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Abstract

Software systems have a natural tendency to grow in size and complexity.
A part of this growth comes with the addition of new features or bug fixes,
while another part is due to useless code that accumulates over time. This
phenomenon, known as “software bloat,” increases with the practice of reusing
software dependencies, which has exceeded the capacity of human developers
to efficiently manage them. Software bloat in third-party dependencies presents
a multifaceted challenge for application development, encompassing issues of
security, performance, and maintenance. To address these issues, researchers
have developed software debloating techniques that automatically remove un-
necessary code.

Despite significant progress has been made in the realm of software debloat-
ing, the pervasive issue of dependency bloat warrants special attention. In this
thesis, we contribute to the field of software debloating by proposing novel
techniques specifically targeting dependencies in the Java ecosystem.

First, we investigate the growth of completely unused software dependencies,
which we call “bloated dependencies.” We propose a technique to automatically
detect and remove bloated dependencies in Java projects built with MAVEN. We
empirically study the usage status of dependencies in the Maven Central reposi-
tory and remove bloated dependencies in mature Java projects. We demonstrate
that once a bloated dependency is detected, it can be safely removed as its future
usage is unlikely.

Second, we focus on dependencies that are only partially used. We introduce
a technique to specialize these dependencies in Java projects based on their
actual usage. Our approach systematically identifies the subset of functionalities
within each dependency that is sufficient to build the project and removes the
rest. We demonstrate that our dependency specialization approach can halve
the project classes to dependency classes ratio.

Last, we assess the impact of debloating projects with respect to client appli-
cations that reuse them. We present a novel coverage-based debloating technique
that determines which class members in Java libraries and their dependencies
are necessary for their clients. Our debloating technique effectively decreases the
size of debloated libraries while preserving the essential functionalities required
to successfully build their clients.

Keywords: Software debloating, software dependencies, Java bytecode, package
manager, static program analysis, dynamic program analysis



Sammanfattning

Mjukvarusystem har en naturlig tendens att véxa i storlek och komplexitet.
En del av denna tillvixt kommer med tilldgget av nya funktioner eller buggfixar,
medan en annan del beror pd onddig kod som ackumuleras 6ver tiden. Detta
fenomen, kiant som mjukvaru-bloat, 6kar med praxis att dteranvanda mjukvaru-
bibliotek, vilket har 6verstigit kapaciteten hos ménskliga utvecklare att effektivt
hantera dem. Mjukvaru-bloat i tredjepartsbibliotek innebdr en mangfacette-
rad utmaning for applikationsutveckling, som omfattar sdkerhets-, prestanda-
och underhéllsproblem. For att hantera dessa problem har forskare utvecklat
mjukvaruavbloatningstekniker som automatiskt tar bort onddig kod.

Trots att betydande framsteg har gjorts inom omradet fér mjukvaruavblo-
atning, kriver det genomgripande problemet med bloat bland kodberoenden
sérskild uppmérksamhet. I denna avhandling bidrar vi till omradet féor mjuk-
varuavbloatning genom att foresld nya tekniker som specifikt riktar sig mot
beroenden i Java-ekosystemet.

Forst undersoker vi tillvidxten av helt oanvinda mjukvaruberoenden, som vi
kallar 6verflodiga (bloated) beroenden. Vi foreslar en teknik for att automatiskt
upptécka och ta bort svullna beroenden i Java-projekt som byggs med Maven. Vi
studerar empiriskt anvindningsstatus for beroenden i Maven Central Repository
och tar bort overflodiga beroenden i mogna Java-projekt. Vi visar att nir ett
overflodigt beroende upptécks kan det sékert tas bort eftersom det &r osannolikt
att det kommer att anvédndas i framtiden.

For det andra fokuserar vi pd beroenden som endast anvéinds delvis. Vi
introducerar en teknik for att specialisera dessa beroenden i Java-projekt baserat
pa deras faktiska anvindning. Véar strategi identifierar systematiskt den delméngd
av funktioner inom varje beroende som ér tillracklig for att bygga projektet
och tar bort resten. Vi visar att var beroendespecialiseringsmetod kan halvera
forhallandet mellan projektklasser och beroendeklasser.

Till sist bedémer vi effekten av att avbloata projekt med avseende pé klien-
tapplikationer som ateranvidnder dem. Vi presenterar en ny tdckningsbaserad
avbloatningsteknik som bestdmmer vilka klassmedlemmar i Java-bibliotek och
dess beroenden som dr nédvéindiga for deras klienter. Var avbloatningsteknik
minskar effektivt storleken pa avbloatade bibliotek medan man bevarar de vi-
sentliga funktioner som krévs for att framgéngsrikt bygga deras klienter.

Nyckelord: Mjukvaruavsvéallning, mjukvaruberoenden, Java bytekod, pakethante-
rare, statisk programanalys, dynamisk programanalys
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Chapter 1

Introduction

“This is your last chance. After this there is no turning back. You take the
blue pill, the story ends. You wake up in your bed and believe whatever
you want to. You take the red pill, you stay in Wonderland, and I show
you how deep the rabbit hole goes. Remember; all I'm offering is the truth.
Nothing more.”

— Morpheus, The Matrix

pre-existing code components, libraries, or modules to build new software

applications, rather than implementing everything from scratch [17]].
This approach has been advocated as a good practice since the early days of
software engineering, as it helps developers to increase productivity [[18]] and
learn from past experiences to create software that is more robust, efficient, and
maintainable [[19]]. As software engineering practices evolve, various mechanisms
have been developed to facilitate code reuse, such as object-oriented programming,
public APIs, open-source components, and package managers. These techniques
and tools have made it even more convenient and efficient for developers to
incorporate pre-existing code components into their projects.

In recent years, the use of package managers to handle software dependen-
cies (a.k.a. libraries) has become a standard software engineering practice [20].
Software ecosystems and package managers provide developers with a centralized
location to find and download the dependencies they need, as well as to keep
them up to date [21]]. Part of the success of package managers is attributed to their
effectiveness in helping developers navigate the escalating complexity of code
reuse within the current software engineering lifecycle [22]. Package managers

( : ODE reuse is a software engineering practice in which developers rely on
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CHAPTER 1. INTRODUCTION

boost software reuse by creating a clear separation between the application and
its third-party dependencies [|23]]. As a result, software ecosystems and package
managers have become an essential part of modern software development and a
key enabler of the rapid pace of innovation in this field [[24]]. There exist package
managers for most programming languages, such as MAVEN for Java [25]], NPM
for JavaScript [26], and PIP for Python [27]. Each of them effectively handles the
massive demands of code reuse across millions of dependencies hosted in public
repositories, such as the Maven Central repository [28] for the Java ecosystem.
This has greatly simplified the process of managing dependencies, making it easier
for developers to build and maintain complex software systems.

Software dependencies pervade the landscape of modern software develop-
ment. For example, in 2022 the average Java application depends on more than
40 third-party dependencies [29]]. Despite the myriad of advantages that package
managers offer, such as streamlining software reuse and simplifying dependency
management, their widespread adoption has introduced new challenges that devel-
opers must contend with [|30]]. Developers of software applications must effectively
overcome the challenges of managing these third-party dependencies [|31]] to avoid
entering into the so-called “dependency hell” [|32]]. These challenges relate to en-
suring high-quality dependencies [33]], keeping the dependencies up-to-date [34],
or making sure that heterogeneous licenses are compatible [|35]]. Consequently,
the effective management of software dependencies has become an indispensable
aspect of modern software development.

Dependencies are reusable software components that are commonly designed
for multiple uses and platforms [|36]]. For example, the Apache PDFBoOX li-
brary [[37] is a versatile and multi-functional project, serving a wide array of
features designed to run on various development environments. The PDFBOX APIs
enable developers to create, process, and extract content from PDF files, accom-
modating diverse use cases like text extraction, form filling, and PDF rendering.
This multi-functionality, while advantageous in providing diverse features and
capabilities to its users, often has an engineering cost. When used as a dependency
by another project, the Apache PDFBoX library may introduce a considerable
amount of unnecessary code, commonly referred to as “software bloat” [38]]. This
is because PDFBOX is designed to cater to numerous use cases and platforms,
many of which may not be relevant to a specific user. As a result, applications that
rely on the PDFBOX and other multi-purpose libraries may suffer from increased
code complexity, memory usage, longer compilation times, and larger distribution
package sizes, potentially affecting the overall performance and user experience
in its dependent applications.



1.1. SOFTWARE DEBLOATING

The problems associated with the presence of software bloat aggravates as
developers rely more on pre-existing code. The number of dependencies used in a
project can quickly add up, resulting in large amounts of unnecessary code [39]].
Moreover, the excess of code not only takes up more disk space but can lead
to a number of problems, such as a higher risk of software vulnerabilities [[40],
increased memory usage [[41]], and longer build times [42]]. Additionally, as
software dependencies are often updated independently of the main project, it
can be difficult to keep track of the version of dependencies that a project relies
on and this could be a potential source of bugs [21]]. As the challenges associated
with the phenomenon of software bloat escalate, researchers are turning their
attention to innovative solutions to mitigate its negative effects.

1.1 Software Debloating

To address the phenomenon of software bloat, researchers are exploring a tech-
nique known as “software debloating,” which aims to remove unnecessary code
and features from software applications. Effectively debloating software involves
addressing three key challenges: 1) detecting the bloated code, 2) removing it,
and 3) assessing that the debloated artifact preserves its original behaviour. The
first challenge entails a thorough examination of the codebase and the software
development lifecycle to pinpoint areas containing unnecessary or redundant
code [[43]]. The second challenge involves surgically removing the bloated code
through code-specific transformation techniques [44]]. Finally, assessing the va-
lidity of the debloated artifact requires comprehensive testing and validation to
ensure that the removal of bloated code has not introduced new errors or ad-
versely impacted the application’s functionality, performance, or reliability [45]].
By effectively executing these tasks, developers can create leaner, more efficient
software, and ensure a better user experience.

Detecting code bloat is notably difficult due to the intricacies and complex-
ities associated with modern software systems. Identifying the unnecessary or
redundant code segments requires a deep understanding of the application’s
functionality, its dependencies, and the relationships between different code com-
ponents. Bloated code might be intertwined with essential functionalities, making
it difficult for developers to discern which parts are truly unnecessary. Current
techniques to detect code bloat rely on static [43]] and dynamic [46]] program
analysis to accurately determine the code segments contributing to bloat. Although
they are effective in most circumstances, often difficulties arise due to the dynamic
features that modern programming languages and libraries may include, such

7



CHAPTER 1. INTRODUCTION

as reflection, dynamic loading, or runtime code generation [47]]. These features
make it challenging to determine the precise set of code segments that are used
or unused at runtime, complicating the debloating process [[48]]. Moreover, the
effectiveness of these techniques may be limited by factors such as the scalability
of the bloat detection algorithm, the use of code obfuscation tools in the target
application, or the lack of well-defined criteria for determining the targeting code
bloat. Consequently, researchers continue to explore new methodologies and tools
to enhance the accuracy and efficiency of techniques to effectively detect code
bloat.

Removing bloated code presents its own set of challenges, as the process
involves finding a way to eliminate the unnecessary code parts without com-
promising the necessary functionalities of the applications or introducing new
bugs [[49]. One significant challenge to this task lies in the interdependencies
present in complex software systems [50]. Software components are often tightly
interconnected, and removing a seemingly unnecessary piece of code (e.g. chang-
ing a single line of code in a configuration file) could inadvertently break other
parts of the application that depend on it, either directly or indirectly [51]]. On the
other hand, dependencies between code components may not always be immedi-
ately apparent, leading to the inadvertent removal of critical code. Consequently,
the act of removing bloated code might result in unintended side effects, such as
performance degradation, instability, or altered application behavior. To mitigate
these risks, developers must adopt sound code transformation techniques, coupled
with thorough testing to ensure that the debloating process does not introduce
unforeseen issues.

Assessing the integrity of a debloated artifact is another critical aspect of the
software debloating process that poses unique challenges [52]]. Ensuring that the
removal of the bloated code has not introduced new errors or adversely impacted
the application’s functionality, performance, or reliability requires comprehensive
testing and validation. Designing and executing a robust debloating assessment
mechanism that effectively covers all aspects of the application’s behavior can be
a time-consuming and resource-intensive task. Current debloating methodologies
depend on pre-existing applications’ test suites to assess the efficacy of the debloat-
ing approaches [53]. Nonetheless, false positives or negatives during the testing
process may result in unforeseen errors arising long after debloating has taken
place. Therefore, a thorough evaluation is required to ensure that all relevant
code paths are covered and that the removed code does not affect the application’s
functionality [54]]. Overall, researchers must ensure that debloating techniques do
not significantly impact the maintainability and readability of the code. Striking



1.2. DEBLOATING JAVA DEPENDENCIES

the right balance between removing the bloated code and preserving its integrity
and maintainability is still an open research endeavor.

1.2 Debloating Java Dependencies

In the context of this thesis, we investigate the use of debloating techniques to
remove the software bloat resulting from the addition of third-party dependencies.
Tackling software bloat within third-party dependencies poses unique challenges,
primarily due to the restricted influence that developers possess over the internals
of these libraries [|55], which complicates the process of identifying and removing
unnecessary code without altering the libraries’ binaries. Moreover, bloated code
resulting from the practice of code reuse can manifest at various granularity levels,
from entire software modules to individual lines of code, adding to the complexity
and time-consuming nature of the debloating process [56]]. Overcoming these
obstacles necessitates substantial engineering efforts, a thorough evaluation of the
debloated artifact, and a profound understanding of the target application and its
downstream dependencies.

In Java, as with many other programming languages, code reuse is a fun-
damental practice to increase developers’ productivity [|57, |39} |58]]. Package
managers, like MAVEN or GRADLE, streamline this practice by facilitating the task
of reusing dependencies hosted in external repositories [8]]. However, effectively
handling Java dependencies poses several challenges for developers [59]]. For
example, each package manager has its own unique set of protocols, tools, and
mechanisms that govern how dependencies are coordinated in software projects.
This means that developers must not only familiarize themselves with the specific
package manager’s syntax and conventions but also adapt their needs to its par-
ticular dependency resolution algorithms and dependency versioning schemes.
Furthermore, developers should also pay attention to the design choices made by
public software repositories hosting the dependencies they incorporate into their
projects For instance, software artifacts hosted in Maven Central are immutable,
once an artifact is uploaded and published, it cannot be removed or modified [[1]].
Consequently, Maven Central accumulates all the versions of all the dependencies
ever released there, and applications that declare a dependency towards a library
must ensure to pick the right version. Although MAVEN provides features allowing
developers to visualize the dependencies they utilize, managing dependency up-
dates proves challenging due to the intricate nature of dependency trees [21]]. For
example, MAVEN could benefit from mechanisms that ascertain whether a declared

9



CHAPTER 1. INTRODUCTION

dependency is truly essential for the project using it [2]]. These complexities and
challenges associated with dependency management contribute significantly to
the emergence of code bloat in the Java ecosystem.

We have observed that code bloat is a prevalent issue that can emerge when
utilizing Java dependencies. To alleviate its detrimental effects, developers need to
carefully consider the dependencies they incorporate, ensuring that only those vital
to the project are included [43]]. For instance, when using functionalities from the
Apache PDFBoOX library, developers should assess their specific requirements and
only add the necessary features into their project [60]. If the project solely involves
extracting text from PDF files, there is no need to include the entire PDFBOX
library [[61]]. In this case, by selectively incorporating only the relevant modules
or classes for text extraction, developers can effectively reduce software bloat. In
addition, developers should also be aware of the different available versions of a
dependency, and use the most recent and stable one to avoid vulnerabilities and
issues associated to dependency conflicts [|62].

Several software debloating techniques have been proposed to reduce the
size and complexity of applications through the removal of unnecessary third-
party code. For Java, various debloating techniques have emerged in the last
two decades. Most of these techniques rely on static analysis [[63]] and dynamic
analysis [48]] to detect code bloat. While static and dynamic code analysis have
shown promising results in identifying unused features [|64] and other types of
bloat in Java applications, there is still a need to extend their applicability to
third-party libraries. Thus, as new software features and libraries are developed,
debloating techniques must continue to evolve to keep up with the ever changing
landscape of modern software development.

On the other hand, when undertaking the process of debloating a software
project, t is essential to consider the potential impact on clients who will reuse its
code as a dependency [65]]. The removal of seemingly unnecessary or redundant
code could inadvertently break the functionality of dependent projects if they rely
on the removed parts in their codebases. This interdependency between several
client projects can create challenges to the debloating efforts, as developers must
carefully balance the need to optimize their software while ensuring the continued
functionality of clients that rely on their code [66]]. Despite some progress in this
area, there is still work to be done to fully debloat Java applications and reduce
their overall size and complexity. Comprehensive assessment of the debloating
results, as well as communication with the clients of the projects, are essential in
this context, as they help ensure that the debloating process does not compromise
the stability, functionality, or performance of the dependent software applications.
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1.3 Problem Statements

According to the discussions above, we identify three key problems to be
addressed in the field of software debloating in Java:

e P1: The pervasive practice of software reuse, fueled by the increase in the sup-
ply of software dependencies leads to dependency bloat in the Java ecosystem.

e P2: Most of the code shipped with the used dependencies is unused by the
dependent software projects.

e P3: Debloating software libraries could affect the clients that depend on these
libraries, and the extent of such an impact is currently unclear.

1.4 Summary of Thesis Contributions

The essence of this thesis is on tackling the code bloat that arises as a result of
the increasing complexity in software systems. The problems listed above repre-
sent the various facets of this phenomenon for a particular software ecosystem:
the Java MAVEN ecosystem. In particular, our contributions focus on the fact that
current debloating techniques for Java lack the ability to detect and remove code
bloat coming from third-party dependencies. To overcome the existing limitations,
we propose novel debloating techniques that prioritize minimally invasive changes
in the dependency tree of software projects, thereby making it easier for developers
to adopt them. Unlike existing debloating methods that focus on producing leaner
binaries and enhancing the precision of static and dynamic program analysis for
debloating, our contributions are centered on a different aspect. We target the
removal of code originating from the software supply chain of third-party libraries,
which we have identified as a fundamental source of code bloat. This not only
contributes to enhancing the maintainability of the applications, but also reduces
the attack surface and improves the projects’ build performance. By leveraging the
developers’ familiarity with build systems, we implement debloating techniques
that can readily debloat Java applications at build time. the development of
MAVEN-based debloating tools has not only demonstrated significant value in
addressing this challenge, but also facilitated user adoption.

In this thesis, we make the following technical contributions to the field of software
debloating:
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e C1 Removing Bloated Dependencies: In order to address P1, regarding the
increase of dependency bloat in the Java ecosystem, we propose a software
debloating approach to help developers identify and remove bloated depen-
dencies in Java projects that build with MAVEN. Our approach is implemented
in a tool called DEPCLEAN, which automatically removes direct, transitive, and
inherited dependencies and produces a fully debloated version of the project’s
dependency tree. The corresponding paper is published in the journal Springer
Empirical Software Engineering [2]]. Moreover, armed with DEPCLEAN, we
performed a longitudinal study of bloated dependencies in the Java ecosystem.
We analyze the usage status of dependencies over time in order to determine
to what extent a bloated dependency is likely to be used in the future. Our
results are published as a conference paper in the Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering [|3]. We present C1 in details

in[Section 3.2

e C2 Specializing Used Dependencies: In order to address P2, we develop a
novel technique that specializes the individual dependencies in the dependency
tree to the specific needs of Java projects. We implement this technique
in a tool called DEPTRIM, which removes unused class files in third-party
dependencies of projects that build with MAVEN. The corresponding paper is
currently submitted to the journal IEEE Transactions on Software Engineering,
and the PDF preprint is available on arXiv [6]. We present the details of C2
in|Section 3.3

e C3 Debloating w.r.t. Clients: To address P3 regarding the lack of insights
about the impact of debloating libraries on their clients, we propose a novel
debloating technique based on dynamic analysis that relies on the collection
of execution traces from a diverse set of code-coverage tools to determine
which class members in the Java libraries and their dependencies are actually
necessary for their clients. We implement this technique in a tool called JDBL,
and assess the applicability of this debloating technique on a large collection
of Java libraries. The paper is published in the journal ACM Transactions on
Software Engineering and Methodology [4]. We discuss C3 in[Section 3.4

In addition to the technical contributions outlined earlier, this thesis also provides
valuable experimental findings and makes meaningful contributions to public
research.
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Table 1.1: Mapping of the contributions in this thesis to the appended research papers.

RESEARCH PAPERS
I II 11 Y \Y VI

CONTRIBUTIONS

(1] 021 031 (41 (51 (6]
C1 Removing Bloated Dependencies v 7/
C2 Specializing Used Dependencies v
C3 Debloating w.r:t. Clients v
C4 Reproducible Research v v v v v/

e C4 Reproducible Research: For each proposed technical contribution (C1, C2,
and C3), we design and carry out empirical studies that systematically assess
the effectiveness of our software debloating approaches. Our methodologies,
research protocols, and experimental outcomes serve as a valuable guide for
researchers interested in exploring dependency usage and developing software
debloating techniques in the future. Moreover, the datasets collected and
curated by the author of this thesis offer a solid foundation for additional
inquiries in this area. In support of open science, we share the complete source
code of our research tools, datasets, experiment scripts, and results on GitHub
and Zenodo.

provides an overview of the technical contributions presented in the
papers included in of this thesis. Each paper has a distinct emphasis on
the various technical contributions (C1, C2, and C3). Additionally, each technical
contribution is evaluated through rigorous experimental protocols, ensuring their
reliability and reproducibility. We have made a commendable effort in releasing
our proposed software solutions as open-source code, together with the associated
experiments and datasets, thereby promoting transparency and reproducibility
of our research. Overall, our papers contribute significantly to the field of soft-
ware debloating and dependency analysis in Java, offering experimental results,
research software prototypes, and datasets to further advance the field (C4).

1.5 Summary of Research Papers

This is a compilation thesis that includes six research papers, each of which
is summarized below. The papers are ordered based on the way in which the
contributions are presented in this thesis.
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Paper I: “The Emergence of Software Diversity in Maven Central”

César Soto-Valero, Amine Benelallam, Nicolas Harrand, Olivier Barais, and Benoit
Baudry
In Proceedings of the 16th International Conference on Mining Software Repositories
(2019)

Summary: The Maven Central repository is immutable, which means that any
artifact uploaded to Maven Central cannot be removed or altered, and upgrading a
dependency requires the release of a new version. As a result, Maven Central accu-
mulates all the versions of libraries published there, and any application declaring
a dependency on a library has the freedom to choose among any version of that
library. In this paper, we hypothesize that the immutability of MAVEN artifacts,
coupled with the flexibility of the clients to choose any version, is conducive to the
emergence of software diversity within Maven Central. To test our hypothesis, we
conduct an analysis of 1,487,956 artifacts, which represent all versions of 73,653
libraries. Our findings reveal that more than 30 % of libraries have multiple ver-
sions that are actively being used by the latest artifacts. For popular libraries, over
50 % of their versions are utilized. Moreover, more than 17 % of libraries have
multiple versions that are significantly more frequently used than others. Our
results demonstrate that the immutability of artifacts in Maven Central supports a
sustainable level of diversity among library versions in the repository. This paper
contributes to C4.

Own contributions: The author of this thesis wrote the paper and established all
technical results, with extensive feedback from discussions with the co-authors.

