR files; (iii) the project
JAR compiled from its source, which can be packaged with
the specialized dependencies in order to have a smaller
jar-with-dependencies for release and deployment.

DEPTRIM validates that the project still builds correctly
with the specialized dependency tree. Note that DEPTRIM
only transforms the bytecode of the third-party dependencies,
while the original project source and its compiled bytecode
remain intact.

As illustrated in Figure 2, the specialization procedure of
DEPTRIM consists of three main phases. First ➊, DEPTRIM
leverages state-of-the-art Java static bytecode analysis to
construct a static call graph of the class members in the
third-party dependencies that are reachable from the project
binaries. The completeness of this reachability analysis is
critical for the identification of unused third-party classes.
Second ➋, DEPTRIM transforms the bytecode in the de-
pendencies to remove unused classes. This task requires
integration with the MAVEN build engine to resolve and
deploy the modified dependencies to the local repository.
Finally ➌, DEPTRIM specializes the dependency tree of the
project by modifying its original pom.xml file. The modified
pom.xml should preserve the original configurations, except
the dependency declarations, which point to the special-
ized dependencies instead of the original ones. Moreover,
DEPTRIM must validate that dependency specialization does
not break project build. We provide more details of these
three phases in the following subsections.

3.2.1 ➊ Call Graph Construction
Before it can specialize dependencies, DEPTRIM determines
their API usage, based on static analysis of the project binary.
To do so, DEPTRIM constructs a call graph using two inputs:
the compiled dependencies as resolved by MAVEN (Line
1 of Algorithm 1), and the compiled project sources (Line
2). Then, using the bytecode class members of the project
as entry points to this graph (Line 3), DEPTRIM infers and
reports class usage information from the bytecode directly,
without loading or initializing classes. The report captures the
set of dependencies, classes, and methods that are actually
used by the project, i.e., that are reachable via static analysis.
The output of this phase is a data structure that identifies the
minimal set of classes in each of the dependencies that are
required to build the project.

The collection of accurate and complete call graphs is
essential for specialization. If a necessary class member is not
reachable statically, then DEPTRIM will consider it as unused
and proceed to remove it in a subsequent phase. To mitigate
this limitation, DEPTRIM relies on state-of-the-art static
analysis of Java bytecode to capture invocations between
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classes, methods, fields, and annotations from the project
and its direct and transitive dependencies. Furthermore, it
parses the constant pool of class files in order to capture
dynamic invocations from string literals (e.g., when loading
a class using its fully qualified name via reflection).

3.2.2 ➋ Individual Dependency Specialization
The dependency specialization phase receives the call graph
as input to specialize individual dependencies. During this
phase, DEPTRIM determines which dependencies are bloated
(i.e., there is no path from the project bytecode toward any of
the class members in the unused dependencies), and removes
them from the original pom.xml (Line 4 of Algorithm 1). Next,
DEPTRIM proceeds to remove the unused classes within
non-bloated dependencies (Lines 5 to 10). Any dependency
class file that is not present in the call graph is deemed
unreachable and removed. Note that a Java source file can
contain multiple classes, thus resulting in multiple class
files after compilation. DEPTRIM considers this case as well
by design, as it downloads, unzips, and removes the unused
compiled classes directly from the project dependencies at
build time (i.e., during the MAVEN package phase). Once
all the unused class files in a dependency are removed,
DEPTRIM qualifies the dependency as specialized. Moreover,
to facilitate reuse, DEPTRIM deploys each specialized depen-
dency in the local MAVEN repository along with its pom.xml
file and corresponding MANIFEST.MF metadata (Line 11).

The output of the second phase is a set of specialized JAR
files for the dependencies of the project. These files include
all the bytecode and resources that are necessary to be shared
and reused by the other packages within the dependency
tree. In particular, DEPTRIM takes care of keeping the classes
in dependencies that may not be directly instantiated by
the project, but are accessible from the used classes in the
dependencies, with regard to the project.

3.2.3 ➌ Dependency Tree Specialization
After specializing each non-bloated dependency, DEPTRIM
produces a specialized version of the project pom.xml file
that removes the bloated dependencies and points to the
specialized dependencies instead of their original versions.
This results in a TST or a PST for the project, as described in
Definition 5.

First, DEPTRIM builds the totally specialized dependency
tree (TST) of the project (Lines 12 to 15 of Algorithm 1).
All specialized dependencies replace their original version
in the project pom.xml. Then, in order to validate that the
specialization did not remove necessary bytecode, DEPTRIM
builds the project, i.e. its sources are compiled and its tests
are run. If the build is a SUCCESS, DEPTRIM returns this TST.

In cases where the build with the TST fails, DEPTRIM
proceeds to build the project with one specialized depen-
dency at a time (Lines 17 to 24). Thus, rather than attempting
to improve the soundness of the static call graph, which is
proven to be challenging in Java [28], DEPTRIM performs
an exhaustive search of the dependencies that are unsafe to
specialize. At this step, DEPTRIM builds as many versions
of the dependency tree as there are specialized depen-
dencies, each containing a single specialized dependency.
DEPTRIM attempts to build the project with each of these
single specialized dependency trees. If the project build is

Algorithm 1 Third-party dependency specialization

Input: Psrc: Project source code
Input: Pobf : Project original build file (pom.xml)
Output: PTST ∨ PPST

/** Call graph construction **/
1: Pdeps ← resolve_dependencies(Pobf )
2: Pbin ← compile(Psrc)
3: CG ← analyze(Pdeps,Pbin)
4: Pdbf ← debloat(Pobf , CG)

/** Individual dependency specialization **/
5: Pdeps_specialized ← ∅
6: for each dep ∈ Pdbf do
7: reachable_classes← analyze(dep, CG)
8: dep_specialized ← specialize(dep, reachable_classes)
9: Pdeps_specialized ← Pdeps_specialized ∪ dep_specialized

10: end for
11: deploy_locally(Pdeps_specialized)

/** Dependency tree specialization **/
12: PTST ← ∅
13: PTST ← create_config_file(Pdeps_specialized)
14: if build(PTST,Pbin) == SUCCESS then
15: return PTST

16: else
17: PPST ← ∅
18: for each dep ∈ Pdeps_specialized do
19: Pdep ← create_config_file(dep)
20: if build(Pdep,Pbin) == SUCCESS then
21: PPST ← PPST ∪ dep
22: end if
23: end for
24: return PPST

25: end if

successful, DEPTRIM marks the dependency as safe to be
specialized. In case the dependency is not safe to specialize,
DEPTRIM keeps the original dependency entry intact in
the specialized pom.xml file. Finally, DEPTRIM constructs
a partially specialized dependency tree (PST) with the union
of all the dependencies that are safe to be specialized. Then,
the project is built with this PST to verify that the build is
successful. If all build steps pass, DEPTRIM returns this PST.

3.3 Implementation Details

DEPTRIM is implemented in Java as a MAVEN plugin that
can be integrated into a project as part of the build pipeline,
or be executed directly from the command line. This design
facilitates its integration as part of the projects’ CI/CD
pipeline, leading to specialized binaries for deployment. At
its core, DEPTRIM reuses the state-of-the-art static analysis of
DEPCLEAN [18], located in the depclean-core module [29].
DEPTRIM adds unique features to this core static Java
analyzer by modifying the bytecode within dependencies
based on usage information gathered at compilation time,
which is different from the complete removal of unused
dependencies performed by DEPCLEAN. It uses the ASM
Java bytecode analysis library to build a static call graph of
class files of the compiled projects and their dependencies.
The call graph registers usage towards classes, methods,
fields, and annotations. For the deployment of the specialized
dependencies, DEPTRIM relies on the deploy-file goal of
the official maven-deploy-plugin from the Apache Software
Foundation. For dependency analysis and manipulation,
DEPTRIM relies on the maven-dependency-plugin. DEPTRIM
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provides dedicated parameters to target or exclude specific
dependencies for specialization, using their identifier and
scope. DEPTRIM is open-source and reusable from the Maven
Central repository. Its source code is publicly available at
https://github.com/castor-software/deptrim.