Paper II: “A Comprehensive Study of Bloated Dependencies in the Maven
Ecosystem”

César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry
Springer Empirical Software Engineering (2021)

Summary: The prevalent practice of software reuse, driven by the growth in
the availability of software dependencies, results in an accumulation of excessive
dependencies within Java projects. This problem, presented in P1 and discussed
in [Section 1.3} is known as dependency bloat. We propose a new technique,
implemented in a tool called DEPCLEAN, that automatically detects and removes
bloated dependencies in MAVEN projects. Bloated dependencies refer to third-
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party libraries that are included in the application binary, yet are unnecessary
for the application to function properly. DEPCLEAN detects bloated dependencies
by constructing a call graph of the Java bytecode class members by capturing
annotations, fields, and methods, and accounts for a limited number of dynamic
features such as class literals. DEPCLEAN produces a variant of the dependency
tree without bloated dependencies (i.e., a debloated pom.xm1). We evaluate DEP-
CLEAN both quantitatively and qualitatively. First, we analyze 9,639 Java artifacts
hosted on Maven Central, which include a total of 723,444 dependency relation-
ships. Our empirical results show that 75 % of the dependencies in Maven Central
are bloated (i.e., it is feasible to reduce the number of dependencies of MAVEN
artifacts to 1/4 of its current count). Our qualitative assessment of DEPCLEAN
with 30 notable open-source projects indicates that developers pay attention to
bloated dependencies when they are notified of the problem: 21/26 answered
pull requests proposing the removal of these dependencies were accepted and
merged by developers, removing 140 bloated dependencies in total. This paper
contributes specifically to C1.

Own contributions: The author of this thesis wrote the paper, implemented DEP-
CLEAN, and performed the experimental evaluation. The co-authors contributed
significantly to motivate the importance of removing “bloated dependencies” and
provided useful feedback during technical discussions.

Paper III: “A Longitudinal Analysis of Bloated Java Dependencies”

César Soto-Valero, Thomas Durieux, and Benoit Baudry
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (2021)

Summary: In order to address P1 regarding the uncertainty of developers when
coming across bloated dependencies, we perform a longitudinal study that delves
into the evolution and impact of bloated dependencies in the Java ecosystem.
We use DEPCLEAN to determine the usage status of dependencies (i.e., used or
bloated) across the the history of 435 Java libraries. This represents analyzing a
collection of 48,469 dependencies spanning a total of 31,515 versions of MAVEN
dependency trees. Our results indicate a steady increase of bloated dependencies
over time, with 89.2 % of direct dependencies labeled as bloated remaining as
such in subsequent versions of the studied projects. Our empirical evidence sug-
gests that developers can confidently remove bloated dependencies to streamline
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application performance. Additionally, we discovered novel insights regarding
the unnecessary maintenance efforts induced by dependency bloat. Notably, we
found that 22 % of dependency updates made by developers were performed on
bloated dependencies, and that DEPENDABOT, an automated dependency update
bot, suggests a similar ratio of updates on bloated dependencies. By contributing
these insights, we aim to inspire software developers to pay more attention to
their dependency trees and take immediate actions to address the issue of bloated
dependencies. This paper contributes to C1.

Own contributions: The author of this thesis wrote the paper in close collabora-
tion with co-authors. The author of this thesis led the work on the experimental
evaluation and the co-authors helped significantly with the data collection phases.

Paper IV: “Coverage-Based Debloating for Java Bytecode”

César Soto-Valero, Thomas Durieux, Nicolas Harrand, and Benoit Baudry
ACM Transactions on Software Engineering and Methodology (2022)

Summary: In order to address P3, related to the need for more knowledge re-
garding the impact of debloating software libraries for the clients that depend on
these libraries, we develop a new debloating technique based on dynamic analysis,
which we coined as “coverage-based debloating.” For its implementation, we
leverage state-of-the-art Java bytecode coverage tools to precisely capture which
class members of a Java project and its dependencies are necessary to execute a
specific workload. We implement this technique in a tool called JDBL. We use the
client’s test suite as a workload to remove code bloat and generate a debloated
version of the packaged libraries. The evaluation of JDBL using a dataset of 94
open-source Java libraries yielded that coverage-based debloating achieves the
removal of 68.3 % of the libraries’ bytecode and 20.3 % of their total dependencies
while maintaining the syntactic correctness and original functionality of the de-
bloated libraries. Furthermore, our results demonstrate that 81.5 % of the clients
with at least one test using the library successfully compile and pass their test
suite when the original library is replaced by its debloated version. Our technique
represents an advance in the field of software debloating using dynamic analysis.
We offer a research tool for addressing the challenges posed by software bloat
in modern Java application development. This paper contributes specifically to C3.

Own contributions: The author of this thesis wrote the paper, implemented JDBL,
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and performed the experimental evaluation with the help of co-authors.

Paper V: “The Multibillion Dollar Software Supply Chain of Ethereum”

César Soto-Valero, Martin Monperrus, and Benoit Baudry
IEEE Computer (2022)

Summary: The advent of blockchain technologies has sparked a flurry of activity
in the research community, coding enthusiasts, and serious investors over the past
decade. Ethereum, as the largest programmable blockchain platform to date, has
enabled the trading of cryptocurrency, facilitated the creation of digital art, and
ushered in a new era of decentralized finance through the use of smart contracts.
The operation of the Ethereum blockchain is supported by a complex network of
nodes, which rely on a vast array of third-party software dependencies, maintained
by various organizations. The reliability and security of Ethereum are therefore
directly influenced by these software suppliers. In this paper, we conduct a rig-
orous analysis of the software supply chain of third-party dependencies of BESU
and TEKU, the two major Java Ethereum nodes. Our results uncover the inherent
challenges in maintaining and securing the dependencies of both cutting-edge
blockchain software projects. This paper contributes to C4.

Own contributions: The author of this thesis wrote the paper and performed the
data analysis in close collaboration with co-authors. The original idea of the paper
is from co-authors.

Paper VI: “Automatic Specialization of Third-Party Java Dependencies”

César Soto-Valero, Deepika Tiwari, Tim Toady, and Benoit Baudry
Under major revision at IEEE Transactions on Software Engineering (as of February
2023)

Summary: In C1, we remove bloated dependencies entirely from the dependency
trees of MAVEN projects. However, the partial use of remaining dependencies indi-
cates potential for further reduction of third-party code. P2 focuses on addressing
the presence of this unused code in non-bloated dependencies. To tackle this
issue, we introduce a novel technique that specializes Java dependencies based
on their actual usage. We implement our technique in a tool called DEPTRIM,
which systematically identifies the required subset of each dependency’s bytecode
necessary for building the, eliminating the unnecessary code parts. DEPTRIM
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repackages the specialized dependencies and integrates them into the projects’ de-
pendency trees. We evaluate DEPTRIM with 30 notable open-source Java projects.
DEPTRIM specializes 86.6 % of the dependencies in these projects, successfully
rebuilding each with a specialized dependency tree. Through this specialization,
DEPTRIM removes 47.0 % of unused classes from the dependencies, decreasing the
ratio of dependency classes to project classes from 8.7 x in the original projects
to 4.4 x after specialization. Our results emphasize the relevance of dependency
specialization, as it can significantly reduce the share of third-party code in Java
projects. This paper contributes to C2.

Own contributions: The author of this thesis wrote the paper, implemented
DEPTRIM, and performed the experimental evaluation with the help of co-authors.

1.6 Thesis Outline

As a compilation thesis, this document consists of two parts. In [Part I} [Chapter 1|
introduces the problem of debloating Java dependencies and summarizes the
research papers included in this thesis that contribute to solving this particular
problem. presents a state-of-the-art of the field of software debloating
and discusses the novelty of our contributions. offers more details
regarding our technical contributions. [Chapter 4|concludes the thesis and discusses
the potential future work. of the thesis includes all the papers discussed in
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Chapter 2

State of the Art

“La perfection est atteinte, non pas lorsqu’il n’y a plus rien a ajouter, mais
lorsqu’il n’y a plus rien a retirer.”

— Antoine de Saint-Exupéry

OFTWARE bloat refers to code that is packaged in an application but is ac-
tually not necessary to run the application. In this chapter, we present an
overview of the phenomenon of software bloat in the software develop-

ment lifecycle and offer a comprehensive review of the most relevant research
papers in the field of software debloating, consolidating the necessary background
knowledge to comprehend our contributions. This consolidation of the literature is
essential for understanding the complexities and challenges associated to software
bloat, enabling researchers and practitioners to develop more effective debloating
techniques in order to improve software efficiency, security, and maintainability.
Our review involves a thorough examination of the pertinent published research
papers that investigate this subject. In particular, our investigation reveals that the
majority of the current literature can be categorized based on three fundamental
aspects: purposes for debloating, code analysis technique for debloating, and
granularity of the bloated code removal. We structure this chapter accordingly to
reflect these salient concepts.

In the last part of this chapter, we position our contributions to the field of
software debloating in relation to the most closely related tools and techniques.
This provides a more concrete understanding of the unique and novel aspects of
our contributions. In addition, we also draw attention to the current resources
available, such as tools and datasets, which can be utilized as groundwork or
benchmarks for forthcoming studies on software debloating.
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2.1 Code Bloat in the Software Engineering Lifecycle

Software systems have a natural tendency to grow in size and complexity over
time whether or not there is a need for it. This happens due to various factors such
as advancements in hardware [|56]], contemporary programming practices [67],
or sometimes for no apparent reason at all [|38]]. Consequently, software bloat
emerges as a result of the natural increase in software complexity [68], e.g.,
through the addition of non-essential features, bug fixes, or just by the accu-
mulation of useless code that adds up over time [69]]. This phenomenon has
several unfortunate consequences. For example, it needlessly increases the size
of the packaged software artifacts [38]], makes software harder to understand
and maintain [70]], increases the attack surface [[71]], and degrades the overall
performance [41]]. The existence of software bloat poses challenges in the soft-
ware development landscape. Therefore, it becomes increasingly important for
developers and researchers to devise efficient strategies to mitigate its adverse
effects for enhancing software quality.

Software bloat refers to code that is packaged in an application but is actually
not necessary to build and execute the application to provide a given functionality.

As software systems grow in size and sophistication, software stacks have also
evolved to be more intricate and layered [72]]. Modern applications are built on
top of runtimes, which are in turn built on top of operating systems that depend on
specific hardware architectures, and so on. Each layer adds its own set of features
and dependencies, which may not be essential to the correct execution of one
specific, user-facing application. Therefore, the escalating complexity throughout
the entire software stack contributes to the increase of software bloat, making room
for the introduction of unnecessary features, dependencies, and redundancies at
various stages of the software development lifecycle [73]l. In particular, software
bloat increases when building on top of software frameworks [[71]], as well as
with the practice of code reuse [74]. Moreover, software bloat accumulates across
the entire software system, leading to performance issues, increased memory
usage, and longer development and deployment times. This increasing level of
complexity across the software engineering lifecycle makes it more difficult for
developers to control the diverse components of applications [75]], which further
exacerbates the problem of software bloat.

illustrates the pervasive presence of software bloat throughout the
software engineering lifecycle. The figure highlights three crucial phases of this
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Figure 2.1: Presence of software bloat in the software engineering lifecycle when developing
and deploying a software application.

process: implement & communicate, build & check, and release & deploy (depicted
as green rounded rectangles). At the top of the figure, we represent dependencies
as reusable software components managed by package managers, such as MAVEN
for Java, NPM for JavaScript, and PIP for Python, which developers utilize during
all software development phases.

First, in the implementation phase, developers fetch dependencies from exter-
nal repositories to local repositories in order to reuse functionalities and expedite
the application development process. Upon the compilation of the developers’
source code, the second phase involves testing and building the application (i.e.,
packaging the application’s code along with the third-party code from dependen-
cies, generally resulting in a single binary file). When the binary file is prepared, it
is released and deployed into an execution environment, typically external servers
that provide abstraction and isolation for reliable and efficient application execu-
tion (e.g., cloud services powered by Docker and Kubernetes clusters).
also displays software development tools at the bottom, assisting developers in
each development phase (e.g., IDEs, build automation tools, IaC, monitoring tools).
For instance, in the case of a Java application, the Open JDK comprises the Java
Runtime Environment (JRE) and additional tools necessary for building a Java
application, including the Java compiler, debugger, and other development tools.

pinpoints three critical stages where software bloat appears, accord-
ing to our experience. First, software bloat can occur after the implementation
phase when developers include redundant source code or unnecessary features in
their software projects [[76]]. This can encompass bloat in the code directly written
by developers, as well as in the remaining configuration files required to build
and check the software application. Second, when the software is built, compilers
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and other tools may transform software artifacts (e.g., when adding the code from
third-party dependencies or inserting logging traces across the application for
monitoring purposes). This additional code transformations can be a significant
source of software bloat. In particular, compiled third-party dependencies are
fetched from external repositories, added entirely, and packaged alongside the
application’s binaries.

By reusing dependencies developers are able to build more complex and pow-
erful software systems with less effort. However, they can substantially contribute
to software bloat, particularly when developers rely heavily on code coming from
third-party libraries and frameworks. Furthermore, we observed that software
repositories themselves may contain unnecessary or redundant dependencies. For
example, each dependency is available in multiple versions, and each version
contains its own set of downstream dependencies [[1]. On the other hand, it is
important to note that although the hardware layer supporting the running appli-
cation is not a direct contributor to software bloat, more powerful hardware can
encourage software developers to incorporate potentially bloated features [[77].

As depicted in the engineering lifecycle of software applications
is adversely affected by increased exposure to software bloat. This results from
the challenges in identifying and eliminating redundant or unnecessary code
within the numerous development phases and the inherent complexity of modern
software systems. For example, one of the causes of software bloat is known as
“feature creep,” where software developers add new functionalities to software
applications without considering their impact on the overall size and efficiency
of the application [|78, |79, |80]]. We observe that the practice of code reuse can
inadvertently contribute to increased software bloat. This practice can lead to the
accumulation of unnecessary code and features that bloat the software and make
it more difficult to maintain and optimize. Another cause of software bloat is code
duplication, where developers copy and paste code without considering its rele-
vance or impact on the overall software structure [81]]. Furthermore, developers
have limited control over certain stack components, such as the operating system
or hardware, making it challenging to eliminate code bloat from these sources.
Therefore, it is essential for developers to proactively address and manage the
sources of bloat that are within their control, mitigating its adverse effects on the
deployed software applications.

Software bloat affecting applications has been a widely-discussed topic in
software engineering research. Numerous research papers have investigated
the causes and consequences of software bloat, proposing various code removal
techniques to eliminate unnecessary code and optimize software performance.
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Specifically, software bloat has been identified as a significant challenge con-
cerning software size, maintenance, performance, and security. Recent studies
have concentrated on measuring the impact of software bloat across the software
stack, encompassing user-level programs [36]], OS kernels [|82]], and virtual ma-
chines [[45]]. Other research efforts have focused on elucidating the implications
of software bloat on global energy consumption [[44} 83} 84]]. Lately, the research
community has shown interest in examining the effects of software bloat on the
software supply chain of dependencies [|31]], as it can contribute to increased
complexity, diminished performance, and vulnerabilities [[50]. In summary, the
research findings demonstrate that software bloat is widespread and significant,
affecting a substantial portion of code throughout the software development life-
cycle. This situation is a unique opportunity for researches to develop innovative
techniques for software debloating.

2.2 Related Work on Software Debloating

To address the issue of software bloat, various debloating techniques have been
proposed in the research literature. One prevalent approach involves using static
program analysis methods to identify unused or redundant code within compiled
software applications [43]], followed by code transformations and synthesis to
remove these parts. Another approach employs dynamic analysis tools, which
instrument and execute the application using a workload to detect code areas
unnecessary for the workload execution [85]], subsequently removing them. More
recently, researchers have suggested employing a combination of both static and
dynamic analysis techniques to enhance the accuracy and completeness of the
bloat detection process. The effectiveness of the debloating task is enhanced when
focusing on pinpointing code areas causing performance problems or consuming
excessive resources.

Software debloating is the process of automatically detecting and removing
software bloat across the software development lifecycle.

Despite the existence of debloating techniques, removing code bloat is an
active research field in software engineering. Automatic debloating software poses
three key challenges: 1) determining the location of the bloated parts [79], 2)
removing these parts effectively [86]], and 3) ensuring that debloated artifacts
preserve the original behavior and provide useful features [|85]]. One major
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Figure 2.2: Overview of the methodology that we followed to find, categorize, and tabulate
the state-of-the-art research papers on software debloating.

incentive for debloating is the complexity of modern software applications [|87],
which often consist of thousands or even millions of lines of code, leading to
increasing technical debt [67]]. This technical debt contributes to code bloat as
developers may prioritize addressing urgent tasks or implementing new features
over refactoring and optimizing existing code, resulting in the accumulation
of redundant, unnecessary, or inefficient code segments [|72]]. Identifying and
removing bloated code in such large-scale applications can be a daunting task,
demanding significant time and resources from practitioners. Additionally, the
interdependencies between different parts of software applications can make it
difficult to remove code without breaking other parts of the software stack that
serves the application.

Software debloating is a widely studied topic in the software engineering
domain. In the the following, we present a comprehensive literature review on
this topic. To provide a solid foundation for understanding the current state of
research on software debloating, we first identify a list of papers covering the
area according to a set of specific criteria. In particular we focus on papers in
which a software debloating tool is proposed or an experiment to address software
bloat is performed. We have read the selected papers carefully to consolidate
a comprehensive knowledge of the field. Based on our analysis, we identified
three aspects that characterize the state-of-the-art on this topic, which we propose
as part of our contribution: (i) the objective or purpose of the debloating task,
(i1) the code analysis technique employed to detect and remove code bloat, and
(iii) the granularity at which the bloated code is removed. Our literature review
highlights the more relevant tools and techniques, as well as the granularity at
which bloat is addressed, based on this categorization.

Figure 2.2|illustrates the main steps of the methodology that we adopt in
order to find the most relevant related work as of early 2023. Throughout the
development of this thesis, we have been surveying the state-of-the-art, and now
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we aim to consolidate a comprehensive list of relevant work using the methodology
described as follows.

First @, we curated a list of keywords after careful consideration of the software
debloating research field. Then, we search for relevant research papers using these
keywords in three prominent databases: Scopus, WoS, and Google Scholar. Second
9, we filter the list of papers obtained based on our expertise in the software
debloating domain, ensuring that only the most relevant ones were included in
further analysis. After filtering, we manually organize the papers by author names,
venue of publication, title, and programming language used. Then, we categorize
the papers based on their main debloating purposes, code analysis techniques
employed, and granularity of the code removal approach. This categorization
process facilitates a comprehensive analysis of the papers and helps identify trends
and patterns among the previous contributions to this research field. Finally ©,
we organize and tabulate the relevant resulting papers, presenting a thorough and
up-to-date overview of software debloating.

presents the comprehensive list of research papers on software
debloating published between 2002 and 2022. The table encompasses all the
categories previously mentioned, offering a clear and detailed insight into the
research landscape. By following the methodology outlined earlier, we provide
an extensive overview of the pivotal research papers in this domain. We believe
that this compilation could serve as a valuable resource for researchers and
practitioners interested in the field of software debloating.

As a result of our analysis of papers published in various venues (column
VENUE), we observe that previous works on software debloating propose diverse
techniques, each tailored to a specific programming language (column PL). No-
tably, significant efforts have been dedicated to debloating C/C+ + executable
binaries, while debloating approaches for programming languages other than
C/C++, Java, and JavaScript are almost nonexistent in the literature. In this
context, we observe that the debloating process operates on programs that have
already statically compiled and linked dependencies [88),|85]], disregarding the
bloat that arises from other aspects of the software engineering lifecycle, e.g., from
the usage and reliance on package managers. We also note that the majority of
debloating efforts primarily focus on reducing program size, with less emphasis on
improving maintainability (column PURrP.). This imbalance in focus leads to the un-
intended consequence of creating software that is smaller in size but still difficult to
maintain, update, and extend, ultimately hindering long-term software quality and
manageability. Most works predominantly rely on static analysis to detect unreach-
able code, such as [[89], [63]], and [64], which is the most frequently employed
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technique (column ANLYS.). Regarding debloating granularity (column GRAN.),
a considerable amount of work is dedicated to removing bloat at the applications’
fine-grain levels. However, we observe that there is a limited amount of research on
debloating code from third-party dependencies introduced across various stages of
the software development lifecycle. In the subsequent sections, we provide a more
detailed overview of the key research papers for each of the distinguishing cate-
gories: debloating purpose, code analysis technique, and debloating granularity.

Table 2.1: Categorization of research papers on software debloating (years 2002 — 2022).