4 EVALUATION

DEPTRIM is designed for use by developers in deployment
environments. It can be run when the developer is ready
to create a distribution version of their compiled project for
production. Depending on the outcome of specialization,
DEPTRIM potentially removes large portions of the compile-
scope dependencies of the project. The output is a specialized
distribution that developers should be ready to distribute to
users. The evaluation described in this section is intended to
assess that experience: we run DEPTRIM on a project, build
the project with specialized dependencies to confirm that its
behavior is not negatively impacted, and evaluate the extent
to which our technique is effective. Our evaluation is guided
by the following research questions:
RQ1. What are the opportunities for dependency specializa-

tion in real-world projects?
RQ2. To what extent can all the used dependencies be

specialized and the project built correctly?
RQ3. What is the reduction in the number of classes in the

dependency tree of the project after specialization?
RQ4. In what contexts is static dependency specialization

not applicable?

4.1 Study Subjects

We evaluate DEPTRIM with 30 open-source projects collected
from two data sources. The first source is the dataset of
single-module Java projects made available by Durieux et
al. [30]. This dataset contains 395 popular projects that build
successfully with MAVEN, i.e. all their tests pass, and a com-
piled artifact is produced as a result of the build. We analyze
the dependency tree of the projects in this dataset and select
those that have at least one compile-scope dependency. This
results in 13 projects. Additionally, we derive a second set of
projects through the advanced search feature of GitHub. We
filter repositories with a pom.xml file and rank the resulting
Java MAVEN projects in descending order according to the
number of stars. We rely on the number of stars as a proxy
for popularity [31]. We systematically build the projects that
contain at least one compile-scope dependency, and at least
one test executed by the maven-surefire-plugin until we
obtain 17 projects that build successfully with MAVEN. At
the end of this curation process, we have a set of 30 study
subjects with at least one compile-scope dependency, and an
executable test suite with tests that pass.

Table 1 presents descriptive statistics for the 30 study
subjects. For multi-module projects, we specify the MODULE
we use for our experiments. Furthermore, we link to the
COMMIT SHA of the version that we consider for the evalua-
tion. The explicit documentation of PROJECT, MODULE, and
COMMIT SHA ensure the reproducibility of our evaluation.
The projects are well-known in the Java community and
have between 155 and 20,488 STARS, for commons-validator
and flink respectively. The median number of stars is 2,751.

flink also has the maximum number of COMMITS, at 32,667,
while the median number of commits across the study
subjects is 2,544. Next, we report the number of lines of
Java code (LOC) in each project, computed with the Unix
command cloc. In total, the projects have more than 2M
LOC. The two projects with the largest number of lines of
code are CoreNLP (605,561) and checkstyle (342,795), while
the median LoC across the projects is 32,965. In the TESTS
column we give the number of tests executed by the official
maven-surefire-plugin in the projects. The median number
of tests is 599. The two projects with the most tests are jimfs
(5,834) and checkstyle (3,887).

The last 4 columns of Table 1 provide dependency-specific
information. In the column #CD, we provide the number of
compile-scope dependencies in each project, as resolved by
MAVEN. In total, there are 467 compile-scope dependencies
across the 30 projects, with a median number of 9 CDs and
at least 2 CDs in each project. The maximum number of
compile-scope dependencies is 56, in Recaf. The following
columns present the number of CLASSES that are written
by the developers of the PROJECT, and the number of third-
party classes that come from its compile-scope dependencies
(CD). The bytecode of each of these classes is analyzed by
DEPTRIM in order to construct a static call graph of APIs
usages between the projects and dependencies, as described
in Section 3.2.1. In total, DEPTRIM analyzes the bytecode
of 15,594 project classes, and 135,343 classes from third-
party dependencies. CoreNLP has 3,932 project classes, the
maximum in the dataset. The largest number of third-party
classes is 17,512, in OpenPDF. In the last column of the table,
we present the dependency classes to project classes ratio
(RATIOO in Equation 1).

RATIOO =
#CD CLASSES

#PROJECT CLASSES
(1)

We find that, for 27 of these 30 notable projects, most of
the code actually belongs to third-party dependencies. In
fact, this ratio is as high as 206.7 × for the project tablesaw.
Across our dataset, the ratio of the project classes to the
dependency classes is 8.7 ×.

Recalling the example of jacop introduced in Figure 1,
the corresponding row in Table 1 reads as follows: we select
its latest release for our evaluation (SHA 6ed0cd0), which
has 1,302 commits, 93,170 lines of Java code, 210 tests, and
has been starred by 202 users on GitHub. When jacop is
compiled into a JAR, the number of classes from jacop is
833. On the other hand, its 9 compile-scope dependencies
contribute 10.2 × more classes (i.e., 8,487) in the packaged
JAR when compared to the classes in the project (i.e., 833).

4.2 Protocol for RQ1
With this research question, we quantify the potential for
dependency specialization in the 30 projects described in
Table 1. In order to do so, we use DEPCLEAN to identify and
remove bloated dependencies from each project, ensuring
that the project still builds. We report the number of compile-
scope dependencies that are non-bloated, denoted as NBCD.
Next, we present the total number of classes removed
through dependency debloating (CLASSES REMOVED), and
compute the ratio (RATIOD) between the remaining depen-
dency classes and the project classes (per Equation 2). This
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Table 1: Description of the study subjects considered for the evaluation of DEPTRIM. The table links to the project repository
and SHA on GitHub, and lists the number of commits, stars, lines of Java code (LoC), tests, and the original number of
compile-scope dependencies in the project (#CD). Also indicated are the number of project classes in each study subject, the
total number of classes contributed by CDs, as well as the ratio between them (RATIOO). the cake is a lie

PROJECT MODULE COMMIT SHA COMMITS STARS LOC TESTS #CD CLASSES

PROJECT CD RATIOO

checkstyle - 6ec5122 12,066 7,455 342,795 3,887 17 863 6,493 7.5×
Chronicle-Map - 63c1c60 3,298 2,539 55,178 1,231 35 375 7,595 20.3×
classgraph - 8a24786 5,307 2,366 32,151 170 2 261 224 0.9×
commons-validator - 33ecc88 1,742 155 16,781 576 4 64 780 12.2×
CoreNLP - 013556a 17,012 8,802 605,561 1,374 32 3,932 9,121 2.3×
flink flink-java 1d6e2b7 32,667 20,488 36,455 836 16 277 6,175 22.3×
graphhopper core bff8747 6,211 3,978 66,119 2,460 18 631 5,474 8.7×
guice core 5f73d8a 2,026 11,730 49,697 979 10 460 2,474 5.4×
helidon-io openapi 070f2bb 2,707 2,929 7,729 30 36 32 4,002 125.1×
httpcomponents-client httpclient5 cb8bdf7 3,424 1,269 42,920 669 5 493 1,153 2.3×
immutables gson 413aa37 2,588 3,218 16,448 37 2 31 307 9.9×
jacop - 6ed0cd0 1,302 202 93,170 210 9 833 8,487 10.2×
java-faker - b0b9e6e 834 3,914 8,429 579 4 107 503 4.7×
jcabi-github - 462d724 2,764 276 33,542 684 20 312 3,921 12.6×
jimfs jimfs 9ef38d1 508 2,234 15,558 5,834 9 124 3,560 28.7×
jooby jooby 1c78357 4,702 1,523 20,154 122 22 320 6,945 21.7×
lettuce core fc94fcb 2,280 4,861 89,468 2,600 44 1,302 10,364 8.0×
modelmapper core 03663ee 721 2,090 21,769 618 6 210 2,700 12.9×
mybatis-3 - 2655970 4,436 18,065 61,849 1,699 8 480 1,345 2.8×
OpenPDF - bd0d458 1,296 2,573 76,397 35 35 484 17,512 36.2×
pdfbox pdfbox af1ff57 11,147 1,852 97,175 654 7 754 6,836 9.1×
pf4j - fd00c63 692 1,901 7,199 151 3 93 115 1.2×
poi-tl - 71b5969 732 3,063 20,882 125 36 255 12,143 47.6×
Recaf - a30dce0 2,275 4,530 31,277 274 56 538 10,769 20.0×
RxRelay - 09428b5 81 2,473 2,405 64 2 16 1,758 109.9×
scribejava - 7a6185b 1,259 5,317 5,769 82 8 116 1,278 11.0×
tablesaw json 80d5334 2,501 3,101 508 9 9 7 1,447 206.7×
tika tika-core dd04a3e 6,823 1,584 32,388 305 2 435 253 0.6×
undertow core cce54c6 5,517 3,284 106,711 682 5 1,581 742 0.5×
woodstox - 58bd89e 325 180 60,476 868 5 208 864 4.2×
TOTAL 14 30 139,243 127,952 2,056,960 27,844 467 15,594 135,343 8.7×

data provides quantitative insights regarding the impact of
dependency debloating to reduce the share of third-party
code, and on the opportunity to reduce this share further via
dependency specialization.

RATIOD =
#CD CLASSES − #CLASSES REMOVED BY DEPCLEAN

#PROJECT CLASSES
(2)

4.3 Protocol for RQ2
In order to answer RQ2, we attach DEPTRIM to the MAVEN
build lifecycle of each of our study subjects. DEPTRIM is
implemented as a MAVEN plugin, which facilitates this
integration, as described in Section 3.3. This means that the
non-bloated compile-scope dependencies in the dependency
tree of each project are resolved, specialized, and deployed
to the local MAVEN repository. DEPTRIM then attempts to
build the project, i.e., compile it and run its tests, with
the goal of preparing a specialized dependency tree with
the maximum number of specialized dependencies. Per
Algorithm 1, DEPTRIM constructs either a totally specialized

tree (TST), or a partially specialized tree (PST) that includes
the largest number of specialized dependencies that preserve
the build correctness. For each project, we report whether
it builds with a TST. If it does not, we report the number
of dependencies that DEPTRIM successfully specializes to
prepare a PST (through the metric NBCD SPECIALIZED).
The findings from this research question highlight the
applicability of DEPTRIM on real-world MAVEN projects, and
its ability to prepare minimal versions of these projects, by
removing unused classes within non-bloated dependencies
while passing the build.

4.4 Protocol for RQ3
After building each project successfully with a TST or a PST in
RQ2, we report the total number of classes that are removed
by DEPTRIM through the specialization of its non-bloated
compile-scope dependencies (as CLASSES REMOVED). We
also report the ratio of the remaining number of specialized
dependency classes to the number of project classes (RATIOS
in Equation 3). We compare RATIOS with RATIOO, i.e., we
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evaluate the reduction in the original ratio after specialization.
This research question demonstrates the practical advantages
of dependency specialization with DEPTRIM, specifically the
reduction in the original proportion of third-party classes
within the compiled project binary.

RATIOS =
#NBCD CLASSES − #CLASSES REMOVED BY DEPTRIM

#PROJECT CLASSES
(3)

4.5 Protocol for RQ4

While processing each project, DEPTRIM records the project
build logs after dependency specialization (RQ2), as well
as the number of classes removed from each non-bloated
dependency (RQ3). We derive the answer for RQ4 by
analyzing these logs. In some cases, all the classes in a
non-bloated dependency are used by the project, leaving
no room for specialization. We refer to such a dependency as
a totally used dependency (TUD). We report the number of
TUDs for each project, where DEPTRIM is not applicable by
design. Another situation where DEPTRIM is not applicable
is when a project uses dynamic features to access depen-
dency classes (Section 3.2.1). While computing the PST for
RQ2, DEPTRIM builds the project multiple times, each time
with a single specialized dependency. In case of a failure
when building the project with a specialized dependency,
we report a compilation error or a test failure. For the
assessment of the compilation results, we rely on the official
maven-compiler-plugin. We consider the execution of the
test suite to fail if there is at least one test reported within
the sets of Failures or Errors, as reported by the official
maven-surefire-plugin. With this research question, we
gain insights regarding the existing challenges of dependency
specialization with DEPTRIM. More generally, it contributes
to the understanding of the limitations of static analysis with
respect to specializing dependencies, in view of the dynamic
features of Java.

4.6 Evaluation Framework

In order to run our experiments, we have designed a fully
automated framework that orchestrates the execution of
DEPTRIM, the creation of specialized dependency trees, the
building of the projects with the specialized dependency
trees, as well as the collection and processing of data to
answer our research questions. Since DEPTRIM is imple-
mented as a MAVEN plugin, it integrates within the MAVEN
build lifecycle and executes during the package phase. The
execution was performed on a virtual machine running
Ubuntu Server with 16 cores of CPU and 32GB of RAM.
It took one week to execute the complete experiment with
the 30 study subjects. This execution time is essentially
due to multiple executions of the large test suites of our
subjects: once with the original project; once after debloating
dependencies with DEPCLEAN; once with the TST generated
by DEPTRIM, and if we generate a PST for a project, we run
the test suite once with each individually specialized tree
and once with the final PST. The execution framework is
publicly available on GitHub at castor-software/deptrim-
experiments, and the raw data obtained from the complete
execution is available on Zenodo at 10.5281/zenodo.7613554.

5 EXPERIMENTAL RESULTS

This section presents the results from our evaluation of
DEPTRIM with the 30 Java projects described in Section 4.1.
We evaluate the effectiveness of DEPTRIM in automatically
specializing the dependency tree of these projects. The
answers to the four RQs are summarized in Table 2.

5.1 RQ1: What are the opportunities for dependency
specialization in real-world projects?
With this first research question, we set a baseline to assess
the impact of dependency specialization regarding the reduc-
tion of the number of classes in third-party dependencies. To
do so, we report the number of classes removed through
state-of-the-art dependency debloating with DEPCLEAN,
as described in Section 4.2. We report the ratio of third-
party classes remaining after debloating, with respect to the
number of classes in each project presented in Table 1.

For our 30 study subjects, the column NBCD in Table 2
denotes the number of compile-scope dependencies that
remain after identifying and removing bloated dependencies
with DEPCLEAN, over the original number of compile-scope
dependencies in the project (column #CD in Table 1). In
total, DEPCLEAN removes 71 bloated dependencies, with a
median of 8 dependencies, across the 30 projects. DEPCLEAN
removes 23 bloated dependencies from OpenPDF, which is
the largest number of bloated dependencies for one project
in our dataset. In total, DEPCLEAN removes 5,718 third-
party classes when considering all the projects’ JAR files. It
is interesting to note that, for all the projects, dependency
debloating removes 4.2% of the total number of classes.

All projects have at least 2 NBCDs, while Recaf has the
maximum number of NBCDs at 41. In 13 projects, such
as classgraph and commons-validator, all the dependen-
cies are used. Therefore, executing DEPCLEAN does not
contribute to the removal of any class on those projects.
On the other hand, we find that in 5 projects, the bloated
dependencies do not contain class files at all, such as in the
case of flink. This happens when a bloated dependency only
contains assets, such as resource files, or is explicitly designed
to avoid conflicts with other dependencies [32]. For exam-
ple, the dependency com.google.guava:listenablefuture
is present in the dependency tree of 5 projects, and it
is intentionally empty to avoid conflicts with guava [33].
Another dependency, called batik-shared-resources, is
included in the dependency tree of 2 projects, and only
contains resource files. We investigate the nature of these
resource files and find that they are dependency license
statements and build-related metadata. Thus, the removal of
such dependencies does not result in a build failure within
the projects.