REF. VENUE TITLE PL PURP. ANLYS. GRAN.
[90] FSE Cimplifier: automatically debloating containers C/C++ size dynamic Docker
containers

[91] TOSEM Guided feature identification and removal for C/C++ size dynamic features
resource-constrained firmware

[92] FEAST CARVE: Practical security-focused software de- C/C++ size dynamic features
bloating using simple feature set mappings

93] GECCO Removing the Kitchen Sink from Software C/C++ size dynamic features

[94] SIGPLAN Automatic feature selection in large-scale C/C++ size dynamic features
system-software product lines

[85] USENIX RAZOR: A Framework for Post-deployment Soft- C/C++ size dynamic instruc-
ware Debloating tions

[95] TECS Honey, I shrunk the ELFs: Lightweight binary C/C++ size hybrid libraries
tailoring of shared libraries

96| SAC Automated software winnowing C/C++ size static functions

197 DIMVA BinTrimmer: Towards static binary debloating C/C++ size static instruc-
through abstract interpretation tions

98] ICSE Perses: Syntax-guided program reduction C/C++ size static tokens

[42] FMICS Wholly!: a build system for the modern software C/C++ size,  perfor- dynamic packages
stack mance

[99] CCs Effective program debloating via reinforcement C/C++ size,  perfor- static features
learning mance

100} EuroSec Configuration-driven software debloating C/C++ size, security dynamic features

1791 ASE TRIMMER: application specialization for code C/C++ size, security dynamic features
debloating

[101] FEAST TOSS: Tailoring online server systems through C/C++ size, security dynamic features
binary feature customization

[[102] CO- Code specialization through dynamic feature C/C++ size, security dynamic instruc-

DASPY observation tions

[103] USENIX LIGHTBLUE: Automatic profile-aware debloat- C/C++ size, security static features
ing of bluetooth stacks

88| USENIX Debloating software through piece-wise compi- C/C++ size, security static features
lation and loading

[104] DTRP Large-scale debloating of binary shared libraries C/C++ size, security static functions

[[105]] ASPLOS One size does not fit all: security hardening C/C++ size, security static instruc-
of mips embedded systems via static binary de- tions
bloating for shared libraries

[106] ASIACCS Pacjam: Securing dependencies continuously C/C++ size, security static packages
via package-oriented debloating

[107] NIER Program debloating via stochastic optimization C/C++ size, security static statements

[108] ACSAC Nibbler: debloating binary shared libraries C/C++ size, security static libraries

[[109] PLDI Blankit library debloating: Getting what you C/C++ size, security, dynamic features,
want instead of cutting what you dont performance functions

Continued on next page
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Table 2.1: Categorization of research papers on software debloating (years 2002 — 2022). (Continued)

53] TSE Trimmer: An automated system for C/C++ size, security, hybrid instruc-
configuration-based software debloating performance tions
(1100 CCS Binary control-flow trimming C/C++ size, security dynamic features
[111) USENIX DECAF: Automaticlasses, adaptive de-bloating C/C++ size, security static instruc-
and hardening of COTS firmware tions
[112] FSE Cachetor: Detecting cacheable data to remove Java performance dynamic collections
bloat
[113) ISMM A bloat-aware design for big data applications Java performance dynamic objects
[44] ECOOP Reuse, recycle to de-bloat software Java performance dynamic objects
[114] PLDI Detecting Inefficiently-Used Containers to Avoid Java performance hybrid objects
Bloat
[115] OOPSLA Combining concern input with program analysis Java performance static statements
for bloat detection
[781 TSE Xdebloat: Towards automated feature-oriented Java size dynamic features
app debloating
[116] MOBILE- Identifying features of android apps from exe- | Java size dynamic features
Soft cution traces
[117] SCP Slimming a Java virtual machine by way of cold Java size dynamic JVMs
code removal and optimistic partial program
loading
(48] FSE JShrink: In-Depth Investigation into Debloating Java size hybrid functions,
Modern Java Applications methods,
classes
[55] FSE Binary reduction of dependency graphs Java size static classes
[118] ISSRE RedDroid: Android application redundancy cus- | Java size static classes,
tomization based on static analysis methods
[89] TOPLAS Practical extraction techniques for Java Java size static functions,
methods,
classes
[63] COMP- JRed: Program customization and bloatware Java size, security, static classes,
SAC mitigation based on static analysis maintenance, methods
performance
[119] CCs Dissecting Residual APIs in Custom Android Java size, security static APIs
ROMs
[70] SIEP Piranha: Reducing feature flag debt at Uber Java size, mainte- | static features
nance
[64] HASE Feature-based software customization: Prelimi- | Java size, security static features
nary analysis, formalization, and methods
[120] WWwW Unnecessarily Identifiable: Quantifying the fin- | JS size dynamic browser
gerprintability of browser extensions due to extensions
bloat
[180] IST Slimming JavaScript applications: An approach JS size hybrid functions
for removing unused functions from JavaScript
libraries
[121] TSE Evolving JavaScript code to reduce load time JS size static source
code
[122] TSE Momit: Porting a JavaScript interpreter on a JS size,  perfor- | dynamic features
quarter coin mance
[46] EMSE Stubbifier: debloating dynamic server-side JS size, security, hybrid functions
JavaScript applications performance
[123] CCs Slimium: debloating the chromium browser JS size, security static features
with feature subsetting
[124] USENIX Mininode: Reducing the Attack Surface of JS size, security static files
Node.js Applications
[125] EISA JSLIM: Reducing the known vulnerabilities of JS size, security static functions
JavaScript application by debloating
[126] ACSAC DeView: Confining Progressive Web Applica- | JS size, security dynamic APIs
tions by Debloating Web APIs
[127] OOPSLA Detecting redundant CSS rules in HTML5 appli- | CSS maintenance static statements

cations: a tree rewriting approach
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Maintenance
Q: Is it possible removing code
bloat to make software more easy to

Size
Q: Is it possible reducing the size of
code while preserving the original

functionalities? change?
Software
debloating
purposes
Performance Security

Q: Is it possible removing
unnecessary functionalities to make
software faster?

Q: Is it possible decreasing the
attack surface through the removal
of unnecessary code?

Figure 2.3: Illustration of the four main purposes for software debloating and their respective
relevant research questions.

2.2.1 Purposes for debloating

We found that there are four key objectives of debloating that are widely ac-
knowledged in the software engineering community: reducing applications’ size,
improving their performance, enhancing their security, and making software easier
to maintain and update. depicts these objectives along with their
corresponding critical research questions. In the following sections, we explore
each of these purposes in detail.

Debloating for code size reduction

A primary goal of debloating software is to minimize its size. Bloated software can
consume substantial disk space and bandwidth, posing challenges for users with
limited storage or slow internet connections. By removing unnecessary code and
other resources, debloated software artifacts can be accommodated on smaller
devices and transferred more swiftly, resulting in improved download and upload
times for users. From an engineering standpoint, smaller applications require
fewer build resources, potentially reducing deployment costs and mitigating build
errors [|128].

Significant research effort has been directed towards reducing software size by
removing unused API members, as there is evidence that a considerable proportion
of API members are not widely used [14], e.g., many classes, methods, and fields of
popular Java libraries are provided but they are not used in practice [[129]]. Seminal
work by Tip et al. [89]] presents a set of techniques for reducing the size of Java
applications. They propose a uniform approach for modeling dynamic language
features and supplying additional user input through a modular specification
language, reducing the class file archives of Java programs to 37.5% of their
original size. Pham et al. [[130]] implement a bytecode-based analysis tool to learn
about the actual API usage of Android frameworks. The empirical evaluation
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based on 200 K Android apps shows that most APIs usages are confined to a
limited set of functionalities, which can be effectively learned and predicted to
offer highly accurate API recommendations. Hejderup [[131] study the actual
usage of modules and dependencies in the Rust ecosystem and propose PRAZI, a
tool for constructing fine-grained call-based dependency networks for the Cargo
package manager [[132]]. Using PRAZI, the authors found that packages call only
40 % of their resolved dependencies, which emphasizes the need of reducing the
size of those dependencies. Ladmmel et al. [[133] perform a similar large-scale
study on API usage based on the migration of Abstract Syntax Trees (AST) code
segments. Other studies have focused on understanding how developers use
APIs on a daily basis [66, [134]]. Some of the motivations include improving API
design [135]], reducing the amount of dependency code [[14], and increasing
developers’ productivity [[136]]. Agadakos et al. [[108]] propose NIBBLER: a system
that identifies and erases unused functions within shared libraries. NIBBLER works
in tandem with defenses like continuous code re-randomization and control-flow
integrity, enhancing them without incurring additional runtime overhead. The
authors developed and tested a prototype of NIBBLER on x86-64 Linux. NIBBLER
reduces the size of shared libraries and the number of available functions by up to
56 % and 82 %, respectively in a set of real-world programs.

Beyond APIs, the reduction of Docker container sizes has the advantage of
decreasing the amount of data that needs to be transferred during applications’
deployment or scaling, ultimately leading to lower network traffic and associated
costs. In this context, the work of Rastogi et al. [90] specifically targets container
debloating. They introduce a tool called CIMPLIFIER, designed to address bloat
concerns in Docker containers by utilizing user-defined constraints. CIMPLIFIER
partitions containers into streamlined, isolated units that communicate only when
necessary and include solely the essential resources for their functionalities. Eval-
uations performed on popular DockerHub containers indicate that CIMPLIFIER not
only preserves the original functionality but also significantly reduces image sizes
by up to 95 %, efficiently processing even large containers in under 30 seconds.

Insights on Debloating for Code Size Reduction

Despite significant progress in software debloating for reducing code size, there
is still ample opportunity for further research and development in this area.
For example, exploring innovative debloating techniques for a broader range of
programming languages and focusing on debloating dependencies can lead to
more effective and efficient size reductions across various software ecosystems.
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Debloating for performance improvement

Debloating software not only reduces size but also enhances its performance.
Bloated software frequently includes redundant or unnecessary code, leading to
slower execution due to increased resource consumption. For instance, in Java,
class initializers might create unused objects, resulting in higher memory usage
and unnecessary overhead at runtime [[137]]. Eliminating such language specific
code initializers through debloating could streamline Java applications, enabling
faster execution times and improving overall performance, ultimately benefiting
users.

Runtime bloat could significantly impair the performance and scalability of soft-
ware systems. Xu and Rountev [114]] introduce static and dynamic analysis tools
for identifying inefficient container usage in Java programs. Their experiments
reveal notable performance optimization opportunities for statically-identified
containers, particularly those with high memory allocation frequency at runtime.
Bhattacharya et al. [44] concentrate on detecting bloat arising from the tem-
porary creation of containers and String objects within loops and propose a
source-to-source transformation for efficient object reuse. The proposed method
substantially reduces temporary object allocations and execution time, especially
in programs with high churn rates or memory-intensive demands. Bhattacharya et
al. [115]] suggest leveraging feature information in program analysis to estimate
the propensity to execute bloated code chunks in Java programs with optional
concerns. The proposed approach enables the identification of specific statements
likely causing bloat, which reveals the negative impact of optional features on
runtime performance.

A large body of debloating techniques focuses on reducing applications build
time. Celik et al. [[138] present MOLLY, a build system to lazily retrieve dependen-
cies in Continuous Integration (CI) environments and reduce build time. They
show that MOLLY can speed-up the build time 45 % on average compared to the
standard MAVEN build pipeline for a set of studied projects. Yu et al. [[139]] in-
vestigated the presence of unnecessary dependencies in header files of large C
projects. They proposed a graph-based algorithm to statically remove unused code
by pre-processing dependencies at the program units level, resulting in minimized
build time. Nguyen and Xu [[112] propose a novel runtime profiling tool called CA-
CHETOR, which uses dynamic dependence profiling and value profiling to identify
and report operations that generate identical data values, addressing the runtime
bloat issues affecting modern object-oriented software by identifying optimization
opportunities for performance improvement. Gelle et al. [[42]] present WHOLLY,
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a tool designed to achieve reproducible and verifiable builds of optimized and
debloated software that runs uniformly on traditional desktops, the cloud, and
IoT devices. WHOLLY uses the clang compiler to generate LLIVM bitcode for all
produced libraries and binaries to allow for whole program analysis, specialization,
and optimization. Furthermore, it uses Linux containers to ensure the integrity
and reproducibility of the build environment.

Insights on Debloating for Performance

Although various techniques have been developed to reduce runtime bloat and
optimize build times, further research is needed to explore new methods and en-
hance existing ones for even better performance gains. By continuing to investi-
gate debloating strategies, the software engineering community can effectively
tackle performance-related challenges, ensuring faster, more efficient software
and building systems that ultimately benefit users and developers alike.

Debloating for security enhancement

Bloated software can contain hidden vulnerabilities that hackers can exploit to
gain unauthorized access to systems and steal sensitive data. By removing unnec-
essary code and eliminating redundant features, software debloating can reduce
its attack surface and improve its overall security. For example, the “Heartbleed”
vulnerability [[140], discovered in 2014 in the OpenSSL cryptographic software
library, was caused by a buffer over-read vulnerability in OpenSSL’s implementa-
tion of the Transport Layer Security (TLS) protocol’s heartbeat extension. Using
software debloating techniques to remove unused or rarely used features, such
as the heartbeat extension [105]], can reduce the attack surface and make the
codebase easier to audit and more secure for its clients.

Significant work has focused on decreasing the attack surface of program bina-
ries compiled to LLVM bitcode. Brown and Pande [92]] propose CARVE, a simple
yet effective security-focused debloating technique that utilizes static source code
annotation to map software features, introduces debloating with replacement
and removing vulnerabilities in four network protocol implementations across
12 scenarios. CARVE eliminates the need for advanced software analysis during
debloating and reduces the overall level of technical sophistication required by
the user when compared with other tools. Ghaffarinia and Hamlen [|110] in-
troduce a new method for automatically reducing the attack surfaces of binary
software by removing unwanted or unused features, even in the absence of formal
specifications or metadata, through a combination of runtime tracing, machine
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learning, in-lined reference monitoring, and contextual control-flow integrity
enforcement, resulting in low overhead and successful elimination of zero-day
vulnerabilities. Koo et al. [[100] propose a software debloating approach to miti-
gate the proliferation of code reuse attacks. The proposed debloating technique
reduces the number of instruction sequences that may be useful for an attacker
and eliminates potentially exploitable bugs. This approach is configuration-driven
and removes feature-specific code that is exclusively needed only when certain
configuration directives are specified, which are often disabled by default. The
technique identifies libraries solely needed for a particular functionality and maps
them to certain configuration directives, so feature-specific libraries are not loaded
if their corresponding directives are disabled.

The prevailing goal of reducing the number of gadgets (a.k.a. features) avail-
able in a software package to reduce its attack surface and improve security has
received significant interest from researchers and practitioners [|88]. Decreasing
the number of gadgets available in a software package reduces its attack surface
and makes mounting gadget-based code reuse exploits, such as those based on
return-oriented programming (ROP), more difficult for an attacker [|53]. Brown
and Pande [45]] propose new metrics based on quality rather than quantity for
assessing the security impact of software debloating. They show evidence that the
process of software debloating can effectively reduce gadget counts at high rates.
However, it may not effectively constrain an attacker’s ability to fabricate an exploit.
Furthermore, in certain situations, the reduction in gadget count may obscure
the introduction of new quality gadgets, leading to a worsening of security rather
than an improvement, such as in smartphone applications [[141]]. Koishybayev
and Kapravelos [[124] discuss the use of JavaScript as a programming language
for both client-side and server-side logic, enabled by Node.js and its package
manager, NPM. The paper introduces MININODE, a static analysis tool for Node.js
applications that measures and removes unused code and dependencies, which
can be integrated into the building pipeline of Node.js applications to produce
applications with significantly reduced attack surface. MININODE was evaluated by
analyzing 672 K Node.js applications, identifying 1,660 vulnerable packages, and
successfully removing 2,861 of these packages while still ensuring builds succeed.
More recently, Oh et al. [[126] propose a tool called DEVIEW for reducing the
attack surface of progressive web applications (PWAs) by blocking unnecessary
but accessible web APIs. DEVIEW tackles PWA debloating challenges through
record-and-replay web API profiling and compiler-assisted browser debloating,
maintaining original functionality and preventing 76.3 % of known exploits on
average.
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Insights on Debloating for Security Enhancement

There remains a substantial amount of work to be done on debloating for
security purposes, particularly in addressing vulnerabilities arising from third-
party dependencies, which are known sources of security issues [[142]]. As
the research has shown, there is potential for further exploration in this area,
including enhancing security by mitigating gadget-based code reuse exploits,
refining metrics for assessing the impact of debloating on long-term security,
and improving the safety of software that relies heavily on code reuse.

Debloating for maintenance

Bloated software can be more difficult to maintain and update, particularly if it
contains redundant or poorly designed code. Debloating software projects can
improve maintainability resulting in better overall software quality and developers
satisfaction [[143]]. For example, current web applications include a large set
of JavaScript files, some of which contain code that is never executed. Part of
this code may have been added during the development process, but it is no
longer needed for the application to function correctly [[126]. Removing these
unnecessary JavaScript files would decrease the size of the application, and with
less code to worry about, developers can more easily understand and modify
the codebase, which can reduce the amount of time it takes to make changes or
fix bugs. In addition, debloated software can also lead to a more reliable and
stable application because there are fewer opportunities for bugs or errors to be
introduced [[144]]. Smaller codebases are also easier to test and can have faster
testing times, which can lead to faster release cycles and more frequent updates
and deployments.

There is scarce research work on the use of debloating for maintainability
purposes. Jiang et al. [63] use a set of well-known code complexity metrics,
including Chidamber and Kemerer (CK) object-oriented metrics [[145]], to assess the
impact of debloating on code quality. They found that debloating can help reduce
code complexity and increase code quality, but the degree of these improvements
depends on the program’s design and the nature of the application functions.
Hague et al. [127] introduce an approach to detect redundant CSS rules in
HTMLS applications by using an abstraction based on monotonic tree-rewriting,
establishing the precise complexity of the problem, and proposing an efficient
reduction to an analysis of symbolic push-down systems that yields a fast method
for checking redundancy in practice, with demonstrated efficacy. They show
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that code complexity is significantly reduced. Ramanathan et al. [[70] presents
PIRANHA, an automated code refactoring tool that generates differential revisions
to remove code related to stale feature flags. PIRANHA analyzes the program’s
ASTs to generate refactoring suggestions and assigns the diff to the author of the
flag for further processing before the application is landed. This tools has been
implemented in multiple apps within Uber for removing unnecessary features in
code written in Objective-C, Java, and Swift.

Insights on Debloating for Maintenance

Despite the existing evidence that debloating can improve code quality, reduce
its complexity, and facilitate faster release cycles, there remains a significant
need for more research to better understand its impact on maintainability. By
further investigating debloating techniques and their applications, the software
engineering community can work towards producing more maintainable, reli-
able, and efficient software systems that lead to higher user satisfaction and
better overall software quality.

2.2.2 Code analysis techniques for debloating

In the last few years, a range of techniques has been developed by researchers
to detect code bloat. Detecting code bloat is a challenging task as it requires the
identification of unnecessary code or code that is almost never executed, which
may be intertwined with necessary code segments that are often executed. Code
bloat may be caused by various factors, such as excessive code reuse, lack of
refactoring, or inadequate configurations, which makes it difficult to pinpoint a
specific source of bloat. Existing bloat detection techniques rely on static analysis,
dynamic analysis, or a hybrid approach that utilizes both techniques. Static
analysis is useful for detecting potential sources of code bloat by analyzing the
source code without actually executing it [146]. However, static analysis is more
conservative and may fail to identify certain types of code bloat, such as those
that are only apparent under specific conditions [[147, 148,149, 47]. On the other
hand, dynamic analysis techniques are more aggressive, and the accuracy of the
debloating heavily depends on the completeness of the workload employed.
Listing 2.1| shows a code example illustrating the challenges of using static
and dynamic analysis for debloating, specifically when dealing with the dynamic
features of the Java programming language. In this example, the method named
unusedMethod is never called (line [31)), and it could be safely detected and re-
moved by debloating techniques that rely on static analysis. However, static analy-
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import java.lang.reflect.Method;
import java.util.Scanner;

public class Foo {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);

try {
String className = "Foo';

String methodName = "greet";
String personName = scanner.next();
// Dynamically loading a class
Class<?> clazz = Class.forName(className);
// Dynamically invoking a method using reflection
Method method = clazz.getDeclaredMethod(methodName, String.class);
method. invoke(null, personName) ;

} catch (Exception e) {
// Catch the exception

}

}

// This method is invoked using reflection
public static void greetAlice(String name) {
if (name.equalsTo("Alice"){
System.out.println("Hello, " + name);
} else {
System.out.println("Sorry, I don’t know you");
}
}

// This method is never called and could be removed by debloating
public static void unusedMethod() {
System.out.println("This method is never used.");

}

Listing 2.1: Example of the challenges when using static and dynamic program analysis
techniques to detect code bloat in a Java program that uses reflection.

sis techniques struggle to accurately identify the dependencies and relationships
between classes and methods [[150] when reflection is used [[151]]. For example,
the class Foo is loaded via reflection (line and the method greetAlice is
invoked using reflection (line [15). Traditional static analyzers have difficulty
identifying the relationship between this method and its invocation, leading to
potential debloating errors. On the other hand, dynamic analysis involves the
execution of the code and can identify instances of code bloat that appear only
under specific conditions. Dynamic analysis techniques rely on the completeness
of the workload or test suite to identify which parts of the code are actually used
during execution. However, if the test suite or workload does not cover all possible
use cases [[152]], there is a risk that the debloating process might remove code
that is actually required in certain scenarios, leading to application failures when
removing too much code. In this case, the value of the variable personName de-
pends on the user-provided input (line[10), and therefore it is not possible to infer

35



CHAPTER 2. STATE OF THE ART

which branch of the if-else statement will be executed (line in all possible
cases. Notice that if the user-provided workload is the String Alice then line
is executed, otherwise line [26]is executed instead. Dynamic program analysis
may be computationally expensive as it requires executing the code, and may not
cover all code paths. Combining the dynamic and static analysis approaches can
improve the accuracy and efficiency of code debloating efforts.

It is worth noting that, while the Java compiler performs optimizations during
compilation, it typically does not remove unused methods at this stage [[137]]. The
Java Virtual Machine (JVM) and its Just-In-Time (JIT) compiler conduct more
extensive optimizations at runtime, such as inlining methods and eliminating
dead code. Nevertheless, these runtime optimizations usually do not remove
unused methods from the generated class files or JAR files. As a result, although
unused classes and methods may not impact the performance of the running
application, they still add to the size of the compiled binary files [[153]]. To
address this, debloating techniques and other post-compilation optimizations can
be utilized to remove unused code, minimize the binary size, and enhance the
overall maintainability of the codebase.

Debloating using static analysis

Using static analysis for debloating involves examining the source code of a
software application to identify potential sources of code bloat. Sources of bloat
include unused variables, functions, and classes, as well as code that is redundant
or can be simplified. Static analysis tools use a range of algorithms and heuristics
to identify code that can be removed or refactored, and some tools can even
suggest alternative implementations that can improve performance. An advantage
of static analysis techniques lies in their scalability and performance, as there is
no need to execute the code, which is an expensive task (e.g., when running tests
or building artifacts).

Most debloating techniques for C/C++ are built upon static analysis and are
conservative in the sense that they focus on detecting unreachable code (i.e.,
sections of a program’s code that can never be executed during the program’s
execution). Redini et al. [97]] propose BINTRIMMER, a tool to perform static
program debloating on binaries. The authors propose a novel abstract domain
technique, based on abstract interpretation, to improve the soundness of static
analysis to reliably perform program debloating. According to the evaluation,
BINTRIMMER is 98 % more precise than the related work. Malecha et al. [96]
propose “winnowing”, a static analysis and code specialization technique that uses
partial evaluation. The process preserves the normal semantics of the original
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program, that is, any valid execution of the original program on specified inputs is
preserved in its winnowed form. Invalid executions, such as those involving buffer
overflows, may be executed differently. Biswas et al. [102] propose ANCILE, a code
specialization technique that leverages fuzzing (based on user-provided seeds) to
discover the code necessary to perform the functions required by the user.

In the Java ecosystem, Jiang et al. [63]] propose JRED, a static analysis tool
built on top of the SOOT framework to automatically detect unused code from
both Java applications and the JRE. Additionally, the same authors present a novel
approach [64] for customizing Java bytecode through static dataflow analysis and
enhanced programming slicing, enabling developers to tailor Java programs based
on users’ requirements or remove redundant features in legacy projects. In the
context of Android applications, Jiang et al. [[118] conducts a comprehensive study
of software bloat, categorizing it into compile-time and install-time redundancy,
and proposes a static analysis-based approach for effectively identifying sources of
code bloat in Android applications.

Insights on Debloating using Static Analysis

Debloating using static analysis has proven to be an effective approach for
debloating software applications, providing scalability and performance ad-
vantages due to the absence of code execution. While existing tools such as
JRED, BINTRIMMER, and ANCILE have demonstrated success in debloating Java
and C/C++ applications, further research and development of debloating
techniques are necessary to expand their applicability and effectiveness. For
example, there is still room for improvement and innovation in developing
novel tools that not only address code bloat in compiled applications but also
tackle bloat issues related to configuration files and third-party dependencies.

Debloating using dynamic analysis

Using dynamic analysis for detecting code bloat involves running a software appli-
cation and monitoring its behavior to identify sources of code bloat. For example,
this technique can be used to identify code that is rarely executed, code that
consumes excessive resources, or code that can be optimized to reduce its size.
Debloating based on dynamic analysis techniques is more aggressive and could
remove reachable code [[154], i.e., the parts of an application that can be reached
statically but that may not be executed at runtime, within a specific period, in a
production environment. Dynamic analysis tools use a range of profiling and trac-
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ing techniques to monitor the execution of a software application, and some tools
can even automatically generate test cases to exercise code that is rarely executed.

In recent years, there has been a growing interest in developing debloating tech-
niques for program specialization using dynamic analysis. These techniques aim
to create smaller, specialized versions of programs that consume fewer resources
and reduce the attack surface Azad et al. [71]]. However, capturing complete and
precise dynamic usage information for debloating is challenging, especially at
scale, due to dynamic language features such as type-induced dependencies [[155]],
dynamic class loading [[149]], and reflection [47]]. Debloating techniques based
on dynamic analysis have been applied to various contexts, ranging from C com-
mand line programs [[103]] and JavaScript frameworks [80] to fully containerized
applications [90]]. Sun et al. [98]] propose PERSES, an approach that reduces
programs by exploiting their formal syntax and focuses on smaller, syntactically
valid variants, while Heo et al. [[99] presents a C program reducer based on the
syntax-guided Hierarchical Delta Debugging algorithm, which uses reinforcement
learning to aggressively remove redundant code and improve processing time.

Dynamic analysis-based debloating has led to several novel approaches, such
as the work by Landsborough et al. 93], which presents two distinct methods.
The first approach employs dynamic tracing to safely remove specific program
features but is limited to removing code reachable in a trace when an undesirable
feature is enabled. The second approach utilizes a genetic algorithm to mutate a
program until a suitable variant is found, potentially removing any non-essential
code for proper execution, but possibly breaking program semantics unpredictably.
Additionally, Sharif et al. [[79] proposes TRIMMER, a tool using dynamic analy-
sis to debloat applications based on user-provided configuration data, offering
application specialization benefits by eliminating unused functionalities within a
user-defined context. To further mitigate the construction of malicious programs,
Porter et al. [[109]] introduces a demand-driven approach to reduce dynamically
linked code surfaces by loading only the necessary set of library functions at
each call site within the application at runtime, leveraging a decision-tree-based
predictor and optimized runtime system.
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Insights on Debloating using Dynamic Analysis

Debloating using dynamic analysis has demonstrated potential in generat-
ing specialized, efficient programs and reducing attack surfaces, leveraging
runtime information. However, scalability challenges and the reliance on com-
prehensive workloads covering all use cases present significant barriers to its
widespread adoption. To improve these debloating techniques, research should
also concentrate on identifying code bloat in third-party dependencies, which
frequently contribute to increased application size and complexity.

Debloating using hybrid techniques

Using a hybrid approach for debloating involves combining both static and dynamic
analysis techniques to identify and remove code bloat. This approach typically
starts by executing static analysis to identify potential sources of code bloat and
then using dynamic analysis to refine the code removal phase or validate the
debloating results. Hybrid approaches for debloating can be more effective than
using either static or dynamic analysis alone, as they strike a balance between the
aggressiveness of dynamic analysis and the conservative advantages of static anal-
ysis. This allows for more comprehensive identification and removal of code bloat.

Bruce et al. [[48]] develop an end-to-end bytecode debloating framework called
JSHRINK. It augments traditional static reachability analysis with dynamic profiling
and type dependency analysis and renovates existing bytecode transformations
to account for new language features in modern Java. The authors highlight
several nuanced technical challenges that must be handled properly and examine
behavior preservation of debloated software via regression testing. Qian et al.
[[85]] introduces a debloating framework called RAZOR, which aims to reduce
the size of bloated code in deployed binaries without requiring access to the
program source code. RAZOR uses control-flow heuristics to infer complementary
code necessary to support user-expected functionalities and generates a functional
program with minimal code size. The framework has been evaluated on commonly
used benchmarks and real-world applications, showing that it can reduce over 70 %
of code from bloated binaries without introducing new security issues, making it a
practical solution for debloating real-world programs. Quach et al. [88]] introduce
a generic inter-modular late-stage debloating framework. It combines static
(i.e., compile-time) and dynamic (i.e., load-time) approaches to systematically
detect and automatically eliminate unused code from program memory. This can
be thought of as a runtime extension to dead code elimination. Unused code
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is identified and removed by introducing a piece-wise compiler that not only
compiles code modules (executables, shared resources, and static objects) but
also generates a dependency graph that retains all compiler knowledge on which
function depends on what other function(s).

Insights on Debloating using Hybrid Techniques

Debloating using hybrid approaches that combine static and dynamic analysis
techniques for debloating offer a balance between the aggressive nature of
dynamic analysis and the conservative benefits of static analysis. This can lead
to more comprehensive identification of code bloat. There is a growing need
to develop tools utilizing this approach and evaluate their effectiveness on
real-world software applications to further enhance the soundness of static
analysis for debloating purposes.

2.2.3 Granularity of debloating

One important aspect of debloating is the granularity at which it is performed. This
ranges from coarse-grained debloating of entire features or modules to low-level
debloating of individual program instructions or statements (as illustrated in

[ ure 2.4). The effectiveness of debloating at different levels of granularity depends
on the specific software application and the goals of the debloating process. For
example, coarse-grained debloating can be effective in removing a large amount
of software bloat in an application but it may also remove useful functionalities
for some particular users. On the other hand, fine-grained debloating can yield
removing more targeted code pieces but it could be time-consuming and more
challenging to implement. Multiple studies have been performed at different
debloating granularities. Overall, care must be taken when removing code at each
granularity level, as excessive removal may have unintended consequences that
could negatively impact the program’s behavior [[156]]. We discuss below the three
main levels: level debloating, fine-grained, and coarse-grained debloating.

Debloating at low-level

The lowest level of granularity in debloating is instruction-level debloating, which
involves identifying and removing individual source code pieces or program state-
ments that are not essential to the core functionality of the software application.
For instance, a particular instruction may have been added during the develop-
ment process for debugging purposes or to accommodate a particular hardware
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[Eg., Virtual Machines, operating systems, Docker containers, }

Coarse-grained applications, features, packages, collections, extensions, etc.

E.g., APIs, classes, functions, fields, compiled objects,
files, resources, etc.

E.g., Machine code, binary instructions, program
statements, source code tokens, etc.

Increasing impact of debloating

Figure 2.4: Granularity of debloating techniques and their impact according to the amount of
bloated code removed.

architecture, but may not be necessary for the program to function properly. By
removing such instructions, the size of the deployed code is reduced, which could
result in faster execution times and improved performance. Overall, low-level
debloating is challenging to implement due to the interdependencies between the
different components of the software stack.

Wagner et al. [[117]] present a method to mitigate the bloatware problem in
“always connected” embedded devices. Specifically, by storing the library code
in a remote server. The instructions that are needed will be downloaded on
demand. In addition, by applying some more sophisticated analysis, some library
code can be downloaded in advance before they are actually executed to improve
runtime performance. Morales et al. [[122]] proposes a multi-objective optimization
approach, called MOMIT, to miniaturize JavaScript apps to run on IoT devices
with limited memory, storage, and CPU capabilities, which reduces code size,
memory usage, and CPU time while allowing the apps to run on additional
devices. Xin et al. [[107] propose a general approach that allows for formulating
program debloating as a multi-objective optimization problem. The approach
defines a suitable objective function, so as to be able to associate a score to every
possible reduced program, and tries to generate an optimal solution (i.e. one that
maximizes the objective function). According to Ziegler et al. [95]], in the domain
of embedded systems, there is a significant shift towards adopting commodity
hardware and moving away from special-purpose control units in industrial sectors
such as the automotive industry and avionics. As a result, there is a consolidation
of heterogeneous software components to run on commodity operating systems
during this transition. They propose an approach towards lightweight binary
tailoring.

In addition, some studies have also examined debloating at the level of control
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flow and data flow techniques in order to generate smaller program variants [[110,
115,157, |158]. Control-flow debloating involves identifying and removing redun-
dant control structures such as loops or conditionals, while data-flow debloating
involves identifying and removing redundant data structures or data accesses.
Although these approaches have proven to be highly effective in reducing software
bloat and improving performance, they may require more sophisticated tools and
validation techniques.

Insights on Debloating at the Low Level

Debloating at low-level involves identifying and removing individual source
code pieces or program statements that are not essential to the core func-
tionality of the software application. Despite existing approaches, there is a
growing need for the development of more sophisticated tools that can tackle
debloating challenges at the level of control flow and data flow techniques in
order to generate smaller program variants. By creating and evaluating such
tools on real-world software applications, researchers can continue to improve
the efficiency and performance of software systems while reducing bloat.

Debloating at the fine-grained level

At a finer level of granularity, debloating can be performed at the level of API
members, such as classes, functions, or variables. This approach involves identify-
ing and removing entire classes or methods that are not used or are redundant
within the software application. Fine-grained debloating can be more effective
than lower-grained debloating in reducing software bloat, but it can also be more
time-consuming and require more manual effort.

Tip et al. [89]] explore extraction techniques, such as removing unreachable
methods, inlining method calls, and transforming the class hierarchy to reduce
application size, and introduces a uniform approach that relies on a modular
specification language called MEL for supplying additional user input for model-
ing dynamic language features and extracting software distributions other than
complete applications, while discussing associated issues and challenges with
embedded systems applications extraction. Vazquez et al. [|80] define the notion
of Unused Foreign Function (UFF) to denote a JavaScript function contained in de-
pendent libraries that are not needed at runtime. Also, they propose an approach
based on dynamic analysis that assists developers to identify and remove UFFs
from JavaScript bundles. The results show a reduction of JavaScript bundles of
26 %. Also for JavaScript, Turcotte et al. [46] present a fully automatic technique
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that identifies unused code by constructing static or dynamic call graphs from
the applications tests and replacing code deemed unreachable with either file- or
function-level stubs. If a stub is called, it will fetch and execute the original code
on-demand, thus relaxing the requirement that the call graph be sound. Kalhauge
and Palsberg [55]] presents a general strategy for reducing dependency graphs
in input such as C#, Java, and Java bytecode, which has been a challenge for
delta debugging. The authors present a tool called J-REDUCE, which achieves
more binary reduction and is faster than delta debugging on average, enabling
the creation of short bug reports for Java bytecode decompilers.

Insights on Debloating at the Fine-Grain Level

Most debloating approaches have focused on fine-grained debloating. There
is a growing need to improve the application of these techniques to other
programming languages and software ecosystems, as well as to debloat code
elements from third-party dependencies. To address this, researchers could
explore new strategies and tools that can effectively streamline dependency
graphs, while ensuring compatibility with different programming languages
and build systems.

Debloating at the coarse-grained level

At the coarsest level of granularity, debloating can be performed at the level of
entire features or modules. This approach involves identifying and removing
entire code segments that are not essential to the core functionality of the software
application. Coarse-grained debloating can be effective in reducing software bloat
and improving performance, but it may also lead to the removal of useful or
important functionalities.

Ruprecht et al. [[94] propose an automated approach for d tailoring the sys-
tem software for special-purpose embedded systems by completely removing
unnecessary features. The goal is to optimize functionality and reduce mem-
ory usage, as exemplified by the significant memory savings (between 15 % and
70 %) achieved in tailored Linux kernels for Raspberry Pi and Google Nexus 4
smartphones. Rastogi et al. [[90]] propose a technique for debloating application
containers running on Docker. They decompose a complicated container into
multiple simpler containers with respect to a given user-defined constraint. Their
technique is based on dynamic analysis to obtain information about application
behaviors. The evaluation on real-world containers shows that this approach
preserves the original functionality, leads to a reduction of the image size of up
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to 95 %, and processes even large containers in under thirty seconds. Chen et
al. [101]] presents an approach called TOSS that automates the customization of
online servers and software systems by identifying desired code using program
tracing and tainting-guided symbolic execution, and removing redundant features
through static binary rewriting to create a customized program binary. The ap-
proach was evaluated on M0OSQUITTO, and it successfully created a functional
program binary with only desired features, resulting in a significant reduction of
the potential attack surface.

Bu et al. [[113]] propose a bloat-aware design paradigm towards the develop-
ment of efficient and scalable Big Data applications in object-oriented GC-enabled
languages. It points out that the negative impact on performance caused by
bloatware has been significant on software specifically designed to handle large
amounts of data, such as GIRAPH and HIVE. Qian et al. [[123]] present SLIMIUM, a
debloating framework for the web browser CHROMIUM that harnesses a hybrid
approach for fast and reliable binary instrumentation. The main idea behind
SLIMIUM is to determine a set of features as a debloating unit on top of a hybrid
(i.e., static, dynamic, and heuristic) code analysis, and then leverage feature sub-
setting to code debloating. Starov et al. [120] investigate to what extent the page
modifications that make browser extensions fingerprintable are necessary for their
operation. By analyzing 58,034 browser extensions from the Google Chrome App
Store, they discovered that 5.7 % of them were unnecessarily identifiable because
of extension bloat. Agadakos et al. [[104] present NIBBLER: a system that identifies
and erases unused functions within dynamic shared libraries. NIBBLER works in
tandem with defenses like continuous code re-randomization and control-flow
integrity, enhancing them without incurring additional runtime overhead. NIBBLER
reduces the size of shared libraries and the number of available functions.

Insights on Debloating at the Coarse-Grain Level

Debloating at the coarse-grained level has shown promise in reducing software
bloat and improving performance. However, this approach may also lead to the
removal of useful or important functionalities. Future work should focus on
refining coarse-grain debloating techniques to maintain critical features while
still optimizing software systems, exploring the application of these methods to
various programming languages and software ecosystems, and evaluating their
effectiveness in real-world scenarios.
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Table 2.2: Comparison of existing Java debloating tools and techniques. TARGET is the type
of artifact considered for debloating: bytecode (B), or source code (S); ANALYSIS refers to the
type of code analysis performed for debloating: Static, Dynamic, or Hybrid; EXp. SCALE
counts the number of study subjects used to evaluate the technique; GRANULARITY is the
code level at which debloating is performed: field (F), method (M), class (C) or dependency
(D). The four columns in EVALUATION CRITERIA present the criteria used to assess the validity
the debloating technique: compilation (CoMmp.), test suite (TESTS), client applications
(CLIENTS), and human developers via pull requests (DEVS). The last column, OUTPUT, is the
outcome of the debloating techniques.

GRANULARITY EVALUATION CRITERIA
REF. TARGET | ANALYSIS | EXP. SCALE OUTPUT
| F M C D |Comp. TESTS CLIENTS DEVS
[63]l bytecode Static 9 libs X v v X v X X X Debloated JARS
[I55] bytecode | Dynamic 3 apps X X v X v v X X Debloated JARS
| [48] bytecode Hybrid 26 projects |V / /X v v X v Debloated JARS
C1[2] | src. code Static 30 projects | X X X V/ v v X v Debloated POMs
C2 [6] bytecode & Hybrid 30 projects | X X / V/ v v X X | Specialized POMs
src. code
C3 [4] | bytecode | Dynamic 395 libs X v v 7/ 4 v 4 X Debloated JARS
1,370 clients

2.3 Novel Contributions of This Thesis to Software Debloating

Similar to other software stacks, Java applications often suffer from the detrimen-
tal effects of software bloat. Part of this bloat comes with the addition of new
features, whereas another part is a result of reusing third-party dependencies. De-
pendency bloat negatively impacts the size of the applications, affects the project’s
maintenance, degrades performance, and potentially compromises security. To
address this issue, we propose propose various techniques for debloating Java
applications using code analysis techniques in order to detect and remove code
bloat from third-party dependencies. In the following, we proceed to highlight the
distinctive aspects of our contributions compared to the current state-of-the-art
debloating techniques for Java.

[Table 2.2|positions the research papers proposed in our contributions that come
along with a software tool (i.e., DEPCLEAN in C1 [2], DEPTRIM in C2 [6]], and
JDBL in C3 [4]]) in relation to the more related tools and techniques for software
debloating in Java (i.e., JRED in [63]], J-REDUCE in [55]], and JSHRINK in [48]]).
First, we note that all prior techniques focus on debloating Java bytecode rather
than targeting source code. This is because targeting Java bytecode offers a more
general and efficient method for bloat removal (e.g., enabling debloating for JVM
languages like Scala, Groovy, or Kotlin) while source code debloating introduces
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extra complexities associated to compilation inconsistencies. In contrast, our
tools DEPCLEAN and DEPTRIM focus on debloating dependency trees through
the analysis of dependency and the subsequent transformation of pom.xml files.
In addition to the technical contributions, we perform the first empirical study
that explores and consolidates the concept of bloated dependencies in the MAVEN
ecosystem and is the first to investigate the reaction of developers to the removal
of bloated dependencies.

Existing techniques for detecting code bloat in Java predominantly utilize
static and dynamic program analysis, with some employing hybrid approaches
to tackle potential issues arising from the Java dynamic language features. As
with our tools, existing debloating techniques primarily rely on static (JRED) and
dynamic (J-REDUCE) program analysis algorithms to detect code bloat. In the case
of JSHRINK, it adopts a hybrid approach to address the potential unsoundness
of static analysis for detecting used code. In the case of DEPTRIM, it implements
a novel variant of the hybrid approach in which the versions of the specialized
dependency trees are validated based on the results of the project’s tests when
building with the specialized version of the dependency.

With regards to the scale of our experiments, both DEPCLEAN and DEPTRIM
are assessed on a significant set of 30 notable MAVEN projects, surpassing the
scope of prior studies. It is important to note that each contribution requires the
projects to be built both before and after debloating, ensuring the integrity of the
build process and of the debloated artifacts. Remarkably, we evaluate JDBL on
395 libraries and 1,370 client applications, which is an order of magnitude larger
than previous work. JDBL stands as the pioneering debloating tool that utilizes a
large set of clients of the debloated software artifacts for validation purposes.

With respect to the granularity of the code bloat removal, state-of-the-art Java
tools focus on removing fields, methods, and classes. All prior tools excise classes,
with only JSHRINK targeting fields. Besides removing methods and classes, our
tools address bloat within third-party dependencies. For instance, DEPCLEAN
eliminates entirely unused dependencies, while DEPTRIM removes classes from
partially used dependencies in addition to discarding completely unused ones.

With respect to the debloat evaluation criteria, all previous works rely on
compilation and tests (except JRED). Both JSHRINK and DEPCLEAN also involve a
user evaluation with developers through pull requests. Utilizing developers via pull
requests serves as an effective evaluation assessment for software debloating, as it
leverages their expertise and familiarity with the codebase, ensuring the proposed
debloating changes are relevant, maintain functionality, and align with the project’s
objectives. Furthermore, JDBL remains the sole study that incorporates client
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applications’ tests to evaluate the debloated artifacts’ usability, extending beyond
the confines of the project’s scope.

In conclusion, a review of the literature on debloating for the Java ecosystem
reveals that previous analysis techniques focus on fine-grained debloating, such
as removing fields, methods, and classes. Although these existing debloating
techniques can be effective at reducing program size and improving performance,
they may not address all sources of code bloat, such as third-party dependencies
in libraries and frameworks. As pointed out in[Section 1.2} software dependencies
in Java projects are responsible for a large amount of the shared code size in
the compiled and packaged artifacts. Therefore, we identify a need to address
dependency-related bloat in addition to fine-grained debloating, in order to reduce
the overall size of a Java application and improve its performance, size, and
maintainability.

2.4 Summary

In this chapter, we introduce software bloat, a pervasive problem affecting all layers
of the modern software stack. We discussed how software bloat has emerged across
the software development lifecycle, needlessly increasing the size of software
applications, making them harder to understand and maintain, widening the
attack surface, and degrading the overall performance. This phenomenon is rooted
in several factors, including excessive code reuse, feature creep, code duplication,
and other human and technology-related factors. We identified various software
debloating techniques that have been proposed to mitigate software bloat at
different granularities. However, we observe that removing code bloat remains
a significant challenge due to the intricate nature and complexity of modern
software applications and their interdependencies. As software complexity and
feature richness continue to grow, tackling software bloat will remain a critical
research area in software engineering.
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Chapter 3

Thesis Contributions

“No te detengas avanza / Lucha prosigue y camina / Que el que no se
determina / Nada de la vida alcanza / Nunca pierdas la esperanza / De
realizar tus ideas / Cuando abatido te veas / Juega el todo por el todo
/ Y verds que de ese modo / Logrards lo que deseas / No le temas al
fracaso / Que el que por su bien batalla / No hay barrera ni muralla /
Que le detengan el paso / Camina y no le hagas caso / Al que te hable con
pesimismo / Busca la dicha en ti mismo / Como el hombre valeroso / Mira
que el hombre penoso / Nunca sale del abismo.”

— Mi abuelo, Un dia cualquiera hace afios

ITH the increasing complexity of Java applications and their reliance
on third-party libraries, debloating Java dependencies has become
an essential engineering task. In this chapter, we present the main

contributions of this thesis to address the problem of software bloat in the Java
ecosystem. We start with an overview of the MAVEN dependency management
system and of its essential terminology, which constitutes the foundation for
comprehending the technical contributions. As introduced in[Section 1.4} our work
contributes to the field of software debloating across three different aspects. First,
we provide a mechanism to detect and remove bloated Java dependencies, thereby
streamlining the dependency trees of software projects that build with MAVEN.
Second, we specialize used dependencies to reduce the amount of third-party
code, which yields even more benefits in terms of code size reduction. Finally,
we evaluate the impact of debloating Java libraries in relation to their client
applications through a novel coverage-based debloating technique, thus providing
valuable insights into the efficacy of this debloating technique. Furthermore,
we outline the tools and datasets we have contributed to promote reproducible
research in this field.
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1 <groupld>org.p</groupIld>
2 <artifactId>p</artifactId>

3 <version>0.0.1</version>
4 <packaging>jar</packaging>

3
4

5 ...

6 <dependencies>

7 <dependency>

8 <groupld>org.di</groupIld>

9 <artifactId>di</artifactId>

10  </dependency>

11 <dependency>

12 <groupld>org.d2</groupIld>
13 <artifactId>d2</artifactId>

14  </dependency>

15 <dependency> O Project code —>» Dependency relationship

16 <groupld>org.d3</groupIld>

17 <artifactId>d3</artifactId> O Direct dependency O Transitive dependency

18  </dependency>

19 </dependencies> Figure 3.1: Dependency tree from the

pom.xml file of [Listing 3.1} The project p

Listing 3.1: Excerpt of a MAVEN declares the direct dependencies dy, ds,
pom.xml file declaring three and d3. The dependencies d4, ds, and dg
dependencies: d1, dz2, and ds. are transitive dependencies of p.

3.1 Essential Dependency Management Terminology

MAVEN [25] is a popular package manager and build automation tool for
Java projects and other programming languages that compile to the Java Virtual
Machine (JVM), such as Scala, Kotlin, Groovy, Clojure, or JRuby. MAVEN is
primarily designed to handle the dependencies within a software project. In
addition to this crucial functionality, it also handles other tasks during the project
build process, such as testing, packaging, and deployment. We define the key
concepts associated with handling dependencies in the MAVEN ecosystem below.

Maven Project. We consider a project a collection of Java source code files and
configuration files organized to be built with MAVEN. A MAVEN project declares a
set of dependencies in a specific configuration file known as pom.xml (acronym for
Project Object Model), which is located in the project’s root directory. The pom.xml
contains specific metadata about the project construction, its dependencies, and
its build process. MAVEN projects are usually packaged and deployed to external
repositories as single artifacts (JAR files). shows an excerpt of the
dependency declaration in the pom.xml of a project p. In this example, developers
explicitly declare the usage of three dependencies: d;, d2, and d3. Note that the
pom.xml of a Maven project is a configuration file subject to constant change and
evolution: developers usually commit changes to add, remove, or update the
version of a dependency.