The column RATIOD in Table 2 presents the ratio of the
number of classes in the NBCDs to the original number of
classes in the project (column PROJECT in Table 1). For 11 of
the 30 projects, RATIOD is less than RATIOO from Table 1.
This corresponds to cases where debloating results in fewer
third-party classes in the compiled project JAR. For example,
the removal of the 23 bloated dependencies from OpenPDF
results in the maximum reduction in the number of classes
(2,336). Consequently, RATIOD for OpenPDF is 31.4 ×, which
is 4.8 less than its RATIOO. The project with the highest
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Table 2: Results from the evaluation of DEPTRIM with the case studies described in Table 1. For RQ1, the table indicates the
number of non-bloated compile-scope dependencies (NBCD). These are the dependencies that are identified as used in the
project by DEPCLEAN. The number of classes removed via debloating is listed in the column CLASSES REMOVED. RATIOD
represents the number of remaining third-party classes after debloating over the number of classes in the project. For RQ2,
we highlight whether DEPTRIM builds a project with a TST or a PST, as well as the number of specialized NBCDs contained
in the built project (NBCD SPECIALIZED). RQ3 presents the reduction in the number of classes in the NBCDs as a result of
specialization with DEPTRIM, and correspondingly, in the RATIOS of the third-party classes to project classes. For RQ4, we
report the three cases where specialization with DEPTRIM is not applicable: (i) if all the classes in a non-bloated dependency
are totally used by the project (TUD); (ii) if specializing a dependency causes a compilation error (COMP. ERROR) during
project build; and (iii) if a test fails when building a project with a specialized dependency (TEST FAIL.). DON’T PANIC

PROJECT

RQ1 RQ2 RQ3 RQ4

CLASSES NBCD CLASSES COMP. TESTNBCD
REMOVED

RATIOD TST PST
SPECIALIZED REMOVED

RATIOS TUD
ERROR FAIL.

checkstyle 15/17 2 (0.0%) 7.5× ✗ ✓ 12/15 2,330 (35.9%) 4.8× 0/15 2/3 1/3
Chronicle-Map 28/35 278 (3.7%) 19.5× ✗ ✓ 22/28 4,670 (63.8%) 7.1× 4/28 1/2 1/2
classgraph 2/2 0 (0.0%) 0.9× ✓ 2/2 10 (4.5%) 0.8× 0/2 – –
commons-validator 4/4 0 (0.0%) 12.2× ✓ 4/4 625 (80.1%) 2.4× 0/4 – –
CoreNLP 30/32 364 (4.0%) 2.2× ✓ 29/30 3,648 (41.7%) 1.3× 1/30 – –
flink 15/16 0 (0.0%) 22.3× ✗ ✓ 12/15 4,124 (66.8%) 7.4× 1/15 1/2 1/2
graphhopper 13/18 1,309 (23.9%) 6.6× ✗ ✓ 12/13 1,666 (40.0%) 4.0× 0/13 1/1 0/1
guice 9/10 0 (0.0%) 5.4× ✓ 7/9 1,327 (53.6%) 2.5× 2/9 – –
helidon-io 34/36 38 (0.9%) 123.9× ✗ ✓ 32/34 1,040 (26.2%) 91.4× 1/34 1/1 0/1
httpcomponents-client 5/5 0 (0.0%) 2.3× ✓ 4/5 432 (37.5%) 1.5× 1/5 – –
immutables 2/2 0 (0.0%) 9.9× ✓ 2/2 48 (15.6%) 8.4× 0/2 – –
jacop 4/9 504 (5.9%) 9.6× ✗ ✓ 3/4 6,453 (80.8%) 1.8× 0/4 1/1 0/1
java-faker 4/4 0 (0.0%) 4.7× ✗ ✓ 3/4 222 (43.9%) 2.7× 0/4 1/1 0/1
jcabi-github 17/20 9 (0.2%) 12.5× ✗ ✓ 16/17 2,456 (62.8%) 4.7× 0/17 1/1 0/1
jimfs 8/9 0 (0.0%) 28.7× ✓ 6/8 1,741 (48.9%) 14.7× 2/8 – –
jooby 20/22 0 (0.0%) 21.7× ✗ ✓ 19/20 1,349 (19.4%) 17.5× 0/20 1/1 0/1
lettuce 39/44 0 (0.0%) 8.0× ✗ ✓ 36/39 1,866 (18.0%) 6.5× 2/39 0/1 1/1
modelmapper 6/6 0 (0.0%) 12.9× ✗ ✓ 4/6 412 (15.3%) 10.9× 1/6 0/1 1/1
mybatis-3 8/8 0 (0.0%) 2.8× ✗ ✓ 7/8 422 (31.4%) 1.9× 0/8 0/1 1/1
OpenPDF 12/35 2,336 (13.3%) 31.4× ✗ ✓ 11/12 11,468 (75.6%) 7.7× 0/12 1/1 0/1
pdfbox 6/7 63 (0.9%) 9.0× ✓ 6/6 5,070 (74.9%) 2.3× 0/6 – –
pf4j 3/3 0 (0.0%) 1.2× ✓ 2/3 10 (8.7%) 1.1× 1/3 – –
poi-tl 33/36 258 (2.1%) 46.6× ✗ ✓ 27/33 5,192 (43.7%) 26.2× 5/33 0/1 1/1
Recaf 49/56 518 (4.8%) 19.1× ✓ 41/49 2,952 (28.8%) 13.6× 8/49 – –
RxRelay 2/2 0 (0.0%) 109.9× ✗ ✓ 1/2 64 (3.6%) 105.9× 0/2 0/1 1/1
scribejava 7/8 39 (3.1%) 10.7× ✓ 6/7 353 (28.5%) 7.6× 1/7 – –
tablesaw 9/9 0 (0.0%) 206.7× ✓ 7/9 379 (26.2%) 152.6× 2/9 – –
tika 2/2 0 (0.0%) 0.6× ✓ 2/2 187 (73.9%) 0.2× 0/2 – –
undertow 5/5 0 (0.0%) 0.5× ✓ 5/5 224 (30.2%) 0.3× 0/5 – –
woodstox 5/5 0 (0.0%) 4.2× ✗ ✓ 3/5 222 (25.7%) 3.1× 0/5 1/2 1/2

TOTAL 396/467 5,718 (4.2%) 8.3× 14/30 16/30 343 (86.6%) 60,962 (47.0%) 4.4× 32/396 12/21 9/21

percentage of classes removed is graphhopper, for which
the removal of 5 bloated dependencies leads to a 23.9%
reduction in the number of third-party classes. RATIOD for
graphhopper is 6.6 ×, down from its original RATIOO of
8.7 ×. However, despite debloating dependencies, the total
RATIOD across the 30 projects is 8.3× , which is only 0.4
less than the total original RATIOO .

Of the 9 compile-scope dependencies in jacop (column
#CD in Table 1), DEPCLEAN identifies 5 dependencies as
bloated and removes them. This leads to the removal of 504
classes, and 4 remaining NBCDs with a total of 7,983 classes.
Correspondingly, RATIOD reduces to 9.6 ×, down from the
original RATIOO of 10.2 ×. The 4 NBCDs are the target for

specialization with DEPTRIM, which will remove unused
classes within these dependencies while ensuring that jacop
still correctly builds.

Answer to RQ1: State-of-the-art dependency debloating
with DEPCLEAN contributes to the removal of 71 bloated
dependencies from 30 real-world Java projects. This
corresponds to the removal of 5,718 (4.2%) third-party
classes in total. Yet, the dependency classes to project
classes ratio is reduced by only 0.4 (from 8.7× to 8.3×
). This calls for more extensive code removal to reduce
the dependencies to the strictly necessary parts.
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5.2 RQ2: To what extent can all the used dependencies
be specialized and the project built correctly?

This research question evaluates the ability of DEPTRIM to
perform automatic dependency specialization for the study
subjects described in Section 4.1. We consider the special-
ization procedure to be successful if DEPTRIM produces a
valid set of specialized dependencies, with a corresponding
specialized dependency tree captured in a pom.xml, and for
which the project builds correctly. To reach this successful
state, the project to be specialized must pass through all the
build phases of the MAVEN build lifecycle, i.e., compilation,
testing, and packaging, according to the protocol described
in Section 4.2.

Columns TST, PST, and NBCD SPECIALIZED in Table 2
present the results obtained. First, we observe that for a
total of 14 (46.7%) projects, DEPTRIM produces a totally
specialized tree (TST), i.e., the project builds successfully with
a specialized version of all its non-bloated compile-scope
dependencies. For these projects, DEPTRIM successfully iden-
tifies and removes unused classes within the dependencies.
Moreover, DEPTRIM updates the dependency tree of each
project by replacing original dependencies with specialized
ones. The projects correctly compile, and their original test
suite still passes, indicating that their behavior is intact,
despite the dependency tree specialization. Overall, these
results confirm that dependency specialization is feasible for
real-world projects.

We illustrate TSTs with the example of pdfbox, a utility
library and tool to manipulate PDF documents. DEPTRIM
specializes the 6 NBCDs of pdfbox, and builds its TST
successfully. Of these 6 dependencies, 4 are direct: fontbox,
commons-logging, pdfbox-io, and bcprov-jdk18on; whereas
2 are transitive: bcutil-jdk18on and bcpkix-jdk18on. An-
other interesting example is guice, a popular dependency
injection framework from Google branded as a “lightweight”
alternative to existing libraries, as stated in its official docu-
mentation. DEPTRIM builds guice with a TST, thus making it
even smaller. The project that builds with a TST and has the
largest number of specialized dependencies is Recaf with
41 specialized dependencies. Note that, when specializing
transitive dependencies, DEPTRIM keeps all the classes in
the direct dependencies that are necessary to access the APIs
in transitive dependencies, whether directly or indirectly.
For example, the transitive dependency commons-lang3 in
Recaf is resolved and used from the direct dependency
jphantom, a Java library for program complementation [34].
Thus, DEPTRIM keeps the bytecode in commons-lang3 that is
necessary to access the used features provided by jphantom.

On the other hand, projects that do not build with a TST
signify cases where at least one compile-scope dependency
relies on dynamic Java features that make static analysis
unsound. This observation is in line with previous work
showing that Java reflection and other dynamic features
impose limitations on performing static analysis in the Java
ecosystem [35]. However, even for these projects, DEPTRIM
successfully builds a partially specialized tree (PST) by target-
ing dependencies that are safe to specialize and discarding
the ones that are unsafe. In total, 16 (53.3%) of the projects
build successfully with a PST. In these cases, DEPTRIM
successfully identifies the subset of dependencies that are

Table 3: Dependencies specialized in the OpenPDF project

DEPENDENCY TYPE CLASSES REMOVED

xmlgraphics-commons Transitive 366/375 (97.6%)
bcutil-jdk18on Transitive 532/579 (91.9%)
fop-core Transitive 2,278/2,547 (89.4%)
bcpkix-jdk18on Direct 697/841 (82.9%)
bcprov-jdk18on Direct 5,696/7,149 (79.7%)
xml-apis Transitive 234/346 (67.6%)
fontbox Transitive 100/157 (63.7%)
xalan Transitive 942/1,501 (62.8%)
icu4j Direct 578/1,555 (37.2%)
serializer Transitive 39/108 (36.1%)
commons-logging Transitive 6/18 (33.3%)
fop Transitive N/A

TOTAL 3D/9T 11,468/15,176 (75.6%)

safe for specialization, and validates that the projects still
correctly build with a PST.

For example, DEPTRIM successfully specializes 4 depen-
dencies in the project modelmapper, an object mapping library
that automatically maps objects to each other. DEPTRIM
creates a PST with which modelmapper builds successfully.
Note that none of the 6 compile-scope dependencies of
modelmapper are bloated, and hence debloating the project
with DEPCLEAN has no impact on it. However, after ex-
ecuting DEPTRIM, the direct dependencies objenesis and
asm-tree are specialized. Moreover, the transitive depen-
dencies asm-commons and asm, resolved from asm-tree are
also specialized. This example illustrates the impact of
specialization beyond dependency debloating, for projects
that build with a PST. Indeed, across our study subjects, there
are 8 projects that successfully build with a TST, and 5 that
build with a TST, and yet for which no classes are removed
through DEPCLEAN.

It is interesting to notice that some of our study subjects
share dependencies that are specialized. The three dependen-
cies that are most frequently specialized are slf4j-api (13
projects), jsr305 (9 projects), and commons-io (6 projects).
The projects jcabi-github, jooby, and Recaf include all
these three dependencies in their dependency tree. After
investigating the contents of the specialized versions of
slf4j-api prepared by DEPTRIM, we find that there are
three sets of variants for which this dependency contains the
same number of classes. Thus, deploying multiple specialized
versions of slf4j-api to external repositories can contribute
to reducing its attack surface for projects that reuse the
exact same features. This specialized form of code reuse
also increases software diversity. Furthermore, the depen-
dency bcprov-jdk18on, which contains the largest number
of classes among the dependencies (3,768), is successfully
specialized in 2 projects, OpenPDF and pdfbox. Our findings
suggest that specializing dependencies with a large number
of classes yields a greater reduction of third-party code. To
confirm this hypothesis, additional investigation is required.

Our experiments show that, despite the challenges of
specializing the dependency trees of our 30 real-world study
subjects, DEPTRIM is capable of specializing 343 of the 396
non-bloated compile-scope dependencies across them. A
key aspect of our evaluation is that we validate that each
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project builds successfully using its specialized dependency
tree. We manually analyze and classify the cases where
specialization is not achievable for a dependency, in RQ4.
The specialized dependencies contribute to the deployment
of smaller project binaries, to reduce their attack surface, and
to increase dependency diversity when deployed to external
repositories.

Answer to RQ2: DEPTRIM successfully builds 14 real-
world projects with a totally specialized dependency tree.
For the other 16 projects, DEPTRIM finds the largest subset
of specialized dependencies that do not break the build.
In total, DEPTRIM specializes 343 (86.6%) of the non-
bloated compile-scope dependencies across the projects.
This is evidence that a large majority of dependencies in
Java projects can be specialized without impacting the
project build.

5.3 RQ3: What is the reduction in the number of classes
in the dependency tree of the project after specialization?
To answer our third research question, we count the number
of classes removed by DEPTRIM in the 343 successfully
specialized dependencies. The goal is to evaluate the effec-
tiveness of DEPTRIM in removing unused class files through
specialization, as described in Section 4.3. We also report the
impact of this reduction on the ratio of third-party classes to
project classes, i.e., RATIOS .

The column CLASSES REMOVED in Table 2 shows the
number of classes removed by DEPTRIM from the NBCDs
of each project, in order to build its TST or PST. DEPTRIM
removes a total of 60,962 classes, with a median removal of
1,184 third-party classes for each project. This represents
47.0% of the total number of classes in the third-party
dependencies for all the projects (i.e., 135,343 per Table 1).
For example, the project tika has 2 dependencies special-
ized: slf4j-api with 9/52 (17.3%) classes removed, and
commons-io with 178/201 (88.6%) classes removed. This
represents a removal of 187 (73.9%) third-party classes in
tika, as a result of which its RATIOS is 0.2× . Thus,
the ratio of dependency classes to project classes in tika
decreased by 0.4 compared to RATIOD (i.e., 0.6 ×).

The project with the highest percentage of dependency
classes removed is jacop with 80.8%, i.e., 6,453 of the 8,487
original third-party classes. This drastic reduction is a conse-
quence of removing unused classes from large compile-scope
dependencies such as scala-compiler, scala-library, and
scala-reflect, which embed the standard library, compiler,
and language reflection features of the Scala programming
language. DEPTRIM removes 2,982, 1,371, and 1,351 classes
in these dependencies, respectively, as well as 749 classes
from mockito-all. In fact, DEPTRIM identifies that only
2 of the 2,984 classes in scala-compiler are required by
jacop. These classes are SourceReader and its nested class
SourceReader$, which provide functionalities to read and
decode Scala source files. The 2,982 classes removed from
this dependency provide tools for reflection, type-checking,
or transformation, which are not necessary for jacop.