Maven Dependency. A MAVEN dependency defines a relationship between a
project p and another packaged project d € D. Dependencies are compiled JAR
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files, a.k.a. artifacts, uniquely identified with a triplet (G:A:V) where G is the
groupld, A is the artifactId, and V is the version. Dependencies are defined
within a scope, which determines at which phase of the MAVEN build cycle the
dependency is required (i.e., compile, runtime, test, provided, system, and
import). shows an example of dependency relationships. By declaring
a dependency towards d;, the project p states that it relies on some part of the
API of d; to build and execute correctly. Dependencies are deployed to external
repositories to facilitate reuse. Maven Central [28]] is the most popular public
repository to host MAVEN artifacts.

Direct Dependency. The set of direct dependencies Dgjree: C D of a project p is
the set of dependencies explicitly declared in p’s pom. xm1 file. shows the
direct dependencies in the first level of the dependency tree of p, i.e., there is an
edge between p and each dependency [d1, dz2, d3] € Dyirect- Direct dependencies are
declared in the pom.xml by the developers, who explicitly manifest the intention
of using the dependency.

Transitive Dependency. The set of transitive dependencies Dyansiive C D of a
project p is the set of dependencies obtained from the transitive closure of direct
dependencies. shows the transitive dependencies in the second level of
the dependency tree of p, i.e., there is an edge between the direct dependencies
of p and each dependency [d4, ds5,ds] € Duansitive- Transitive dependencies are
resolved automatically by MAVEN, which means that developers do not need to
explicitly declare these dependencies. Note that all the bytecode of these transitive
dependencies is present in the classpath of project p, and hence they will be
packaged with it, whether or not they are actually used by p.

Dependency Tree. The dependency tree of a MAVEN project p is a direct acyclic
graph that captures all dependencies of p and their relationships, where p is the
root node and the edges represent dependency relationships between p and the
dependencies in D. illustrates the dependency tree of the project p,
which pom.xml file is presented in [Listing 3.1] In this example, p has three direct
dependencies, as declared in its pom.xm1, and three transitive dependencies, as a
result of the MAVEN dependency resolution mechanism.

Maven Dependency Resolution Mechanism. To construct the dependency tree,
MAVEN relies on its specific dependency resolution mechanism [[159]]. MAVEN
resolves dependencies in two steps: 1) based on the pom.xml file of the project, it
determines the set of direct dependencies explicitly declared, and 2) it fetches the
JAR files of the dependencies that are not present locally from external repositories
such as Maven Central. Dependency version management is a key feature of
the dependency resolution mechanism, which MAVEN handles with a specific
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dependency mediation algorithm that avoids having duplicated dependencies and
cycles in the dependency tree of a project [[159].

Maven Dependency Graph. The Maven Dependency Graph (MDG) is a vertex-
labeled graph, where vertices are MAVEN artifacts (uniquely identified by their
G:A:V coordinates), and edges represent dependency relationships among them [|8]].
Formally, the MDG is defined as G = (V, £), where: V is the set of artifacts in the
Maven Central repository; and £ C V x V represent the set of directed edges
that determine dependency relationships between each artifact v € V and its
dependencies.

3.2 Contribution #1: Removing Bloated Dependencies

Our first contribution focuses on solving a specific challenge of dependency man-
agement: the existence of bloated dependencies. This refers to packages that are
included as dependencies in a sofwtare project, and therefore get included in its
dependency tree, but that are actually not necessary for building or running the
project We develop a technique to effectively assess the impact of bloated depen-
dencies across the entire MAVEN ecosystem, as well as to effectively eliminate
them within MAVEN projects.

3.2.1 Novel concepts

For a set of dependencies D, and in the context of a MAVEN project, we introduce
the concept of bloated dependency in [2] as follows:

Bloated Dependency. A dependency d € D in a software project p is said to be
bloated if there is no path in the dependency tree of p, between p and d, such that
none of the elements in the API of d are used, directly or indirectly, by p.

We found this type of dependency relationship between software artifacts
intriguing: from the perspective of the dependency management systems such as
MAVEN that are unable to avoid it, and from the standpoint of developers who
declare dependencies but do not actually use them in their applications. The major
issue with bloated dependencies is that the final deployed binary file includes more
code than necessary: an artificially large binary is an issue when the application is
sent over the network (e.g., web applications) or it is deployed on small devices
(e.g., embedded systems). Bloated dependencies could also embed vulnerable
code that can be exploited while being actually useless for the application [[160].
Overall, bloated dependencies needlessly increase the difficulty of managing and
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evolving software applications, thereby making it imperative for developers to
detect and remove them.

3.2.2 Bloat detection

The first task to eliminate dependency bloat is to detect bloated dependencies. Our
proposed solution entails performing an in-depth analysis of the usage relation-
ships among the class members of the entire dependency tree of MAVEN projects,
which enables us to determine the usage status of each individual dependency
(i.e., used or bloated). By doing so, we can identify if the dependency is used or
not, and take appropriate actions to remove bloated dependencies. We define the
usage status of a dependency as follows:

Dependency Usage Status. The usage status of a dependency d € D determines
if d is used or bloated w.r.t. to p, at a specific time of the development of p.

We implement dependency usage analysis in a software tool called DEP-
CLEAN [2]. DEPCLEAN builds a static call graph of the bytecode calls between the
class members of a compiled MAVEN project and its dependencies. To study the
distinctive aspects regarding the usage status of all dependencies in the depen-
dency tree of artifacts in the MAVEN ecosystem, we introduce a new data structure,
called the Dependency Usage Tree (DUT) as follows:

Dependency Usage Tree. The DUT of a project p, defined as DUT, = (V,£,V),
is a tree, whose nodes are the same as the MAVEN dependency for p and which
edges are all of the (p,p;), for all nodes p, € DUT,. A labeling function V
assigns each edge one of the following six dependency usage types: V : £ —
{ud, ui, ut, bd, bi, bt} such that:

ud, if dis used and it is directly declared by p

ui, if dis used and it is inherited from a parent of p
ut, if dis used and it is resolved transitively by p
bd, if d is bloated and it is directly declared by p

bi, if d is bloated and it is inherited from a parent of p

bt, if d is bloated and it is resolved transitively by p

Figure 3.2| shows an hypothetical example of DUT of a project p. Suppose
that p directly calls two sets of instructions in the direct dependency d; and the
transitive dependency dg. Then, the subset of instructions called in d; also calls

53



CHAPTER 3. THESIS CONTRIBUTIONS

=
@ o® D

e
,

@ ¢+ 0 OEORe

@8 Used API members  =)» Usage relationship

@@

O Used dependency <> Bloated dependency O Used dependency ~ —» Dependency relationship
Figure 3.2: Dependency usage tree of Figure 3.3: Debloated dependency tree
used and bloated dependencies after removing bloated dependencies with
corresponding to the dependency tree DEPCLEAN, based on the DUT of
presented in [Figure 3.1 Figure 3.2

instructions in dy4. In this case, the dependencies d;, d4, and dg are used by p,
while dependencies d2, d3, and d5 are bloated dependencies. For a MAVEN project,
DEPCLEAN constructs a DUT at build time and returns a report with the usage
status of each individual dependency.

Although bloated dependencies are present in the dependency tree of software
projects, bloated dependencies are useless and, therefore, developers should
consider removing them. In the next section, we discuss the approach implemented
in DEPCLEAN to remove bloated dependencies.

3.2.3 Bloat removal

A challenge when addressing bloated dependencies is to remove them from the
project without compromising the build’s success. Our solution relies on the
existing MAVEN dependency handling mechanisms to remove and exclude bloated
dependencies pom.xml files [[159]. DEPCLEAN generates as output a variant of the
pom.xml file with all the bloated dependencies removed. DEPCLEAN addresses
both direct and transitive dependencies by modifying the XML entry corresponding
to the bloated dependency. [Listing 3.2|shows an excerpt of the diff of such a change
in the pom.xm1 file for the example presented in Note that, in MAVEN,
there is two ways to remove bloated dependencies:

(i) If the bloated dependency is explicitly declared in the pom.xml, then we
remove its declaration clause directly (lines toin Listing 3.2));

(ii) If the bloated dependency is induced transitively from a direct dependency,
then we exclude it from the dependency tree (lines[5|to[10]in [Listing 3.2). This
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1 <dependencies>

2 <dependency>

3 <groupld>org.di</groupIld>

4 <artifactId>d1</artifactId>

5 <exclusions>

<exclusion>
<groupld>org.d5</groupld>
<artifactId>d5</artifactId>

</exclusion>

<exclusions>

11 </dependency>

<dependency>

<groupld>org.d2</groupld>

<artifactId>d2</artifactId>

o]
+ o+ o+ o+ o+

dg e

15 - </dependency>

16 e O Project code —> Dependency relationshij

17 -  <groupld>org.d3</groupld> ) pendoney P

18 - <artifactId>d3</artifactId> O Direct dependency (O Transitive dependency

19 - </dependency> —> Removed relationship +-» Direct inclusion

20 + <dependency>

21 + <groupld>org.d6</groupIld> 3 . : :

22 + <artifactId>d6</artifactId> Flgure 3.4: Transformations in the
23 + </dependency> dependency tree of p as a result of
24 </dependencies> the changes in the pom.xm1 file

Listing 3.2: Transformations indicated inListing 3.2

peformed in the pom.xml file of

to remove the bloated

dependencies d2, ds, and ds.

exclusion consists in adding an <exclusion> clause inside a direct dependency
declaration entry, specifying the groupId and artifactId of the transitive
dependency to be excluded. Excluded dependencies are not added to the
classpath of the compiled artifact by way of the dependency in which the
exclusion was declared.

Figure 3.3|shows the result of the modified dependency tree after using DEP-
CLEAN to remove bloated dependencies. illustrates the transformations
made to the dependency tree to reach this state. Note that the transitive depen-
dency dg was included as a direct dependency in the pom.xml (lines [20|to
because it is actually used by p, but the direct dependency d3 from which it is
induced is bloated and therefore removed. It is worth mentioning that during this
removal process, DEPCLEAN does not perform any modifications to the source code,
compiled bytecode, or configuration files in the project under analysis. DEPCLEAN
is specifically designed to be non-invasive for the project, ensuring that it does not
modify the build process while performing its debloating operations. The details
about this procedure are described in Algorithms 1 and 2 in ??.
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3.2.4 Debloating assessment

Assessing the impact of removing bloated dependencies is crucial to ensure that the
project build remains unaffected. It is equally important that the debloating pro-
cess aligns with the project’s requirements and makes sense from a practical stand-
point. We use DEPCLEAN to perform two types of assessments: a large-scale quan-
titative analysis of dependency bloat in the Maven Central repository, and a quali-
tative analysis of bloated dependencies in 30 MAVEN projects involving developers.

The quantitative assessment consists in measuring the amount of dependencies
that can be removed. For this we leverage the MDG from our previous research [8]]
to collect and analyze a large set of artifacts from Maven Central. We download
the JAR files of all the selected artifacts and their pom.xml files. We resolve all
their direct and transitive dependencies to our local repository and compute the
usage status of all dependency relationships for each artifact using DEPCLEAN. We
report the collected metrics and analyze how the specific reuse strategies of the
MAVEN package management system relates to the existence of software bloat.

The qualitative assessment consists in evaluating the relevance of the removal
of bloated dependencies in software projects. For this we systematically select
30 notable open-source projects hosted on GitHub and conduct an analysis of
dependency bloat. For each project, we use DEPCLEAN to analyze the dependency
tree and build the project with the debloated pom.xml file. If the project builds
successfully, we propose a corresponding change to the developers in the pom.xml
file in the form of a pull request. We engage developers in discussions regarding
the value of each pull request on GitHub and gather their feedback. Note that
although the submitted pull requests contain a small modification in the pom.xm1,
the amount of bloated code removed is significant.

DEPCLEAN operates under the premise that a bloated dependency at a given
time will consistently remain bloated, hence it makes sense to remove it. We
further explore the validity of this assumption in the context of Java projects. To
do so, we performed a longitudinal study of bloated dependencies and analyze
how the usage status of dependencies evolves over time, from used to bloated, or
vice versa. Our empirical assessment shows that our hypothesis holds: the large
majority of the bloated dependencies stay bloated in all subsequent versions of
the dependency trees of the studied projects.

3.2.5 Key insights

We use DEPCLEAN to analyze the 723,444 dependency relationships of 9,639 arti-
facts hosted in Maven Central. Our findings indicate that 75.1 % of these dependen-
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cies are bloated (2.7 % are direct dependencies, 57 % are transitive dependencies,
and 15.4 % inherited dependency relationships in pom.xml files). Based on these
results, we distill two potential causes of bloat in the Java MAVEN ecosystem: 1)
the cascade of bloated transitive dependencies induced by direct dependencies,
and 2) the dependency heritage mechanism in multi-module MAVEN projects.

We supplement our quantitative investigation of bloated dependencies with a
comprehensive qualitative analysis of 30 popular Java projects. We use DEPCLEAN
to examine the dependency trees of these projects and submit the derived results
as pull requests on GitHub for evaluation by developers. Our results indicated
that developers are willing to remove bloated-direct dependencies: 16 out of 17
answered pull requests were accepted and merged by the developers in their
codebase. On the other hand, we find that developers tend to be skeptical about
excluding bloated-transitive dependencies: 5 out of 9 answered pull requests
were accepted. Overall, the feedback from developers reveals that the removal of
bloated dependencies is clearly worth the additional analysis and effort.

We conduct a longitudinal analysis of dependency usage across 31,515 versions
of MAVEN dependency trees in 435 Java projects. Our findings provide evidence
of bloat stability: once bloated, 89.2 % of direct dependencies persist as bloated,
emphasizing the importance of bloat removal. Furthermore, we present evidence
indicating that developers expend unnecessary maintenance effort on bloated
dependencies. Our qualitative examination of the origins of bloated dependencies
uncovers that the primary contributing factor to this form of software bloat is the
addition of dependencies at the early stages of the project development.

Summary of Contribution #1

We conduct a systematic, large-scale study of bloated dependencies in the
MAVEN ecosystem. We implement a tool called DEPCLEAN, designed to au-
tomatically detect and remove bloated dependencies in MAVEN projects. We
found empirical evidence that dependency bloat is widespread among Java
artifacts within the Maven Central repository. Our study is the first to measure
the extent of dependency bloat on a large scale and perform a qualitative
assessment of the opinion of developers regarding the removal of bloated
dependencies. We found that developers are willing to remove bloated depen-
dencies to a large extend. Moreover, we demonstrate that a dependency, once
bloated, it is likely to stay bloated in the future.

&> This contribution is presented in Research Papers II [2] and III [3].
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3.3 Contribution #2: Specializing Used Dependencies

Our second contribution focuses on advancing the state-of-the-art of dependency
tree reduction by introducing an innovative technique that specialized depen-
dencies specifically to a project’s requirements. We implement this technique
in a tool called DEPTRIM, which systematically identifies and removes unused
classes across the dependencies of a MAVEN project. After debloating, DEPTRIM
repackages the used classes into a specialized version of each used dependency,
and substitutes the original dependency tree of a project with this specialized
variant. This approach enables building a minimal project binary containing only
the code that is relevant to the project, thereby optimizing resource utilization,
improving build performance, and reducing potential security risks associated
with unused code in third-party dependencies.

3.3.1 Novel concepts

We introduce the concept of specialized dependencies and specialized dependency
trees as follows:

Specialized Dependency. A dependency is said to be specialized with respect to
a project if all the classes within the dependency are used by the project, and all
unused classes have been identified and removed. Consequently, there is no class
file in the API of a specialized dependency that is unused, directly or indirectly, by
the project or any other dependency in its dependency tree.

Specialized Dependency Tree. A specialized dependency tree is a dependency
tree where at least one dependency is specialized and the project still correctly
builds with that dependency tree. This means that in at least one of the used
dependencies, unused classes have been identified and removed. A specialized
dependency tree may be one of the following two types:

e Totally Specialized Tree (TST): A dependency tree where all used dependencies
are specialized and the project build is successful.

e Partially Specialized Tree (PST): A dependency tree with the largest possible
number of specialized dependencies, such that the project build is successful.

We implement a tool called DEPTRIM that automatically generates a TST or
PST for MAVEN projects. DEPTRIM systematically identifies the required subset of
classes in each dependency that is necessary to build the project. The specialized
dependencies are repackaged and incorporated into the project’s dependency tree,
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yielding a tailored dependency tree specific to the project’s needs and require-
ments.

3.3.2 Bloat detection

In order to detect bloat in used dependencies, DEPTRIM relies on static analysis
to determine their API usage from the project compiled sources. This process
involves constructing a static call graph by utilizing the compiled dependencies
resolved by MAVEN and the compiled project sources. The call graph is generated
using the bytecode class members of the project as entry points. By leveraging
the API usage information from the static call graph, DEPTRIM can directly infer
and report class usage information from the bytecode, without the need to load
or initialize classes. The resulting report captures the dependencies, classes, and
methods that are actually used by the project, i.e., those that are reachable via
static analysis. This information is stored in data structure in order identify the
minimal set of classes in each dependency that are necessary to successfully build
the project.

Recalling the example of debloated dependency tree presented in
we observe that the debloated dependency tree of project p uses a subset of
the classes in dependencies d;, da, and ds (see [Figure 3.5). Therefore, these
dependencies could be specialized with respect to p, by detecting and removing
the unused classes.

The completeness of the call graphs is crucial for successful dependency spe-
cialization. If a necessary class member cannot be reached through static analysis,
DEPTRIM considers it unused and proceeds to remove it in a subsequent phase. To
overcome this limitation, DEPTRIM employs state-of-the-art static analysis tech-
niques of Java bytecode to capture invocations between classes, methods, fields,
and annotations (from the project and its direct and transitive dependencies). This
comprehensive approach ensures accurate detection of used and unused classes,
enabling the creation of a specialized dependency tree tailored to the project’s
requirements.

It is worth mentioning that that DEPTRIM also analyzes the constant pool of
class files to capture dynamic invocations from string literals, such as when loading
a class using its fully qualified name via reflection. The constant pool is a data
structure in Java class files that stores constants and symbolic references, including
literals and external references. By examining the constant pool, DEPTRIM can
identify instances of dynamically invoked classes, ensuring a more precise and
thorough dependency analysis. Moreover, the integration of DEPTRIM within the
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MAVEN build lifecycle further enhances the tool’s usability, making it a seamless
and convenient solution for developers to optimize their project dependencies.

3.3.3 Bloat removal

DEPTRIM receives as input a debloated dependency tree, such as the ones gener-
ated by DEPCLEAN. If the provided dependency tree is not debloated, DEPTRIM
determines which dependencies are bloated (i.e., there is no path from the project
bytecode toward any of the class members in the unused dependencies), and
removes them from the original pom.xml. Next, DEPTRIM proceeds to remove the
unused classes within non-bloated dependencies by analyzing the call graph of
static bytecode calls . Any class file from the dependencies that is not present in
the call graph is deemed unreachable and removed. Once all the unused class
files in a dependencies are removed, DEPTRIM qualifies the dependency tree as
specialized.

DEPTRIM downloads, unzips, and removes the unused compiled classes di-
rectly from the project dependencies at build time (i.e., during the MAVEN package
phase). Moreover, to facilitate reuse, DEPTRIM deploys each specialized depen-
dency in the local MAVEN repository along with its pom.xml file and corresponding
MANIFEST.MF metadata. After specializing each non-bloated dependency, DEPTRIM
produces a specialized version of the project’s dependency tree. For example,

shows the specialized dependency tree after removing unused classes from
the dependencies d;, ds, and d3 as presented in [Figure 3.5 In addition, DEPTRIM
produces a variant of the pom.xml file that removes the bloated dependencies
and points to the specialized dependencies instead of their original versions This
results in a TST or a PST for the project.

The output of the DEPTRIM is a set of specialized pom.xm1 files representing
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the dependencies of the project. These files encompass all the essential bytecode
and resources required for sharing and reusing functionalities among the packages
within the dependency tree. In particular, DEPTRIM takes care of keeping the
classes in dependencies that may not be directly instantiated by the project, but
are accessible from the used classes in the dependencies, with regard to the project.
The details about this procedure are described in Algorithms 1 in ??.

3.3.4 Debloating assessment

To assess the debloated dependency tree, DEPTRIM builds the totally specialized
dependency tree (TST or PST) of the project. All specialized dependencies replace
their original version in the project pom.xml. Then, in order to validate that the
specialization did not remove necessary bytecode, DEPTRIM builds the project, i.e.
its sources are compiled and its tests are run. If the build is a SUCCESS, DEPTRIM
returns this TST.

In cases where the build with the TST fails, DEPTRIM proceeds to build the
project with one specialized dependency at a time. Thus, rather than attempting to
improve the soundness of the static call graph, which is proven to be challenging
in Java [[161]], DEPTRIM performs an exhaustive search of the dependencies
that are unsafe to specialize. At this step, DEPTRIM builds as many versions of
the dependency tree as there are specialized dependencies, each containing a
single specialized dependency. DEPTRIM attempts to build the project with each
of these single specialized dependency trees. If the project build is successful,
DEPTRIM marks the dependency as safe to be specialized. In case the dependency
is not safe to specialize, DEPTRIM keeps the original dependency entry intact in
the specialized pom.xml file. Finally, DEPTRIM constructs a partially specialized
dependency tree (PST) with the union of all the dependencies that are safe to
be specialized. Then, the project is built with this PST to verify that the build is
successful. If all build steps pass, DEPTRIM returns this PST.

3.3.5 Key insights

We use DEPTRIM to generate specialized dependency trees for 30 notable open-
source Java projects. DEPTRIM effectively analyzes 35,343 classes across 467
dependencies in these projects. For 14 projects, it generates a dependency tree
where all compile its dependencies are effectively specialized. For the remaining 16
projects, DEPTRIM produces a dependency tree that includes all dependencies that
can be specialized without breaking the build, while leaving the others unmodified.
DEPTRIM specializes 86.6 % of the dependencies, removing 47.0 % of the unused
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classes from those dependencies. The specialized dependencies are deployed
locally as reusable JAR files. For each project, DEPTRIM generates a specialized
version of the pom.xml file, replacing the original dependencies with specialized
ones, ensuring that the project continues to build correctly.

We perform a novel assessment of the ratio of dependency classes compared
to project classes, based on actual class usages. We compute this ratio for the
30 original studied projects and found that it is 8.7, which is evidence of the
massive impact of code reuse in the Java ecosystem. We found that it is possible
to decrease this ratio of dependency classes to project classes through dependency
specialization with DEPTRIM, from 8.7x to 4.4x. This result confirms the rele-
vance of our approach in substantially reducing the share of third-party classes in
Java projects.

Summary of Contribution #2

We advance the state-of-the-art for dependency tree reduction through the
implementation of a specialization technique that tailors individual dependen-
cies to the specific requirements of a project. We implement an automated
tool, DEPTRIM, that analyses third-party dependencies of a MAVEN project to
remove the unused classes. DEPTRIM repackages the dependencies to create a
specialized version of the dependency tree at build time. We use DEPTRIM to
successfully specialize the dependency tree of 14 projects in its entirety, and 16
partially, reducing the number of third-party classes by 47.0 %. We found that
our specialization technique enables a reduction in the ratio of project classes
to dependency classes by a factor of two.