The project with the largest number of classes removed
(11,468) is OpenPDF. Table 3 shows the dependencies special-
ized in OpenPDF, of which 3 are direct and 9 are transitive.

DEPTRIM builds OpenPDF with a PST, excluding the depen-
dency fop from the specialized dependency tree. Looking at
the 11 successfully specialized dependencies, we observe that
OpenPDF depends transitively on a family of dependencies
from the Apache XML Graphics Project, including fop-core
and xmlgraphics-commons, from which DEPTRIM removes
2,278 (89.4%) and 366 (97.6%) unused classes, respec-
tively. OpenPDF also depends directly on bcpkix-jdk18on and
bcprov-jdk18on, which are dependencies from the Bouncy
Castle family of cryptographic libraries, from which 697
(82.9%) and 5,696 (79.7%) classes are removed, respec-
tively. Moreover, DEPTRIM systematically identifies func-
tionalities that are used transitively through direct depen-
dencies. For example, two classes within OpenPDF, called
PdfPKCS7 and TSAClientBouncyCastle, use classes from the
direct dependency bcpkix-jdk18on. In turn, these classes of
bcpkix-jdk18on depend on 4 classes within bcutil-jdk18on
that are responsible for supporting the encoding of the Time
Stamp Protocol. Therefore, DEPTRIM marks these 4 classes
within the transitive dependency as necessary for OpenPDF,
and does not remove them. Note that OpenPDF built with a
specialized dependency tree may be deployed to an external
repository, which reduces the attack surface of the clients
that rely on the features that are provided by OpenPDF when
used as a library.

We observe that significant removal of unnecessary
bytecode within dependency JAR files through specialization
is achievable and also beneficial for the projects. Smaller
binaries reduce overhead when the JAR files are deployed
and shipped over the network. Specialized dependencies
reduce the build time, which increases productivity and
reduces maintenance efforts. Furthermore, the reduction in
the number of third-party classes has a positive impact on
minimizing the attack surface of the projects.

Answer to RQ3: DEPTRIM reduces the number of classes
in the dependency tree of the 30 projects by 47.0%.
The dependency classes to project classes ratio is almost
halved (from 8.3× to 4.4× ). This result confirms the
relevance of this dependency specialization approach in
drastically reducing the share of third-party bytecode in
Java projects.

5.4 RQ4: In what contexts is static dependency special-
ization not applicable?
With this research question we report on the cases where
there is no scope for specialization in a non-bloated depen-
dency, as well as cases where projects do not build success-
fully with a specialized dependency in the dependency tree.

First, we observe that 14 projects include at least one de-
pendency that is totally used. A total of 32 dependencies are
totally used by their respective client projects, as presented
in the column TUD in Table 2. A dependency is a TUD for
a project if all its class files are exercised by the project.
Consequently, there is no scope for the specialization of a
TUD. TUDs represent 8.1% of the non-bloated dependencies.
Recaf has 8 TUDs, the largest number in the study subjects.
Note that a project with TUDs in its dependency tree can
still successfully build with a TST, as is true for 8 projects,
including Recaf. We observe that the dependencies asm-tree,
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Table 4: Number of unique failing tests, and the specialized
dependency that causes these failures, in the 9 projects with
tests failures

PROJECT DEPENDENCY # TEST FAIL

checkstyle Saxon-HE 1/3,887 (0.0%)
Chronicle-Map chronicle-wire 3/1,231 (0.2%)
flink commons-math3 1/820 (0.1%)
lettuce-core micrometer-core 6/2,600 (0.2%)
modelmapper byte-buddy-dep 4/618 (0.6%)
mybatis-3 slf4j-api 1/1,699 (0.1%)
poi-tl commons-io 107/125 (85.6%)
RxRelay rxjava 6/64 (9.4%)
woodstox msv-core 1/868 (0.1%)

TOTAL 9 130/11,912 (1.1%)

failureaccess, and minimal-json are TUDs in 2 projects.
For example, minimal-json is totally used by both tablesaw
and by Recaf, which is evidence of a minimal API that is
completely used by these projects. As far as we know, this is
the first time in the literature that totally used dependencies
are identified and quantified.

DEPTRIM builds 16 projects with a PST. For example,
DEPTRIM marks 1 of the 4 non-bloated compile-scope
dependencies in java-faker as unsafe for specialization.
This is because building java-faker with the specialized
version of org.yaml:snakeyaml prevents the compilation of
the project, which includes the Lebowski class. Consequently,
org.yaml:snakeyaml is excluded from the specialized depen-
dency tree of java-faker and DEPTRIM outputs a partially
specialized tree that successfully builds java-faker and
includes three specialized dependencies.

Column COMP. ERROR in Table 2 shows the number of
specialized dependencies for which the build fails due to
compilation errors. This occurs for 11 projects and 12 depen-
dencies. We investigate the causes of compilation errors by
manually analyzing the logs of the maven-compiler-plugin.
We find the following 4 causes for compilation to fail:

• Some classes are not found during compilation. For
example, 2 PSTs of checkstyle fail due to the missing
classes, BasicDynaBean and ClassPath, from dependen-
cies commons-beanutils and guava, respectively. Both
classes enable dynamic scanning and loading of classes
at runtime.

• The project has a plugin that fails at compile time. For ex-
ample, the plugin snakeyaml-codegen-maven-plugin in
the project helidon adds code to the project’s compiled
sources automatically [36], and fails when building with
the specialized dependency smallrye-open-api-core
because the specialization process changes the expected
dependency bytecode.

• The project has a plugin that checks the integrity of
the specialized dependency. For example, the depen-
dency commons-io in project jcabi-github uses the
maven-enforcer-plugin to check for certain constraints,
including checksums, on the dependency bytecode.

• The specialized dependency is not found in the local
repository. For example, the specialized dependency
snakeyaml in project java-faker is not deployed cor-
rectly due to a known issue in this dependency when

using the android MAVEN tag classifier [37].

We now discuss the number of specialized dependencies
for which the build reports test failures (column TEST FAIL.
in Table 2). For 9 projects, one specialized dependency has
at least one test failure. DEPTRIM preserves the original
behavior (i.e., all the tests pass) of 356 (97.8%) specialized,
non-bloated compile-scope dependencies. This high rate
of test success is a fundamental result to ensure that the
specialized version of the dependency tree preserves the
behavior of the project.

In total, we execute 27,844 unique tests across all projects
(per Table 1). Of these, 130 do not pass. DEPTRIM produces
specialized dependency trees that break a few test cases.
These cases reveal the challenges of dependency specializa-
tion concerning static analysis. For example, DEPTRIM can
miss some used classes, resulting in the removal of bytecode
that is necessary at runtime. This is a general constraint
for static analysis tools when processing Java applications
that rely on dynamic features to load and execute code
at runtime. As a result of the absence of bytecode from a
specialized dependency, 9 projects report test failures, e.g.,
an unreachable class loaded at runtime causing a failing test
that stops the execution of the build.

Table 4 shows the number of unique test failures (column
#TEST FAIL.) in the 9 projects that have at least one PST
with test failures, as well as the specialized dependency
that causes the failure (column DEPENDENCY). For example,
the project Chronicle-Map has 3 tests that fail when spe-
cializing the dependency chronicle-wire, from a total of
1,231 executed tests, which represents 0.2% of the total. The
project with the largest number of test failures is poi-tl, with
107 (85.6%) tests failures when specializing its dependency
commons-io. Overall, the number of test failures accounts for
1.1% of the total tests executed in the 9 projects, and only
0.5% across the 30 projects.

We further investigate the causes of the failures. To do so,
we manually analyze the logs of the tests, as reported by the
maven-surefire-plugin. We find the following 3 causes:

• The tests load dependency classes dynamically. For
example, poi-tl relies on the method byte[] in class
IOUtils of commons-io to check the size of a file. This
method is loaded via reflection through an external
configuration file and causes the failure of 107 tests.

• Some tests rely on Java serialization to manipulate
objects at runtime, and the input stream is not
closed properly because DEPTRIM removes a class
responsible for closing the input stream. For exam-
ple, the project Chronicle-Map uses the dependency
chronicle-wire for serialization, and 3 tests fail due
to a ClosedIORuntimeException.

• The project has tests that rely on dependencies that use
Java Native Interfaces (JNI) to execute machine code
at runtime. For example, the test TestWsdlValidation
in project woodstox relies on dependency msv-core
which uses JNI to validate XML schemas. DEPTRIM’s
static analysis is limited to Java bytecode, and therefore
native code executed in third-party dependencies is not
considered as used when building the call graph.

Our results reveal the challenges of dependency special-
ization based on static analysis (see Section 3.2.1) for real-
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world Java projects. Handling these cases to achieve 100%
correctness requires specific domain knowledge of the project,
and of the reachable code in the dependencies that exercise
some form of dynamic Java features. To facilitate this task,
we provide a dedicated parameter ignoreDependencies in
DEPTRIM so that developers can declare a list of dependency
coordinates to be ignored by DEPTRIM during the call graph
analysis. Nevertheless, we recommend always checking that
the build passes to avoid semantic errors when performing
bytecode removal transformations.

Answer to RQ4: Of the 396 dependencies that are targets
for specialization, 32 are not specialized because they are
totally used, 12 (3.3%) dependencies cause a compilation
failure when specialized, and 9 (2.5%) lead to a failure
at runtime. For the latter, the test failures represent
only 0.5% of the total number of tests executed. This
behavioral assessment of DEPTRIM demonstrates that the
specialized dependency trees preserve a large majority of
syntactic and semantic correctness for the 30 projects.

6 DISCUSSION

In this section, we discuss the state-of-the-art and the current
challenges of code specialization in Java, as well as the
implications of specialization for software integrity. We also
discuss the threats to the validity of our results.

6.1 Specialization in the Modern Java Ecosystem
The Java community is currently making substantial efforts
to reduce the amount of unnecessary third-party code that
ends up being deployed in production, as a consequence of
dependencies. The GraalVM native image compiler [38] is
perceived by many as an important step in this direction.
GraalVM relies on static analysis to build a native executable
image that only includes the elements reachable from an
application entry point and its third-party dependencies [39].
To do so, GraalVM operates with a closed-world assump-
tion [40]. This means that all the bytecode in the application,
and their dependencies that can be called at runtime, must
be known at build time, i.e., when the native-image tool
in GraalVM is building the standalone executable [41].
While building the image, GraalVM performs a set of
aggressive optimizations such as the elimination of unused
code from third-party dependencies. Consequently, the self-
contained native executable image only includes code that is
actually necessary to build and execute a Java project. This
reduces the size of container images, making them more
performant. The resulting images are ideal for the cloud,
making Java applications easy to ship and deploy directly in
a containerized environment, as microservices for example.

On the other hand, the reachability of some bytecode
elements (such as classes, methods, or fields) may not be
identified due to the Java dynamic features, e.g., reflection,
resource access, dynamic proxies, and serialization [42], [43],
[35], [44]. For example, the popular dependency netty, an
asynchronous event-driven framework, heavily relies on
dynamic Java features to perform blocking and non-blocking
sockets between servers and clients. As in DEPTRIM, the
closed-world constraint of GraalVM imposes strict limits on

the natural dynamism of Java, particularly on the run-time
reflection and class-loading features, upon which so many
existing libraries and frameworks such as netty depend.
There is a risk of violating the close world assumption if at
least one of the dependencies in the dependency tree of a
project relies on some dynamic Java feature.

The community is creating new versions of libraries
that adhere to the closed-world assumption. Rather than
embracing the closed-world constraint in its entirety, the Java
community instead pursues a gradual, incremental approach
along this spectrum of limitations. By starting with small
and simple modifications to Java Platform Specification,
the community aims to establish a strong grasp of the
necessary changes while maintaining key values of the Java
programming language, such as readability, compatibility,
and generality. In the long run, Java will likely embrace
the full closed-world constraint in order to produce fully-
static images. Between now and then, however, the com-
munity works on developing and delivering incremental
improvements which developers can use sooner rather than
later. A notable effort is the GraalVM Reachability Metadata
Repository [45], which enables native image users to share
and reuse metadata for common libraries and frameworks
in the Java ecosystem, and thus simplify the maintenance of
third-party dependencies. The repository is integrated with
GraalVM Native Build Tools beginning with version 0.9.13,
and integrates with notable Java web frameworks such
as Spring Boot 3.0, Quarkus, and Micronaut [46]. Despite
the widespread popularity of Java libraries, there remains
inadequate support for them. DEPTRIM offers a solution
for projects that have dependencies potentially conflicting
with the closed-world assumption by specializing their
dependency tree. With the creation of a partially special-
ized tree (PST), DEPTRIM effectively achieves dependency
specialization without jeopardizing the success of the build,
making it a practical option.

6.2 Specialization and Software Integrity

The integrity of software supply chains is a timely research
topic [47], [48], [49]. Ensuring the integrity of dependencies
involves checking that their code has not been tampered with
between the moment they are fetched from a repository and
the moment they are packaged in the project. Checksums,
such as the SHA family of cryptographic functions, are com-
monly used to verify the integrity of software dependencies.
For example, when a software dependency is deployed, a
SHA checksum is generated for the dependency, which is a
unique representation of its binary content. Then, the clients
of the dependency can recompute the checksum at build time
to check the integrity of the dependency they are packaging
in their dependency tree. A modern project may also use a
software bill of materials (SBOM) that lists all the components
that compose it, including open-source libraries, frameworks,
and tools [50]. A comprehensive, well-maintained SBOM can
help ensure software integrity by enabling organizations to
identify and track potential security vulnerabilities in their
software components and take appropriate action to address
them, while also complying with regulations and standards.

The specialization of third-party dependencies modifies
the bytecode of the target dependencies, which can break the
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integrity-checking process. This is because the checksum of
the original bytecode, which was used to verify the integrity
of the dependency, will no longer match the checksum of the
changed bytecode. For example, Listing 1 shows a JSON
file reporting the checksum of the original dependency
commons-io in one of our study subjects, jcabi-github,
when using the SHA-256 hashing algorithm. DEPTRIM
specializes commons-io by removing unused classes, which
constitutes a change in its bytecode, and hence in its check-
sum, as presented in Listing 2. Therefore, the checksum of
the changed bytecode after specialization no longer matches
the expected checksum, and the integrity checks fail, as
discussed in Section 4.5.

A way to ensure the integrity of specialized depen-
dencies is by deploying them to external repositories at
build time. For example, in the previous example, the
project jcabi-github could deploy the specialized variant
of commons-io to Maven Central with a custom MAVEN
groupId, while updating the checksum in its SBOM ac-
cordingly. This way, it could check the integrity of this
dependency against the SHA of the specialized variant.
This approach provides the benefits of specialization while
preserving software integrity. As far as we know, there is
currently no tool that implements this technique. Preserving
integrity in the light of specialization is currently a challenge
for hardening the software supply chain, and a promising
research direction.

6.3 Threats to Validity

We now discuss the threats to the validity of the evaluation
of DEPTRIM, and how we address them.

Internal validity. The first internal threat relates to the
usage of static analysis to determine which parts of the
dependency bytecode are reachable from the project. We
mitigate this threat, by relying on DEPCLEAN, the state-of-
the-art tool for debloating Java dependencies [25]. Another
threat lies in the thoroughness of the test suite. The test
suite may not capture all the dependency API behaviors
that can be exercised by the project. To mitigate this threat,
we curate a set of study subjects that are mature and
contain tests (see Table 1). DEPTRIM is a MAVEN plugin
that modifies the pom.xml on-the-fly during the build pro-
cess. It might introduce conflicts between plugins, causing
the build to fail. For example, maven-enforcer-plugin or
license-maven-plugin check the pom.xml to ensure that it
meets specific requirements and follows the best practices.
However, since our approach only modifies the code within
the entry dependencies in the pom.xml, the failures due to
misconfigurations are minimized.