&= This contribution is presented in Research Paper VI [6].

3.4 Contribution #3: Debloating With Respect to Clients

Our third contribution goes one step further than any previous work on software
debloating and investigates how debloating Java libraries impacts the clients
of these libraries. We propose coverage-based debloating, a novel technique
to debloat projects based on coverage information collected at runtime. We
implemented this technique in a tool called JDBL, which precisely captures what
parts of a project and its dependencies are used when running with a specific
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workload. The goal is to determine the ability of dynamic analysis via coverage at
capturing the behaviors that are relevant for the clients of the debloated libraries.

3.4.1 Novel concepts

In this contribution, MAVEN projects are referred to as libraries, and the project
that reuses the library are called clients. We introduce a set of novel concepts
necessary for debloating libraries w.r.t. clients as follows:

Input Space. The input space of a compiled MAVEN project is the set of all valid
inputs for its public Application Programming Interface (API) that can be executed
by a client.

MAVEN projects provide API members, abstracting implementation details
to facilitate external reuse. Libraries generally provide public API members for
external reuse. However, there exist other dynamic reuse mechanisms that can
be utilized by Java clients (e.g., through reflection, dynamic proxies, or the use
of unsafe APIs). An effective way to determine which API members are reused is
trough the execution of a workload.

Project Workload. A workload is a set of valid inputs belonging to the input
space of a compiled MAVEN project.

Workloads play a crucial role in software debloating tasks that involve perform-
ing dynamic analysis. For instance, workloads are employed to identify unique
execution paths in software applications, similar to those performed for profiling
and observability tasks. These techniques focus on utilizing monitoring tools to
analyze the application’s response to various workloads at run-time, ultimately
contributing to a more efficient and streamlined software system. In this context,
by examining the application’s response to different workloads, it is possible to
generate execution traces.

Execution Trace. An execution trace is a sequence of calls between bytecode
instructions in a compiled MAVEN project, obtained as a result of executing the
project with a valid workload.

Given a valid workload for a project, one can obtain dynamic information
about the program’s behavior by collecting execution traces. We consider a trace
as a sequence of calls, at the level of classes and methods, in compiled Java classes.
These traces include the bytecode of the project itself, as well as the classes and
methods in third-party libraries.

Coverage-Based Debloating. Given a project and an execution trace collected
when running a specific workload on the project, coverage-based debloating
consists of removing the bytecode constructs that are not covered when running
the workload. Coverage-based debloating takes a project and workload as input
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and produces a valid compiled Java project as output. The generated debloated
project is executable and has the same behavior as the original, modulo the
workload.

3.4.2 Bloat detection

JDBL collects a set of coverage reports that capture the set of dependencies,
classes, and methods actually used during the execution of the Java project.
The coverage collection phase receives two inputs: a compilable set of Java
sources, and a workload, i.e., a collection of entry-points and resources necessary
to execute the compiled sources. The workload can be a set of test cases or a
reproducible production workload. The coverage collection phase outputs the
original, unmodified, bytecode and a set of coverage reports that account for
the minimal set of classes and methods required to execute the workload. The
collection of accurate and complete coverage is essential for coverage-based
debloating

3.4.3 Bloat removal

The goal of the bytecode removal phase is to eliminate the methods, classes, and
dependencies that are not used when running the project with the workload. This
procedure is based on the coverage information collected during the coverage
collection phase. The unused bytecode instructions are removed in two passes.
First, the unused class files and dependencies are directly removed from the
classpath of the project. Then, the procedure analyzes the bytecode of the
classes that are covered. When it encounters a method that is not covered, the
body of the method is replaced to throw an UsupportedOperationException. We
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choose to throw an exception instead of removing the entire method to avoid JVM
validation errors caused by the nonexistence of methods that are implementations
of interfaces and abstract classes.

Capturing the complete coverage of the classes that are necessary for executing
a workload is critical for bloated code removal. Failure to achieve this could result
in a debloated project that either fails to compile or, even worse, causes runtime
errors when client projects use debloated libraries. To collect precise coverage
information, we harness the diversity of code coverage tool implementations [|162]]
and the dynamic logging capabilities of the JVM. We process and aggregate the
coverage reports from JACOCO, JCov, YAJTA, and the JVM class loader. A class is
deemed covered if it is reported as used by at least one of these tools, ensuring
a comprehensive assessment of required classes for successful debloating. The
details about this procedure are described in Algorithms 1 in ??.

3.4.4 Debloating assessment

We analyze the impact of debloating Java libraries on their clients. This analysis is
relevant since we focus on debloating open-source libraries, which are primarily
designed for reuse in client applications. Moreover, this particular analysis offers
additional insights into the validity of the coverage-based debloating technique and
the effectiveness of JDBL. To validate the debloating from the clients’ perspective,
we conduct a two-layered assessment: a syntactic evaluation a semantic evaluation
of the clients. By performing these analysis, we can guarantee that the debloated
libraries preserve their functionality and compatibility, thus assessing the validity
of our debloating technique.

For syntactic assessment, we verify that the clients still compile when the
original library is replaced by its debloated version. We check that JDBL does
not remove classes or methods in libraries that are necessary for the compilation
of their client. As illustrated in we first check that the client uses the
library statically in the source code. To do so, we statically analyze the source
code of the clients. If there is at least one element from the library present in the
source code of a client, then we consider the library as statically used by the client.
If the library is used, we inject the debloated library and build the client again.
If the client successfully compiles, we conclude that JDBL debloated the library
while preserving the useful parts of the code that are required for compilation.

A debloated library stored on disk is of little use compared to a debloated
library that provides the behavior expected by its clients. Therefore, we also need
to determine if JDBL preserves the functionalities that are necessary for the clients.
As illustrated in we first execute the test suite of the client with the
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Figure 3.9: Experimental procedure to assess the impact of debloating a library on the clients
that use a subset of its functionalities.

original version of the library. We check that the library is covered by at least one
test of the client. If this is true, we replace the library with the debloated version
and execute the test suite again. If the test suite behaves the same as with the
original library, we conclude that JDBL is able to preserve the functionalities that
are relevant for the clients.

Building a sound dataset of clients that execute the libraries is challenging. To
ensure the validity of this protocol, we perform additional checks on the clients. All
the clients have to use at least one of the debloated libraries. We only consider the
clients that either have a direct reference to the debloated library in their source
code or which test suite covers at least one class of the library (static or dynamic
usage). The clients that statically use the library serve as the study subjects for
the syntactic assessment. The clients that have at least a test that reaches the
debloated library serve as the study subjects for the semantic assessment.

3.4.5 Key insights

We perform the largest empirical validation of Java debloating in the literature
involving 354 libraries and 1,354 clients that use these libraries. We evaluate JDBL
based on an original experimental protocol that assesses the impact of coverage-
based debloating on the libraries behavior, their size, as well as on their clients.
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Our results indicate that JDBL can reduce 68.3 % of the bytecode size and that
211 (69.9%) debloated libraries still compile and preserve their original behaviour
according to the tests.

We evaluate the usefulness of debloated libraries with respect to their client
applications. Our findings reveal that 81.5 % of the clients can successfully compile
and execute their test suites when replacing the corresponding dependency with a
debloated version of the library. These results demonstrate that the combination
of multiple coverage tools is effective in accurately capturing the code utilized at
runtime, ultimately showcasing the practicality of debloated libraries for client
applications.

Summary of Contribution #3

We propose a novel coverage-based debloating technique for Java applications.
This technique addresses one key challenge of debloating techniques based on
dynamic analysis: gathering precise and comprehensive coverage information
that comprises the minimal set of classes and methods required to execute a
program under a given workload. We conducted the most extensive empir-
ical validation of the applicability of a software debloating technique in the
literature, involving 354 libraries and 1,354 client applications. Our results
provide evidence of the massive presence of code bloat in those libraries and
the usefulness of our techniques to mitigate this phenomenon.

&= This contribution is presented in Research Paper IV [4].

3.5 Contribution #4: Reproducible Research

Reproducible research stands as a vital cornerstone of the scientific endeavor.
It plays an essential role in ensuring the validity and reliability of the research
findings. Given its importance, our fourth contribution focuses on the tools and
datasets that are part of the contributions of this thesis. These resources are of
utmost importance as they enable other researchers to reproduce the findings and
conclusions of our studies, validate the results, and build upon our work in future
research endeavors. By providing open access to the datasets and tools used, we
aim to promote transparency, accountability, and reproducibility for the best of
science.
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3.5.1 Software tools

Contributions C1, C2, and C3 in this thesis encompass a software tool engineered
to implement their respective debloating techniques In the following, discuss the
technical challenges associated with each tool, emphasizing their roles in fostering
reproducible research and advancing the field of software debloating in Java.

DEPCLEAN

DEPCLEAN is implemented in Java as a Maven plugin that extends the maven-
dependency-analyzer [[163]], which is actively maintained by the Maven team
and officially supported by the Apache Software Foundation. For the construc-
tion of the dependency tree, DEPCLEAN relies on the copy-dependencies and
tree goals of the maven-dependency-plugin. Internally, DEPCLEAN relies on the
ASM []164] library to visit all the class files of the compiled projects in order to
register bytecode calls towards classes, methods, fields, and annotations among
MAVEN artifacts and their dependencies. For example, it captures all the dynamic
invocations created from class literals by parsing the bytecodes in the constant
pool of the classes. DEPCLEAN defines a customized parser that reads entries
in the constant pool of the class files directly, in case it contains special refer-
ences that ASM does not support. This allows the plugin to statically capture
reflection calls that are based on string literals and concatenations. Compared to
maven-dependency-analyzer, DEPCLEAN adds the unique features of detecting
transitive and inherited bloated dependencies, and producing a debloated version
of the pom.xm1l file.

DEPCLEAN is open-source and reusable from Maven Central. DEPCLEAN is a
well-established project that adheres to sound engineering principles such CI/CD,
static analysis to ensure high code quality, and rigorous unit and integration
testing. it has been used to remove bloated dependencies in both open-source
and close-source projects, as well as for research purposes [40} |50} 165, |3].
As per January 2023, DEPCLEAN has 3.2 K lines of Java code, 394 commits, 12
contributors, and 155 stars [|[166]] on GitHub. We have done 9 releases to integrate
feedback from users and evolve with the new features of Java and MAVEN (e.g.,
to achieve compatibility with Java records and other MAVEN plugins). Its source
code is available at https://github.com/castor-software/depclean.

DEPTRIM

DEPTRIM is implemented in Java as a MAVEN plugin that can be integrated into a
project as part of the build pipeline, or be executed directly from the command
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line. This design facilitates its integration as part of the projects’ CI/CD pipeline,
leading to specialized binaries for deployment. At its core, DEPTRIM reuses
the state-of-the-art static analysis of DEPCLEAN, located in the depclean-core
module. DEPTRIM adds unique features to this core static Java analyzer by
modifying the bytecode within dependencies based on usage information gathered
at compilation time, which is different from the complete removal of unused
dependencies performed by DEPCLEAN. It uses the ASM Java bytecode analysis
library to build a static call graph of class files of the compiled projects and their
dependencies. The call graph registers usage towards classes, methods, fields, and
annotations. For the deployment of the specialized dependencies, DEPTRIM relies
on the deploy-file goal of the official maven-deploy-plugin from the Apache
Software Foundation. For dependency analysis and manipulation, DEPTRIM relies
on the maven-dependency-plugin. DEPTRIM provides dedicated parameters to
target or exclude specific dependencies for specialization, using their identifier
and scope.

DEPTRIM is open-source and reusable from Maven Central. As per Jan-
uary 2023, DEPTRIM has 1.1 K lines of code Java code, 119 commits, and 3
contributors. Its source code is publicly available at https://github.com/castor-
software/deptrim.

JDBL

The core implementation of JDBL consists in the orchestration of mature code
coverage tools and bytecode transformation techniques. The coverage-based
debloating algorithm is integrated into the different MAVEN building phases.
JDBL gathers direct and transitive dependencies by using the official maven-
dependency-plugin with the copy-dependencies goal. This allows JDBL to
manipulate the project’s classpath in order to extend code coverage tools at the
level of dependencies. As with DEPCLEAN and DEPTRIM, we rely on ASM [[164] a
lightweight, and mature Java bytecode manipulation and analysis framework for
the bytecode analysis, the detection of bloated classes, and the whole bytecode
removal phase. The instrumentation of methods and the insertion of probes for
usage collection are performed by integrating JACOCo0, JCoV, YAJTA, and the JVM
class loader within the MAVEN build pipeline.

JDBL is implemented as a multi-module MAVEN project with a total of 5.0 K
lines of code written in Java. JDBL is designed to debloat single-module Maven
projects. It can be used as a MAVEN plugin that executes during the MAVEN
package phase. Thus, JDBL is designed with usability in mind: it can be easily
invoked within the MAVEN build life-cycle and executed automatically, no ad-
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Table 3.1: Reproducible datasets for each of the appended research papers.

RESEARCH PAPER | DATASET URL ON GITHUB
I https://github.com/cesarsotovalero/msr-2019
I https://github.com/castor-software/depclean-experiments
11 https://github.com/castor-software/longitudinal-bloat
v https://github.com/castor-software/jdbl-experiments
\% https://github.com/chains-project/ethereum-ssc
VI https://github.com/castor-software/deptrim-experiments |

ditional configuration or further intervention from the user is needed. To use
JDBL, developers only need to add the MAVEN plugin within the build tags of
the pom.xml file. The source code of JDBL is publicly available on GitHub, with
binaries published in Maven Central. More information on JDBL is available at
https://github.com/castor-software/jdbl.

3.5.2 Reproducible datasets

All research papers in this thesis include a reproducible dataset specifically de-
signed for transparent and reliable research. shows the URL on GitHub
of the companion dataset for each research paper. The datasets comprise a diverse
range of technologies employed for data collection, analysis, and manipulation
(e.g.. Shell scripts, Java artifacts, R and Python notebooks, Docker containers, CSV
files, and JSON files). These datasets allow other researchers to independently
verify the results obtained. It also enables the development of new methods and
techniques that can be applied to the same dataset.

In addition to the datasets that come with each research paper, the author of
this thesis contributed to making available two additional datasets in the Data
Showcase track of the Proceedings of the IEEE/ACM International Conference on
Mining Software Repositories:

e The Maven Dependency Graph: a Temporal Graph-Based Representation of
Maven Central [8]].

e DUETS: A Dataset of Reproducible Pairs of Java Library—Clients [[13]].

These datasets play a valuable role in promoting reproducible research in the
field of Java dependency analysis. The technical challenges and benefits of both
datasets for the contribution of this thesis are discussed below.
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MDG

The Maven Dependency Graph (MDG) is a graph-oriented open-source dataset
that characterizes the artifacts present in Maven Central and their associated
dependency relationships. It represents a snapshot of the Maven Central Repository
from September 6, 2018. The MDG is implemented as a Neo4j graph database and
contains a total of 2.4 M artifacts and 9.7 M dependency relationships among them.
The MDG aims at enabling the Software Engineering community to conduct large-
scale empirical studies on Maven Central. The dataset is accessible on Zenodo at
https://zenodo.org/record/1489120.

The author of this thesis contributed to the creation of this dataset, including
engaging in discussions leading to its technical implementation and development.
The dataset has found utility in the author’s Research Papers I [1] and II [2].
Furthermore, the dataset has been effectively reused by other researchers [[14}
167,168, [169].

DUETS

The DUETS dataset consists of a collection of single-module Java libraries, which
build can be successfully reproduced with MAVEN (i.e., all the test pass and a
compiled artifact is produced as a result of the build), and Java clients that use
those libraries. DUETS includes 94 different libraries, with a total of 395 versions, as
well as 2,874 clients. The construction of this dataset involved filtering 147 K Java
projects and analyzing 34 K pom. xml files in order to identify relevant libraries and
clients that reuse version of these libraries. We take a special care to build a dataset
for which we ensure that both the library and the clients have a passing test suite.
The dataset is accessible on Zenodo at https://zenodo.org/record/4723387.

The contributions in this thesis involve executing software tools on compilable
and testable software projects, which we provide with DUETS. We use the DUETS
dataset for the evaluation of debloating techniques that rely on both static and
dynamic analysis. The dataset has found utility in the author’s Research Papers
III [13]], IV [[4]], and VI [|6]. Furthermore, the dataset has been effectively reused
by other researchers seeking to explore the effects of API changes on clients of
various libraries [170{171].
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Summary of Contribution #4

We contribute three new open-source research tools to the field of debloating
Java dependencies: DEPCLEAN, DEPTRIM, and JDBL. Each research paper
contributes experimental data and makes the results open. By sharing our
datasets and making this information widely accessible, we aim to facilitate
collaboration and knowledge sharing within the scientific community. Further-
more, we contribute two large Data Showcase datasets of Java dependencies.
Moreover, our contributions include two extensive Data Showcase datasets
of Java dependencies, which are essential for researchers and practitioners
seeking to explore various aspects of software engineering. These datasets
have been meticulously curated and pre-processed to ensure their quality and
usability, and we hope that they will be valuable resources for the community
for years to come. By following these reproducible research principles, we aim
to foster collaboration and trust in the scientific community and to advance
the field of software debloating.

&= This contribution is present in Research Papers I [[1]], IT [[2]], IIT [3]], IV [4]],
V [I51, and VI [6]].

3.6 Summary

In this chapter, we presented and discussed the contributions of this thesis. First,
we elucidated the terminology and concepts of dependency management in the
MAVEN ecosystem. Further, we described the technical challenges pertaining
to debloating which were targeted in each of our contributions, namely bloat
detection, bloat removal, and debloat assessment.

The first contribution focuses on removing bloated dependencies. We found
that 75% of the dependency relationships in Maven Central are bloated, and
that developers are willing to remove bloated dependencies: we removed 140
bloated dependencies via merged pull requests in mature Java projects. The
second contribution focuses on specializing the remaining used dependencies in
the dependency tree of Java projects. We focus on reducing the share of third-
party classes across the dependencies. Our technique removes 47.0 % of classes
in 30 projects, reducing the project classes to dependency classes ratio from 8.7
x to 4.4 x . The third contribution is centered around the process of debloating
Java libraries by removing features that are actually not used at runtime by their
clients. We found that 81.5 % of the clients were able to successfully compile and
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execute their test suite using the debloated library. The fourth contribution focuses
on the technical challenges addressed by the three new open-source research
tools that contributed to the field of debloating in this thesis and describe the
two large datasets of Java dependencies employed in our research studies. We
made our research tools and results openly accessible and reproducible, aiming to
foster collaboration in the scientific community and advance the field of software
debloating.
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Chapter 4

Conclusions and Future Work

“Ldttare sagt dn gjort.”
— svenskt ordsprak

of software debloating is still in its early stages of development, with many

challenges and opportunities for further investigations. In this chapter,
we summarize the results of the three key technical contributions presented in
this thesis: removing bloated dependencies, specializing used dependencies, and
debloating w.r.t. clients. Moreover, we offer an author’s reflection on the particular
challenges encountered when conducting research in the field of empirical software
engineering. Finally, we discuss promising avenues for future studies and highlight
the current challenges that should be overcome in order to facilitate the progress
and adoption of software debloating techniques.

( ; IVEN the ever-increasing complexity of software systems, the research field

4.1 Key Experimental Results

In this thesis, we have focused on the design and implementation of software
debloating techniques in the context of Java dependencies. We propose various
techniques to address the following research problems: 1) the increasing practice
of software reuse leading to the emergence of bloated dependencies in the Java
ecosystem; 2) the existence of a large amount of bloated code in used dependen-
cies; and 3) the lack of knowledge regarding the impact of debloating libraries for
their clients. Our technical contributions are organized into three parts to target
these three problems.

First, we focus on addressing the problem of dependency bloat in the MAVEN
ecosystem We create the concept of “bloated dependencies” and propose an ap-
proach to detect and remove these dependencies. We implement this approach in
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a practical software tool called DEPCLEAN [2]]. We use DEPCLEAN to empirically
study the pervasiveness of dependency bloat in the MAVEN ecosystem. Our results
reveal that 2.7 % of directly declared dependencies, 15.4 % of inherited dependen-
cies, and 57 % of transitive dependencies are bloated. Our longitudinal analysis of
bloated dependencies shows that the usage status of such dependencies do not
change over time [3]], and that developers are willing to remove bloated depen-
dencies when notified, as evidenced by the removal of 140 bloated dependencies
in 30 open-source projects. Beyond academic recognition, DEPCLEAN has received
positive feedback from developers for its ability to detect bloated dependencies in
a variety of real-world projects. Overall, our experimental results highlight the
importance of analyzing, maintaining, and testing configuration files and other
software artifacts related to the management of third-party dependencies (e.g.,
pom. xml files).

Second, we focus on the dependencies that are partially used by MAVEN
projects. We propose a novel technique called “dependency specialization” to
reduce the amount of third-party code in Java projects based on their actual
usage [|6]. We implement this dependency specialization technique in a tool called
DEPTRIM, which automatically identifies the necessary subset of functionalities
for each dependency and removes the rest, resulting in repackaged specialized
dependencies. We use DEPTRIM to evaluate the effectiveness of our technique on
30 mature Java projects. Our results show that DEPTRIM successfully specializes
86.6 % of the dependencies in the projects without affecting its build, while
dividing by two the amount of third-party code. Overall, our findings suggest that
the specialization of dependencies is an effective approach to significantly reduce
the share of third-party code in Java projects.

Third, we focus on investigating how debloating Java libraries impacts the
clients of these libraries. We propose a novel technique for debloating, which
we call “coverage-based debloating”, that leverages code coverage information
collected at runtime to detect and remove code bloat [4]. We implement this
approach in a software tool called JDBL which relies on a combination of state-of-
the-art Java bytecode coverage tools to precisely capture what parts of a project
and its dependencies are used when running with a specific workload. With
this information, JDBL automatically removes the parts that are not covered, in
order to generate a debloated version of the project. We use JDBL to debloat 211
Java libraries in order to determine the ability of this technique at capturing the
behaviors that are relevant for the clients of the debloated libraries The debloated
versions are syntactically correct and preserve their original behavior according
to the workload. We evaluate thi debloating approach on client projects that
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either have a direct reference to the debloated library in their source code or
which test suite covers at least one class of the libraries that we debloat. Our
results show that 81.5 % of the clients, with at least one test that uses the library,
successfully compile and pass their test suite when the original library is replaced
by its debloated version. This result constitutes the first empirical demonstration
that debloating can preserve essential functionalities to successfully compile the
clients of debloated libraries.

4.2 Reflections on Empirical Software Engineering Research

Empirical software engineering is a fascinating research field that encompasses the
collection, analysis, and interpretation of data to improve software development
practices [76]]. The inherent complexities of software development, coupled with
the challenges of collecting and analyzing large amounts of human and computer-
generated data, make empirical software engineering research a challenging field.
Throughout our contributions, we have embraced these challenges and have
striven to address and overcome each of them as they arose.