External validity. Our results are representative of the
Java ecosystem, and our findings are valid for software
projects with these particular characteristics. Moreover, our
bytecode removal results are influenced by the number of
dependencies of these projects. To address this, we found our
evaluation on 30 real-world, well-known projects, derived
from sound data sources, as described in Section 4.1. Further-
more, the selected projects cover a variety of application
domains (e.g., dependency injection, database handling,
machine learning, encryption, IO utilities, faking, meta-
programming, networking, etc). To the best of our knowledge,

{
"groupId": "commons-io",
"artifactId": "commons-io",
"version": "2.11.0",
"checksumAlgorithm": "SHA-256",
"checksum": "961b2f6d87dbacc5d54abf45ab7a6e2495f89b755989

↪→ 62d8c723cea9bc210908"
}

Listing 1: SHA checksum of the original dependency
commons-io in the project jcabi-github

{
"groupId": "se.kth.castor.deptrim.spl",
"artifactId": "commons-io",
"version": "2.11.0",
"checksumAlgorithm": "SHA-256",
"checksum": "c84eaef6b629729c71a70a2513584e7ccacf70cb4df1

↪→ 3e38b731bb6193c60e73"
}

Listing 2: SHA checksum of the specialized dependency
commons-io in the project jcabi-github

this is the largest set of study subjects used in software
specialization experiments.

Construct validity. The threats to construct validity relate
to the accuracy and soundness of the results. Our results
may not be reproducible if the projects are compiled with
a different Java version or have flaky tests. To mitigate
this threat, we choose the latest Java version and build
the original projects two times in order to avoid including
projects with flaky tests. Furthermore, for all RQs, we
include logs and automated analysis scripts in our replication
package for reproducibility as described in Section 4.6.

7 RELATED WORK

In this section, we position the contribution of our depen-
dency specialization technique with respect to previous work
that aims at reducing the size of applications composed of
multiple third-party dependencies.

Several previous works focus on reducing the size of Java
applications. While all techniques perform code analysis
based on the construction of a call graph, they vary in
the way they look for code that can be removed: dead-
code removal, inlining, and class hierarchy removal [51];
identification and removal of unused optional concerns with
respect to a specific installation context [52], unbundling user-
facing application features [53] or tailoring the Java standard
library [54], [55]. In contrast to these efforts that aim at
reducing the size of a packaged application, DEPTRIM targets
reduction while keeping the modular structure of the project
and its third-party dependencies. Our technique focuses
on reducing each dependency while keeping an explicit
dependency tree in the form of a specialized pom.xml file
as well as maintaining specialized dependencies as distinct,
deployable JAR files.

Bruce et al. [56] propose JSHRINK, augmenting static
reachability analysis with dynamic reachability analysis.
They rely on test cases to find dynamic features, including
methods and fields, invoked at runtime, adding them back
to amend the imprecision of static call graphs. DEPTRIM
differs from JSHRINK, as it does not aim to refine reachability
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analysis to create smaller JAR files of the target project.
Instead, DEPTRIM focuses on specializing the dependency
tree of a Java project by removing unused code in third-party
dependencies independently, such that each dependency can
be deployed to external repositories.

In our previous work, we proposed DEPCLEAN, a tool
that identifies and removes unused dependencies in the
dependency tree [57], [26]. DEPCLEAN constructs a call graph
of the bytecode class members by capturing annotations,
fields, and methods, and accounts for a limited number of
dynamic features such as class literals. DEPCLEAN produces
a variant of the dependency tree without bloated depen-
dencies. DEPTRIM pushes forward the field of dependency
debloating through the removal of unused bytecode from
individual dependencies, thereby yielding smaller packaged
artifacts.

Closely related to DEPTRIM is the work on code special-
ization. Mishra and Polychronakis propose SHREDDER [22], a
defense-in-depth exploit mitigation tool that protects closed-
source applications against code reuse attacks. They also
build SAFFIRE [58] which creates specialized and hardened
replicas of critical functions with restricted interfaces to
prevent code reuse attacks. These tools target C++ API
implementations. They eliminate arguments with static
values and restrict the acceptable values of arguments. A
key feature of these techniques is to replace the code of
API members by a stub function so that, at runtime, only
specialized versions of critical API functions are exposed,
while any invocation that violates the enforced policy is
blocked. Focusing on JavaScript applications, Turcotte et
al. [59] propose STUBBIFIER, which replaces unreachable code,
identified through static and dynamic call graphs. DEPTRIM
does not remove unused code from the project but rather
replaces dependencies that are partially used by the project
with smaller and specialized versions.

Previous specialization techniques mitigate the risk of
removing code that might be needed for a specific execution,
by replacing this code by small stub functions. With DEPTRIM
we address the challenges of dynamic language features with
another strategy. We specialize each dependency and then
assess whether the completely specialized dependency tree
still passes the build. If it does not, we search for a partially
specialized tree that does not include the dependencies that
rely on the dynamic features of Java. To the best of our
knowledge, prior research on software specialization has not
addressed the customization of third-party dependencies
or the provision of build configuration files to enable the
construction of specialized dependency trees. This represents
a novel contribution of our work, differentiating it from
previous studies in this area.

As part of our experiments with DEPTRIM, we contribute
novel observations to the body of knowledge about library
and API usage. Recent work in this area includes the
following studies. Huang et al. [60] study the usage intensity
from Java projects to libraries. They find that the number
of libraries adopted by a project is correlated to the project
size. However, their study does not provide a more fine-
grained analysis of the used components. Hejderup et al. [21]
investigate the extent to which Rust projects use the third-
party packages in their dependency tree. They propose
PRÄZI, a call-based dependency network for CRATES.IO that

operates at the function level.
Some studies examine the benefits of debloating from a

security standpoint. For instance, Azad et al. [61] report that
debloating significantly reduces the number of vulnerabilities
in web applications, while also making it more difficult
for attackers to exploit the remaining ones. Agadakos et
al. [62] propose NIBBLER to erase unused functions within the
binaries of shared libraries at the binary level. This enhances
existing software defenses, such as continuous code re-
randomization and control-flow integrity, without incurring
additional run-time overhead. Although DEPTRIM’s primary
function is to specialize dependency trees and enhance their
reusability, it is important to note that the removal of third-
party code can lead to a reduction in the potential attack
surface.

8 CONCLUSION

In this paper, we propose DEPTRIM, a fully automated tech-
nique to specialize third-party packages in the dependency
tree of a Java project. DEPTRIM systematically identifies and
removes unused classes within each reachable dependency,
repackages the used classes into a specialized dependency,
and replaces the original dependency tree of a project with
a specialized version. The goal of DEPTRIM is to build a
minimal project binary, which only contains code that is
useful for the project.

Our evaluation with 30 real-world java projects that build
with MAVEN demonstrates the capabilities of DEPTRIM to
produce minimal versions of the dependencies in these
projects while keeping the original build successful. In
particular, DEPTRIM builds totally specialized trees for 14
projects and builds the other 16 with the largest number of
specialized dependencies such that the project still builds.
The ratio of dependency classes to project classes decreases
from 8.7× in the original project to 4.4× in the specialized
project, which represents a reduction of 47% in the total
third-party classes. Our findings reveal that dependency
specialization is an effective means of reducing the share of
third-party code in Java projects.

An important direction for future research is to investigate
the application of dependency specialization to increase
the diversity of software supply chains. DEPTRIM currently
generates one specialized dependency tree for each project.
However, there exists a multitude of possibilities within the
realm of partially specialized trees, which we have yet to
explore. As future work, we will venture into the forest of
trees in between, with diverse combinations of specialized
dependencies. By doing so, we aim to achieve an effective
moving target defense against software supply chain attacks.
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