One of the primary challenges has been finding useful datasets of software
artifacts for our empirical experiments on debloating [[172]]. Collecting data of
software development projects for this purpose is a daunting task, as it requires
access to various software artifacts such as source code, build configuration files,
and third-party dependencies [[173]]. Additionally, researchers must ensure that
the data has been ethically collected, and is accurate, complete, and relevant
to their research questions [|174]]. For instance, we investigated to what extent
the number of bloated dependencies increases over time in software projects. To
collect relevant data, we need to analyze a large number of open-source repos-
itories of Java projects that are representative of the dependency management
process in the MAVEN ecosystem and analyze their dependency trees over time at
different releases. We encountered this task challenging as many repositories are
out of date [175] and some dependencies cannot be resolved (e.g., such as those
dependencies that are hosted in private repositories and become inaccessible to the
research community). However, we hope that leveraging new tools, such as bots
to automate pull requests [[176] will encourage developers to update dependencies
and maintain their projects in an up-to-date state [[177]]. To further promote repro-
ducibility in our research and support the broader software engineering community,
we have invested significant effort in curating high-quality datasets of software
artifacts that are readily available for other researchers to use. In this same spirit,
the software engineering community has been actively promoting reproducible
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research by offering publicly accessible datasets via the Data Showcase track at the
International Conference on Mining Software Repositories (MSR). This initiative aims
to encourage the sharing of high-quality datasets for software engineering research
purposes. We are proud to have contributed to this effort throughout this thesis.

Another challenge of empirical software engineering research is finding sound
metrics to evaluate the proposed tools and techniques [[178} 179} [180]. When
conducting our debloating experiments, we had to identify metrics that are valid
and reliable for measuring the effectiveness of our proposed debloating techniques.
For instance, in the case of our empirical evaluation of the debloating results of
JDBL, our experiments focus on measuring the amount of code bloat removed
in the debloated libraries at three different code granularity levels: methods,
classes, and dependencies. However, we notice that most previous works in
software debloating do not consider the code removed in third-party dependencies.
Therefore, we had to assume that counting the number of completely removed
third-party dependencies is a reasonable choice in this case. Overall, finding
appropriate metrics in software engineering can be challenging, as some metrics
may not exist previously and for those that already exist, it could be difficult to
accurately use them in the context of some specific experiment. We hope that
our original metrics will become beneficial to the research community exploring
software debloating techniques.

One more challenge we have encountered is establishing a fair and realistic
comparison of our techniques with other existing tools in the field. Research
tools are often not available or the research experiments conducted are not
reproducible [|181]]. For example, we encountered difficulties in finding available
software debloating tools, as some are closed-source or no longer accessible. Upon
contacting the authors of some existing tools, we faced challenges in executing
them correctly due to specific configuration requirements. Additionally, certain
experiments are designed for specific research environments, which complicates
the process of comparing them in diverse contexts. In this regard, the use of
Docker containers has been widely recognized as an effective way to promote
reproducibility in scientific research [[182]. Docker provides a self-contained
environment that can be easily shared and replicated across different computing
platforms. In order to contribute to this ongoing effort and foster a culture of
reproducibility within the research community, we have made our software tools
(DEPCLEAN, DEPTRIM, and JDBL) publicly available and reusable, providing an
opportunity for other researchers to easily build upon our work and perform fair
comparisons in future studies.

Last but not least, we have learned after working on tens of thousands of
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open-source projects that it is hard to build and execute software in general [183]].
This can be a challenging and time-consuming process, especially for large projects
containing millions of lines of code and thousands of dependencies. For instance,
while conducting our experiments on the software supply chain of the Ethereum
Java clients Besu and Teku [5]], we embraced the opportunities presented by
their significant engineering complexity to further enhance our understanding
of complex software systems (e.g., at that moment, Besu was composed of 41
internal modules, containing 355 unique third-party dependencies provided by
165 distinct supplying organizations). Through our experience, we notice that
studying projects with well-defined CI/CD pipelines can greatly simplify the build-
ing process, thereby saving time and effort for researchers that would otherwise
be spent on manual configuration and integration. Moreover, sometimes when we
were building and executing the software multiple times to collect sufficient data
we found nondeterministic behaviors (e.g., flaky tests [[184]], Heisenbugs [185]], or
non-atomic operations [[186]]). We believe that the existence of those engineering
challenges when building and executing real-world software represents fundamen-
tal opportunities that contribute to the vibrant and dynamic nature of empirical
software engineering research.

In summary, empirical software engineering research provides answers to the
fundamental questions about the practice of software development. It is a thriving
research field that holds promise for advancing our understanding of software
development practices and improving the quality of software products [187].
Throughout our research journey, we have successfully tackled various challenges,
including gathering valuable datasets, identifying suitable metrics, comparing our
work w.r.t. other research tools, and building and executing software projects from
public repositories on GitHub. These challenges, which are commonly encountered
by researchers in the field, have served as opportunities for us to enhance the
quality of our research and draw more impactful conclusions. As such, it is
imperative that our community remain aware of these existing challenges and
continue working to mitigate them through more careful planning and execution
of their research projects, ultimately promoting reproducible science. We believe
that research on empirical software engineering will remain a vital and enduring
research field for years to come.

4.3 Future Work

Software debloating is an important area of research that has the potential to
significantly improve the performance and reliability of software applications. Our
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research has shown that there exist open challenges in improving the effectiveness
of debloating. In this section, we discuss potential research directions on top of
our contributions.

4.3.1 Neural debloating

The overall research goal of software debloating is to facilitate the adoption
and integration of automatic software debloating techniques in the industry to
improve software. An interesting direction for future work in this field is to explore
the use of advanced Machine Learning methods to enhance the effectiveness of
debloating. Promising seminal efforts in this direction have already been made
employing Reinforcement Learning [99]]. We consider promising the use of Deep
Learning algorithms to learn patterns of code execution in order to detect and
predict the emergence of code bloat. By leveraging the capabilities of these
algorithms, debloating techniques can potentially achieve a higher degree of
precision and promptness in identifying and removing code that is not necessary
for the software’s functionality.

One possible research direction towards incorporating advanced Machine
Learning methods into software debloating would be to use Convolutional Neural
Networks (CNN) and Neural Machine Translation (NMT) networks to facilitate
feature extraction and representation of code execution patterns. These neural
network architectures have proven to be effective in various software engineering
tasks, including code generation from textual program descriptions [[188]] and
automatic program repair [[189]. Additionally, reinforcement learning algorithms,
such as Q-learning or Deep Q-Networks (DQN), could be employed to train agents
capable of making optimal decisions during the debloating process [[190]. We
believe that the combination of cutting-edge Machine Learning techniques holds
immense potential to revolutionize software debloating, ultimately leading to
leaner, more efficient, and secure software systems that can benefit the entire
software engineering community.

The preservation of software functionality after the debloating process is a
complex challenge that lies at the heart of software debloating [[49]]. This challenge
is particularly daunting when attempting to identify and remove code that appears
to be unused but is actually necessary for the proper functioning of the application.
By leveraging advanced Machine Learning techniques, researches can potentially
improve the accuracy of identifying truly necessary code, thereby preserving
the intended behavior of the debloated artifacts. On the other hand, current
debloating approaches rely on static analysis techniques, which face the intractable
problem of accurately determining whether a given piece of code is actually
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necessary for the correct execution of the software application. Moreover, some
debloating techniques may inadvertently introduce new bugs or vulnerabilities,
which necessitates a thorough evaluation of the debloating process. By harnessing
the capabilities of Machine Learning, we hope that innovative techniques will be
developed in order to accurately identify and preserve the necessary behavior of
the application, ultimately addressing this critical area of research in the field of
software debloating.

To evaluate such a technique, an experiment could be designed in which
a dataset of software projects with known code bloat issues is collected. The
new neural debloating approach would be applied to these projects, and the
results be compared against traditional debloating methods (such as the code
analysis techniques contributed in this thesis), as well as with the results obtained
using the reinforcement learning approach by Heo et al. [99]]. Evaluation metrics
could include the amount of code bloat removed, the accuracy of the debloating
decisions, and the impact on software functionality, as assessed by successfully
passing the test suite. The ultimate goal is to apply and evaluate these debloating
techniques in real-world production environments. This experiment would provide
valuable insights into the effectiveness of advanced Machine Learning methods
for software debloating and help establish the potential of these techniques in
addressing uncovered future issues associated with the existence of code bloat.

4.3.2 Debloating across the whole software stack

Exploring debloating software across the entire software stack is a vital area for fu-
ture research, as it can significantly improve the efficiency and security of software
systems [36]]. A promising direction involves focusing on software components
within the Java Development Kit (JDK), which serves as a foundational part of
numerous Java-based applications. Despite its importance, the JDK contains
several features that are rarely used and therefore add unnecessary code bloat
to the running applications. For instance, the CORBA (Common Object Request
Broker Architecture) module, which facilitates communication between objects
in a distributed system, is currently included in many JDK distributions even
though most modern applications have transitioned to alternative technologies
like RESTful web services or gRPC for distributed computing. In the case of
DEPCLEAN, it imports the entire package java.util.zip from the JDK, yet it
only uses classes ZipEntry and ZipFile for performing JAR file manipulations,
and the other classes from this package, such as classes Deflater and Inflater
for general purpose compression constitute bloat for DEPCLEAN. Although the
Java community has made substantial efforts in providing tools like jdeps to help
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identify which packages are actually used by an application, there is still a lack of
fully automatic tools to effectively debloat Java software. To address this issue,
future research efforts could focus on identifying and removing these unused
features from the JDK, thereby reducing the overall size of the software stack and
improving its performance.

Debloating an entire software stack, such as the JVM, JDK, and the OS layer
running on top of modern containers, is a complex yet crucial endeavor because it
involves carefully analyzing, maintaining, and testing not only the application code
but also its dependencies and the underlying runtime environment. To accomplish
this, a holistic approach is required, which considers debloating at every layer of
the stack. One of the main challenges for future research on full-stack debloating
is that dependencies and features often interact in non-trivial ways, making it
difficult to determine which components can be safely removed without affecting
the overall functionality. To tackle this challenge, researchers could develop
sophisticated debloating techniques that combine static and dynamic analysis,
along with Machine Learning, to identify and remove bloat at different levels
(e.g., through the analysis of system calls). For instance, a debloating approach
could begin by analyzing the JDK and JVM layers, identifying rarely used or
obsolete modules and components. Following this, the debloating process could be
extended to the application and container layers, focusing on the dependencies and
features specific to the frameworks used, e.g. Spring Boot or Quarkus. Throughout
the process, the future debloating techniques will ensure the preservation of
software functionality by carefully evaluating the potential impact of each code
removal on the overall system’s behavior.

The results of our studies stress the need to engineer, i.e., analyze, maintain,
and test dependency configuration files to avoid software bloat at a higher level
of the software stack. Debloating modern frameworks that contain many bloated
dependencies, such as the aforementioned Spring Boot and Quarkus, is another
important area for future research. These frameworks are designed to simplify the
development process by providing pre-built features and dependencies that can be
easily integrated into applications. However, this convenience comes at the cost of
bloated dependencies and unnecessary features that can slow down application
performance and increase the risk of security vulnerabilities. To address this issue,
future research could focus on developing more efficient and streamlined versions
of these frameworks that remove unnecessary dependencies and features, while
still maintaining the core functionality that developers appreciate. By doing so,
tailored frameworks can help to reduce the overall bloat of the software stack and
improve the efficiency and security of software in production environments.
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4.4 Summary

In this section, we presented the key results for each of our technical contributions.
We discussed how our debloating approaches help to cope with the increasing
complexity of software systems. Additionally, we reflected on the challenges
encountered while conducting empirical software engineering research, offering
valuable insights on the opportunities for future work. As we continue to identify
promising research directions for further studies in this field, it is essential to con-
front and overcome the existing challenges in order to promote the development
and adoption of effective software debloating techniques, ultimately contributing
to developing better software systems.
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Abstract—Maven artifacts are immutable: an artifact that is
uploaded on Maven Central cannot be removed nor modified. The
only way for developers to upgrade their library is to release
a new version. Consequently, Maven Central accumulates all
the versions of all the libraries that are published there, and
applications that declare a dependency towards a library can pick
any version. In this work, we hypothesize that the immutability
of Maven artifacts and the ability to choose any version naturally
support the emergence of software diversity within Maven
Central. We analyze 1,487,956 artifacts that represent all the
versions of 73,653 libraries. We observe that more than 30% of
libraries have multiple versions that are actively used by latest
artifacts. In the case of popular libraries, more than 50% of
their versions are used. We also observe that more than 17% of
libraries have several versions that are significantly more used
than the other versions. Our results indicate that the immutability
of artifacts in Maven Central does support a sustained level of
diversity among versions of libraries in the repository.

Index Terms—Maven Central, Software Diversity, Library
Versions, Evolution, Open-Source Software

I. INTRODUCTION

Maven Central is the most popular repository to distribute
and reuse JVM-based artifacts (i.e., reusable software pack-
ages implemented in Java, Clojure, Scala or other languages
that can compile to Java bytecode). By September 6, 2018,
Maven Central contains over 2.8M artifacts and serves over
100M downloads every week [1]. The Maven dependency
management system, which is able to resolve transitive depen-
dencies automatically, has been key to this success: it relieves
developers from the complexity of manual management of
their dependencies. Uploading artifacts into Maven Central
is the most effective way for open source projects to remain
permanently accessible to their users. In this way, every build
tool able to download Java libraries can fetch from a world of
libraries and dependencies in a single and authoritative place.

In this work, we analyze software artifacts from the perspec-
tive of one essential characteristic enforced by Maven Central:
immutability'. All artifacts (code packages, documentation,
dependency declarations, etc.) that are uploaded on Maven
Central are immutable: they cannot be rewritten nor deleted.
This is a critical design choice that has a significant influence
on the way the Maven Central repository is utilized. We

!'Sonatype
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hypothesize that this design decision is a great opportunity
to prevent dependency monoculture [2] and increase the di-
versity [3] among software dependencies.

Previous works have analyzed Maven artifacts from the
perspective of the risks induced by immutability. First, the
redundancy in multiple versions can introduce conflicts among
dependencies, e.g., trying to load the same class several times.
This risk has been extensively analyzed by Wang and col-
leagues [4]. Second, the projects that depend on a library need
to explicitly update their dependency descriptions in order
to benefit from the update. This represents a risk since these
projects can eventually rely on outdated dependencies [5] that
can contain security issues [6] or API breaking changes [7].

We take a fresh look at the presence of multiple versions
of the same library in Maven Central, and consider it as
an opportunity. We analyze how the ability to choose any
library version for software reuse supports the emergence of
software diversity in the repository and how this diversity of
versions fuels the success of popular libraries. We consider this
emergent diversity of reused versions as an opportunity since
it participates in mitigating the risks of software monoculture
[8]. Overcoming this type of monoculture is essential to build
resilient and robust software systems [3], [9], [10].

To conduct this empirical study, we rely on an existing
dataset, the Maven Dependency Graph [1], which captures a
snapshot of Maven Central as of September 6, 2018. This
dataset comes in the form of a temporal graph with metadata
of 2.4M artifacts belonging to 223K libraries, with more than
9M direct dependency relationships between them. In order
to enable reasoning not only at the artifact level but also at the
library level, we extend this dataset with another abstraction
layer capturing dependencies at the library level.

We measure activity, popularity and timeliness of a subset
of 73,653 libraries with multiple versions, which represents
61.81% of the total number of artifacts in Maven Central. We
empirically investigate whether the diversity of library versions
is a valuable design choice. Our contributions are as follows:

e a quantitative analysis of the diversity of usage and

popularity of library versions;

« evidence of the presence of large quantities of artifacts

that participate in the emergence of diversity;

« open science with replication code and scripts available

online.



II. BACKGROUND AND DEFINITIONS

In this section, we describe the dataset of Maven artifacts
that constitutes the raw material for our work, as well as its
extended library-level abstraction.

A. The Maven Dependency Graph

To conduct this empirical study, we rely on the Maven
Dependency Graph (MDG), a dataset that captures all of
the artifacts deployed on the Maven Central repository as
of September 6, 2018 [1]. The MDG includes 2,407,335
artifacts. Each artifact is uniquely identified with a triplet
(‘groupld:artifactld:version’). The groupld identifier is a way
of grouping different Maven artifacts, for instance by library
vendor. The artifactld identifier refers to the library name.
Finally, the version identifies each library release uniquely.
For example, the triplet ‘org.neo4j:neo4j-io:3.4.7’ identifies
the version 3.4.7 of an input/output abstraction layer for the
Neo4j graph database. The MDG also includes 9,715,669
dependency relationships as declared in the Project Object
Model (pom.xml) file of each artifact.

In this work, we focus on libraries, i.e., the sets of artifacts
that share the same tuple ‘groupld:artifactld’ but have differ-
ent versions. The MDG includes 223,478 of such libraries,
but the concept of library is not rigorously captured in the
graph. Consequently, we extend the artifact nodes of the MDG
with labels referring to their corresponding library. We call
LIBS the set of all libraries in Maven Central. We introduce
an ordering function denoted <, that leverages the standard
version numbering policy described by the Apache Software
Foundation? in order to compare the different versions of
artifacts belonging to the same library. For instance, 1.2.0 <,
2.0.0. We also define a temporal ordering function denoted
by <. to compare the release dates of different artifacts. For
example, ‘12-09-2011" <; ‘30-03-2015". In the remainder of
the paper, we refer to artifacts as library versions or simply
versions. We define the MDG as follows:

Definition 1. Maven Dependency Graph. The MDG is a
vertex-labelled graph, where vertices represent Maven library
versions, and edges describe dependency relationships or
precedence relationships. We use a labeling function over
vertices to group versions by library. We define the MDG as
G=W,D,N,L,R), where,

the set of vertices V represents the library versions
present in Maven Central

the set of directed edges D represents dependency rela-
tionships between library versions

the set of directed edges N represents versions
precedence relationships, where the version of the source
node is strictly lower than the version of the target node

Wt <,
o the surjective labelling function L returns the
corresponding library of a given library version

v €V, defined as L :V — LIBS

2https://cwiki.apache.org/confluence/display/MAVEN/Version+number+
policy
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Fig. 1. Example of relationships between library versions in the Maven

Dependency Graph.

o the temporal function R refers to the date at which a
library version v € V was deployed, defined as R : V —
T, where T is a <;-ordered discrete time domain

In the MDG, T is bounded to [15-05-2002°, ‘06-09-2018°],
where the lower bound refers to the date when the first library
was deployed on Maven Central. In the rest of the paper, we
refer to the lower and upper bounds respectively as START
and SNAPSHOT, and we use days as the time granularity.

Figure 1 illustrates the different nodes and
relationships ~ within a simplified graph G composed
of four libraries (A,B,C,D) and nine library versions
{a1, az,as,b1,b2,c1,ca,c3,d1}. The regular edges represent
dependency relationships. For example, the first version of A
(a1) depends on the first version of B (b;), and the second
version of A (az) depends on the second version of B (b2) and
C (c2). The dashed edges represent precedence relationships,
and all vertices that are related through such edges constitute
the different versions of a library. In Figure 1, we place nodes
in a temporal order, from left to right, corresponding to the
deployment date, thus the node b; is the firstly deployed,
while the node c3 is the most recently deployed.

The temporal order of releases does not imply a similar
versioning order for a given library. In some cases, library
instances with lower version number may be released after
library versions with a greater version number, e.g., in case of
a library version downgrade or maintenance of several major
library versions. In Figure 1, we can see that ax<;as and
az<yap. Note, this is a common practice adopted by very
popular libraries such as Apache CXF?, and Mule* [11].

Definition 2. Additional notations. For further references in
the MDG, we introduce the following notations:
o next(v): the next release of a given library version v
w.r.t. the ordering function <,
o nextqy(v): transitive closure on the next releases of a
library version v

3https://cxf.apache.org
“https://www.mulesoft.com



latest: the library version v such that 3 next(v)
LATESTS: the set of all latest library versions in a
dependency graph G

deps(v): ¥V — V", with n € N: the set of direct
dependencies of a given library version v € V
depsiree(v): the whole dependency tree of v

users(v): ¥V — V" with n € IN: the set of library
versions declaring a dependency towards v

usersq(v): all the transitive users of v

For example, in Figure 1, deps(as)
depsiree(az) = {ba,c2,d1}, users(ds)
usersqy(di) = {c2,c3,az}.

{b2, c2},
= {62,83} and

B. The Maven Library’s Dependency Graph

In order to be able to reason about not only versions but also
libraries, we elevate the abstraction of the MDG to the library
level. Figure 2 shows the elevated graph corresponding to the
dependency graph G in Figure 1. We construct a weighted
graph, G, where nodes correspond to libraries (LIBS) in G.
We create an outgoing edge between two libraries [; and l5 if
there is at least a version of /; that uses a library version of /5.
We denote by D(I) the set of direct library dependencies of
a given library {. For example, D(A) = { B, C'}. Finally, the
weight of the outgoing edges from [; to [ corresponds to the
number of versions of [; that use a version of 5. We define
the Maven Library’s Dependency Graph (MDGy},) as follows:

Definition 3. Maven Library’s Dependency Graph. The
MDGy, is a edge-weighted graph, where vertices represent
Maven libraries, and edges’ weight describes the number of
dependency relationships between their versions. We define the
MDGy, as Gz = (LIBS, €, W), where,
o the set of vertices LIBS represents the libraries present
in Maven Central
o the set of edges & represents the dependency relationships
between libraries
o the weighing function WV represents the weight of a given
edge, defined as W : € - IN
For further references in the MDG,, we introduce the follow-
ing notations:
the set of direct library dependencies D of a given library,
defined as D : LIBS — LIBS"
the weighing function ﬁ/ returns the sum of the weights
of incoming edges, defined as : LIBS - N
the weighing function W returns the sum of the weights
of outgoing edges, defined as W :LIBS — IN

.

Fig. 2. The elevated Maven Library’s Dependency Graph from Figure 1.
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III. STUDY DESIGN

This work is articulated around five research questions. In
this section, we introduce these questions as well as the metrics
that we collect to answer them. We also describe the represen-
tative subset of artifacts that we study throughout the paper.

A. Research Questions

RQI: To what extent are the different library versions actively
used?

Because Maven artifacts are immutable, all the versions of
a given library that have been released in Maven Central are
always present in the repository. Meanwhile, previous studies
have shown that users of a given version do not systematically
update their dependency when a new version is released [5],
[12], [13]. Consequently, we hypothesize that, at some point
in time, multiple versions of a library are actively used. In
this research question, we investigate how many versions are
currently used, how many have been used but are not anymore
and how many versions have never been used.

RQ2: How are the actively used versions distributed along the
history of a library?

The full history of versions of a library released on Maven
Central is always available. Consequently, users can decide
to depend on any of the versions. In this research question,
we analyze where, in the history of versions, are located the
versions that are actively used.

RQ3: Among the actively used versions of a library, is there
one or several versions that are significantly more popular
than the others?

Library users are free to decide which version to depend on
and for how much time. In the long term, these users’ decisions
determine what are the most popular libraries and versions
in the entire software ecosystem [5], [14]. This research
question investigates to what extent these decisions lead to
the emergence of one or more versions that receive a greater
number of usages compared to the other versions.

RQ4: Does the number of actively used versions relate to the
popularity of a library?

‘We observe that for most libraries, more than one version is
actively used at a given point in time. The library developers
have no control over this since they cannot remove versions
from Maven Central, nor force their users to update their
dependencies. Meanwhile, it might be good for a library to
maintain several versions that fit different usages. In this
question, we investigate how the existence of multiple active
versions relates to the overall popularity of a library.

RQS5: How timely are the different library versions in Maven
Central?

With each new release, project maintainers make an effort
to improve the quality of their libraries (e.g., by fixing bugs,
adding new functionalities or increasing performance). These
changes are expected to be directly reflected in the number of



users that update their dependencies to the new available re-
lease, and also in the number of new usages of the library [15].
This research question aims to get insights into how timely is
the release of new versions. In particular, we investigate how
much attraction gets a library version while it was the latest,
compared to the older versions during the same period of time.

B. Metrics

To characterize the activity status of libraries and versions
in terms of their usages by other latest library versions, we
introduce the notions of active, passive, and dormant libraries
and versions. Moreover, we introduce the lifespan of library
versions to get insights on the duration of their activity
period. These notions and measures are intended to answer
RQI and RQ2.

Metric 1. Activity status. A passive library version v is a
version that has been used in the past, but is no longer
used, even transitively, by any latest library version (v €
LATESTS). Formally, this metric is described as a boolean
function isPsv : V — {true, false}, where,

false wve U {depsiree (i)}
isPsv(v) = i€LATESTS
true, otherwise
An active library version v is a version where
isPsv(v) = false. A dormant library version is an

extreme case of a passive library version that occurs when
the version has never been used by existing libraries (i.e.,
users(v) = 0) in Maven Central.

At the library level, an active library is a library that has
at least one active version, whereas a passive library is a
library that has all its versions passive. A dormant library
is an extreme case of passive library that occurs when all its
versions are dormant.

Metric 2. Lifespan. The lifespan of a library version v is
the time range during which it was/is being used. We define
this period as the time range between the release date of v
and the timestamp at which it becomes passive. In case v is
active, this period starts at the release date of the artifact
until the day the SNAPSHOT was captured. Dormant library
versions do not have a lifespan at all. We denote this metric
by ls(v) =[startLs,,endLs,]. Then, the interval’s upper
bound can be formally described as follows:

SNAPSHOT, —isPst
endAct, = T isPsu(v)
last, isPsv(v)
where, last = max U {R(next(s))}.

i€usersqa(v)

To study the popularity of library versions in Maven Central,
and hence answer RQ3 and RQ4, we introduce a metric
of popularity which measures the transitive influence and
connectivity of a library version in the MDG. We rely on
the standard PageRank algorithm [16], which accounts for the
number of transitive usages. Intuitively, library versions with
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a higher PageRank are more likely to have a larger number of
transitive usages. On the other hand, to measure the popularity
of libraries, we use the Weighted PageRank algorithm [17] on
the MDGy,.

Metric 3. Popularity. The popularity of a library version

v €V is as follows:
S popyl(i),

icusers(v)

popy(v) = (1—d) +d

where d is a damping factor to reflect user behavior, which is
usually set to 0.85 [18].
The popularity of a library | € LIBS is as follows:

pope(l) = (1 —d) +d Z popu(1)'C 1)@ 1.0y
ieU ()
where ¢ and € are respectively:
N (0

peD(l)

W)
S W)

<

7(l,i) =

peD(l)

Finally, to answer RQS5, we introduce the notion of timeli-
ness of library versions. This metric looks at the number of
usages of every single version when it was latest and assesses
if it was successful in attracting more users compared to its
older versions. To this end, we compare the usages of a given
version v during its lifespan to the usages that the whole library
has received during the period when v was latest. We call this
period the timeliness period.

Metric 4. Timeli The timeliness period, tp(v), of a
library version v, is the time range between the release date
of v and the most recently released version of its library
ordered by <y, which is not necessarily next(v). We denote
this version as mr:
tp(v) = [R(v), R(mr)],
where, mr = min

. ){R(i)m(i) >t R(v)}.
i€nemt (v

The timeliness of a library version v is a function, tim(v) :
V — QF, where,

ess.

_ lusers(v)|

CULIRG e tp) ALw) e | LGB

i€V jEdeps(i)

tim(v)

In case the library corresponding to v was not used during
the timeliness period of v (the denominator is 0), then we
consider tim(v) = 0. This also applies when v is dormant.
All first releases of libraries have tim(v) = 1 since they have
no earlier releases.

Based on the timeliness metric, three situations can occur:

o v is timely if tim(v) = 1: v was a success during its

timeliness period and users relied on it

o v is over-timely if tim(v) > 1: v has attracted users

beyond its timeliness period

o v is under-timely if tim(v) < 1: users relied on older

versions during its timeliness period



TABLE 1
CATEGORIES OF LIBRARIES IN MAVEN CENTRAL ACCORDING TO THEIR
RELEASING PROFILES

Category Criteria #Libraries (%) #Versions (%)
) #versions =1 65,557 (29.33%) 65,557 (2.72%)
(ii) One shot* 32,825 (14.69%) 459, 445 (19.08%)

(iii) #versions > 1 125,096 (55.98%) 1,882,333 (78.2%)

(*) Libraries with more than one version and that have been released in the
same day.

C. Study Subjects

During our initial exploration of the MDG, we distinguished
three different categories of libraries in Maven Central: (i)
libraries that have only one version (~30%), (ii) libraries with
multiple versions all released on the same day (~15%), and
(iii) libraries with multiple versions released within different
time intervals (~55%). Table 1 gives detailed numbers about
these categories. In particular, after manual inspection we
notice that a large number of libraries belonging to categories
(i) and (ii) are shipped with their classpath. We suspect these
projects to be using Maven only for deploying and storing
their libraries in Maven Central, but not for dependency
management or further maintenance tasks.

In this work, we are interested in studying libraries that have
multiple versions and utilize Maven regularly to manage and
update their dependencies, i.e., libraries belonging to category
(iii) in Table I. Figure 3 shows the distribution of the number
of versions for the libraries in this category. The minimum and
maximum number of versions are respectively 2 and more than
2,000, precisely, 2,122. Meanwhile, the 1st-Q and 3rd-Q are
around 5 and 200 versions respectively.

In order to conduct our empirical study on a representative
dataset, we choose [1st-Q, 3rd-Q] as a range of number of
versions. Therefore, this study focuses on all the libraries
with between 5 and 200 versions. This accounts for 73,653
libraries and 1,487,956 versions, representing 32.96% and
61.81% of the total number of libraries and version in Maven
Central at the SNAPSHOT time.

libraries - T

10°° 10" 10'* 10* 10
number of versions (log1o scale)

Fig. 3. Distribution of the number of library versions in Maven Central.

IV. RESULTS

In this section, we address our research questions and
present the results obtained.
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A. RQI1: To what extent are the different library versions
actively used?

To answer RQI, we study the activity status of libraries
and versions in Maven Central. Table II shows the numbers
and percentages of active, passive and dormant libraries and
versions. We observe a low percentage of active versions
(14.73%), whereas there is a predominant number of passive
ones (85.27%), of which more than a half are dormant
(45.16%). On the other hand, we can notice that the majority
of libraries are active (95.49%), i.e., have at least one of its
versions active. Meanwhile, passive libraries represent nearly
5% of the total number of libraries, of which (~4%) are
dormant.
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Fig. 4. Distribution of the number of active versions across active libraries

TABLE 11
ACTIVITY STATUS OF LIBRARIES AND VERSIONS IN THE STUDY SUBJECTS

Status #Versions (%) #Libraries (%)
Active 219,184 (14.73%) 70,337 (95.49%)
Passive non-dormant 596, 776 (40.11%) 387 (0.53%)
Dormant 671,996 (45.16%) 2,929 (3.98%)
Total 1,487,956 (100%) 73,653 (100%)

We are intrigued by the 2,929 dormant libraries. The
median number of versions in this family of libraries is 9
with a maximum of 150 versions. We noticed that most of
them are in-house utility libraries, intended for custom logging
or testing, e.g., ‘com.twitter:util-benchmark_2.11.0°. Other
libraries are archetypes®, e.g., ‘io.fabric8.archetypes:karaf-
cxf-rest-archetype’. These libraries are not intended to be
used in production. Their custom nature makes them used
rather internally, or by the library maintainers themselves.

In Table II, we also observe that a low proportion of versions
are active 219, 184 (14.73%), yet they are distributed across a
very high number of libraries, 70, 337 (95.49%), making these
libraries active. Figure 4 summarizes the distribution of active
versions in active libraries. We observe that more than a half of
active libraries, 40, 233 in total, have only one active version.
The remainder, 30,104 libraries, have more than one active
version. For some libraries, such as ‘org.hibernate:hibernate-
core’, more than 100 versions are currently active. However,

Shttps://maven.apache.org/guides/introduction/introduction-to-archetypes



the number of libraries with more than 100 active versions
represents less than 2% of the total. More interestingly, we
notice that 17% of the libraries have active versions belonging
to more than one different major releases (e.g., 2.X.X). For
instance, the library ‘activemgq:activemq’ has two active ma-
jor versions: 3.X.X and 4.X.X, whereas ‘com.spotify:docker-
client’ has seven active versions: from 2.X.X up to 8.X.X.
Figure 5 shows the lifespan distribution of active and passive
versions. To avoid the bias introduced by the SNAPSHOT
time constraint, we consider only non-latest active versions
of libraries (v ¢ LATESTS). As we can see from the figure,
the lifespan of passive versions is approximately distributed
between 8 and 80 days (1st-Q and 3rd-Q), whereas, this range
is larger for active versions: between 351 and 1, 626 days. This
conveys that versions that are active for more than 80 days are
likely to remain active for a longer period. Subsequently, these
libraries are likely to be popular and widely used. Finally, we
notice that the median number of days a version spends after
its creation before being used for the first time is 14, with
a mean of 57.61. This suggests that versions that have been
dormant for less than 57 days are likely to become active;
beyond this time period, they are likely to remain dormant.

passive -

<,@/
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Fig. 5. Distributions of the lifespan (in days) of passive and active versions

Findings from RQ1: More than 40% of libraries in
Maven Central have strictly more than one active version,
while almost 4% of the libraries have never been used.
This hints on an inclusive, immutable repository that can
support the emergence of a diversity of library usages.

B. RQ2: How are the actively used versions distributed along
the history of a library?

According to Metric 1, active libraries have at least one
active version. In this research question, we focus on under-
standing how these active versions are distributed across the
different library releases.

Figure 6 shows the positional distribution of all the active
versions in the libraries. Since libraries can have different
number of versions, we use a normalized relative index lying
between [0,1], where 0 and 1 represent the indexes of the
first and last versions of the library, respectively. First of all,
we observe that active versions are scattered across different
positional indices. While 68.4% of active library versions
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are almost evenly distributed across the non-latest releases,
a significant number of active versions, precisely 69,146
(31.6%), are latest versions. This result is inline with the
current policies of dependency management systems, which
recommend upgrading to latest dependencies.

60000+
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count

20000+
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relative position of active versions

0.00

Fig. 6. Positional distribution of active versions (#bins = 30).

Digging further, we investigate the transitional distribution
of active and passive versions. To do this, we transform each
library [ € LIBS into a vector, S;, capturing the passive/active
status corresponding to all of its versions. Our objective is
to analyze the occurrence of common transitional patterns
between active and passive versions.

Let S; be a vector representing the activity status of library
versions ordered by <, (i.e. ordered by version number).
The status corresponding to a version v is P if isPSV (v)
is TRUE and A otherwise. For example, the library
com.google.guava:guava-jdk5 has a total of five versions,
ie., Sguava—jars = [AAP,P,A]l. Considering that we are
particularly interested in transitional patterns, the consecutive
versions with the same status can be compressed to a single
status, e.g., the previous example is represented as [A,P,A].

TABLE IIT

THE TOP-7 MOST COMMON TRANSITIONAL PATTERNS
Pattern Frequency  Example
[P,A] 43,549 commons-codec:commons-codec
[P,A,P,A] 10,219 org.apache.commons:commons-lang3
[P.AP,AP.A] 3,478 org.jboss.logging:jboss-logging
[A,P, A] 2,761 com.google.guava:guava-jdk5
[P,A,P,A,P,A,P.A] 1,592 org.joda:joda-convert
[A,P,AP,A] 1,343 com.google.inject: guice
[P.A.P] 613 org.springframework:spring-webflow

We obtained a total of 94 different transitional patterns.
Table III shows the frequency of appearance of the seven
most common of them. As expected, the 92% of the patterns
are finishing by an A. The most frequent pattern is [P,A],
i.e., old versions are passive and the latest ones are active.
Yet, the remaining patterns represent more than 40% of the
libraries. The rest of libraries follow a pattern where some
old versions are also active. In extreme cases, the latest
version of the library is passive (patterns finishing with a
P). In such cases, we observe that most of their clients use
an older version with the same major version number. We



speculate that this behavior is due to the clients’ belief that the
version they use is rather stable. Similar findings have been
reported by Kula et al. [12]. We also observe that 5.5% of
the libraries have their earliest version active. It is interesting
to note that many of them are very popular libraries, e.g.,
‘org.hamcrest:hamcrest-core’ and ‘org.apache.ant:ant’.

Findings from RQ2: 31.6% of active versions are latest
and the remaining 68.4% of active versions are evenly
distributed across the libraries’ history. When the clients
do not use the latest version, they often depend on earlier
versions belonging to the same major release of the library.

C. RQ3: Among the actively used versions of a library, is there
one or several versions that are significantly more popular
than the others?

In this research question, we investigate the diversity in the
popularity of library versions. We assess the popularity of a
library versions using Metric 3. In particular, we are interested
in identifying significantly popular versions and analyzing the
positional distribution of these versions. For this aim, we use
the Tukey’s outlier detection method [19] to identify versions
with a popularity score that is far greater than the remaining
versions of the library.

We distinguish between three different classes of libraries:
(i) libraries that do not have a significantly most popular
version (55, 148), (ii) libraries with one significantly popular
version (9,622), and (iii) libraries with more than one
significantly popular version (8,883). The first class (i)
represents libraries with versions that have a similar number
of usages. The classes (ii) and (iii) represent libraries with
one or more versions that have attracted more users compared
to the rest of their versions. A large number of the users
of significantly popular versions are different versions of
the same library. These are library providers that may have
remained loyal to one version despite the release of newer
versions. To our surprise, almost all the significantly popular
versions are active, only 86 out of 143,334 are passive.
For instance, ‘com.amazonaws:aws-java-sdk:1.11.409* is
significantly popular and passive.

Figure 7 shows illustrative examples, Apache 10, JUnit,
and XML APIs, each one corresponding to one of these three
classes. The horizontal dashed line in each frame represents
the outlier’s threshold of the library. All the versions that lie
above this line are considered significantly popular. As shown
in the figure, although the version 2.4 of Apache IO is quite
old, it is still the most popular release of this library in Maven
Central. In the case of JUnit, it has two significantly popular
versions: 4.11 and 4.12. On the other hand, the library XML
APIs does not have any significantly popular version (i.e., the
popularity of its versions remains steady across time).

In order to measure the positional distribution of popular
versions, we focus on libraries that have at least one signifi-
cantly popular version. We determine the relative position of
such versions with respect to the number of versions of the
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Fig. 7. Evolution of the popularity of versions (popy (v) metric) correspond-
ing to the libraries Apache Commons IO, JUnit and XML APIs.

library. As for the positional distribution of active version,
we also normalize the relative position between [1,0]. The
histogram in Figure 8 shows the distribution of the positions
of the most popular versions across libraries. We observe that
less than 10% of libraries have their latest version as the
most popular. This is expected since the average lifespan of
latest versions is lower than the average of non-latest versions.
Interestingly, we found that the remaining highly popular
versions are almost equally distributed, between 2% and 5%,
in the remaining positions.
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Fig. 8. Histogram of the positional distribution of significantly popular library
versions (#bins = 30).

This result indicates that the most popular libraries in Maven
Central are distributed across all the different library releases.
It is notable that for almost 85% of libraries the most used
version is not the latest. Thus, older versions are still being
heavily used by other libraries, with the exception of the first
version which is rarely the most popular.

Findings from RQ3: 17% of the libraries have more than
one significantly popular version distributed across differ-
ent releases, each of which creates a niche fitting a group
of users. This indicates that library developers successfully
address the needs of diverse populations of users.




D. RQ4: Does the number of actively used versions relate to
the popularity of a library?

We have seen so far that many libraries in Maven Central
have multiple active versions, of which more than one can
be significantly more popular than the others. Now, we
investigate whether the activity status of versions has a
direct effect on the popularity of their corresponding library.
For this, we calculate the percentages of active and passive
versions of each library and compare them with respect to
the overall popularity of the library.

Figure 9 shows the smoothing function corresponding
to the relation between the popularity of libraries and
their percentages of active versions. There is a significant
positive correlation between both variables (Spearman’s rank
correlation test: p = 0.87, p-value < 0.01). In particular,
we observe that libraries that have more than 50% of active
versions are more likely to be very popular, as popular libraries
with many versions attract more clients for their versions.

n
=3
3

popularity of libraries
=)
8

0% 25% 50% 75%

percentage of active versions
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Fig. 9. Fitting curve (GAM model) of the percentage of active versions w.r.t.
the popularity of libraries (pop (1) metric). The shaded area around the fitting
curve represents the 95% confidence interval.

Table IV shows the seven most popular libraries ranked in
decreasing order of popularity, as well as their percentage of
active and significantly popular versions. As we can see, in all
the cases a significant proportion of their versions are active.
This indicates that many versions of these libraries continue
being actively used, contributing to the popularity of the
library and adding dependency diversity among all the clients.
In three cases out of seven, there are more than two versions
that are significantly more popular than the others. Finally, we
also notice that these popular libraries serve general purposes,
which allow them to fit well for various types of usages.

Findings from RQ4: Popular libraries in Maven Central
have most of their versions active and serve general
purposes. Moreover, the popularity of a library can be
estimated by the number of its active versions. The more
active versions a library has, the more likely it is to be
popular, and vice-versa.

E. RQS5: How timely are the different library versions in
Maven Central?

This research question focuses on the temporal dimension
of the dataset. We analyze whether the diversity of popular and
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TABLE IV
THE TOP-7 MOST POPULAR LIBRARIES IN OUR STUDY SUBJECTS AND
THEIR NUMBER OF ACTIVE AND SIGNIFICANTLY POPULAR VERSIONS

Library Domain  #Active (%) #Popular (%)
google.code.findbugs:jsr305  Utility 10 (90%) 1 (9.01%)
org.slf4j:slf4j-api Logging 63 (86.3%) 3 (4.1%)
log4j:log4j Logging 18 (94.7%) 1 (5.2%)
com.google.guava:guava Utility 71 (79.7%) 1(1.2%)
Junit:junit Testing 27 (96.5%) 2 (7.1%)
org.hamcrest:hamcrest-core  Testing 5 (100%) 1 (20%)
commons-logging:logging Logging 15 (88.3%) 2 (11.8%)

active versions that we observe today is a phenomenon that
sustained in the past history of the libraries. We look at every
single library version v separately and investigate whether,
during the time period when v was the latest, it gained the
expected attraction among its older peers. We compare the
number of usages that a version v gets during its lifespan
period against the number of usages that the whole library
received during the timeliness period of v. For this comparison,
we rely on the timeliness function described in Metric 4. This
metric can be considered as an internal popularity metric that
assesses the popularity of a version among its peers.

Overall, for all our study subjects, 70.6% of library versions
are under-timely (including dormant versions), while 19.8%
are timely, and the remaining 9.6% are over-timely. Figure 10
shows the distribution of the three timeliness classes for active
and passive versions. We observe that roughly 45% of passive
library versions were under-timely. These are versions that did
not attract users for their library throughout their timeliness
period. Meanwhile, almost 55% are timely. These are library
versions that were not only active at some point, but also
widely used. This gives substantial evidence that the diversity
that we observe today has existed in the past in Maven Central.
On the other hand, we observe that 55.3% of active versions
are under-timely. These are versions that are not widely
popular among their peers, yet active. The average lifespan
of these versions is ~777 days, which suggests that although
they are under-timely, they are likely to remain active for a
long period of time; whereas, the remaining active versions
are evenly distributed among timely and over-timely.

under-timely [iltimely [llover-timety

14.4%

75%

passive non-dormant

active -

0% 25% 50% 100%

Fig. 10. Proportions of timeliness classes for passive and active versions.

In order to analyze the distribution of the timeliness
classes at the library level, we calculate the proportions of
under-timely, timely and over-timely versions in each library.
Figure 11 shows a ternary diagram [20] representing the
distribution of the three timeliness classes across the study
subjects. In the figure, each point represents a library. In



general, we observe a high dispersion in the space of libraries,
meaning that there are representative cases for almost all of
the different proportions of classes. The paired correlation
tests between the proportions of each of the classes and the
popularity of their corresponding library reveal that none of
the correlations are statistically significant (p-value > 0.05
according to the Spearman’s test). Therefore, the proportions
of the timeliness of the versions of a library are not directly
related with the popularity of the library.

under-timely

A
timely ® $

-,
over-timely (%)

$ over-timely

Fig. 11. Distribution of libraries w.r.t. their percentages of over-timely,
timely and under-timely versions. The dispersion of points inside the triangle
indicates that the proportions of classes are well distributed across the libraries.

Findings from RQS5: The diversity in the usage and
popularity of versions has consistently sustained during the
history of Maven Central. We observe that ~10% of all the
library versions attract new users during their timeliness
period and remain active even after the next version has
been released. Meanwhile, there is no correlation between
the popularity of a library and the timeliness of its versions.

V. DISCUSSION

In this section, we discuss the implications of our findings
about the emergence of software diversity in Maven Central,
as well as some threats to the validity of our results.

A. Supporting the Emergence of Software Diversity

This study focuses on the diversity of usages of libraries and
versions in Maven Central. We have observed empirically how
the immutability of versions, which is a characteristic enforced
by design in Maven Central, supports the natural emergence
of software diversity [3]. This diversity takes multiple forms
and has various effects:

o all active libraries have strictly more than one active

version, and the 42.7% of them have more than two active
versions;
17% of the libraries have two or more versions that are
significantly more popular than the others, which indi-
cates a very rich diversity in usages of the latest library
releases and may imply that the latest library versions
deployed on Maven Central use different versions of a
similar library;
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« the most popular libraries are also the ones that have the
largest proportion of active versions;

« the existence of multiple used versions that overlap in
time is a common phenomenon in the history of all
libraries.

We interpret these multiple forms of diversity in usage and
popularity of libraries as follows: a repository that offers the
opportunity for users to choose their dependencies, naturally
supports the emergence of diversity among these dependen-
cies. In other words, this massive emergent diversity is not
only due to users who forget to update their dependencies.
Many users decide very explicitly to depend on one or
the other version of a library because it perfectly fits their
needs. Consequently, this kind of diversity emerges in a fully
decentralized and unsupervised manner.

Our study also highlights some important challenges for a
repository that supports diversification. First, there is a cost for
the maintainers of Maven Central. We have observed that, al-
though most libraries are actively used (95.49%), only 14.73%
of the Maven artifacts are used. We have also noticed that some
companies use Maven Central to store artifacts that nobody
else uses (45.1% of versions are dormant). Consequently,
keeping all versions induces an overhead in hardware and
software resources. Second, there is a cost for the developers
of popular libraries who need to maintain several versions of
their library to serve different clients. Third, there is a risk
that users decide to keep a dependency towards a vulnerable
or flawed version.

The trade-off between healthy levels of diversity in a system
(here, the Maven Central ecosystem) and the challenges of
redundancy and noise is necessary and very natural. Biological
studies insist on the importance of keeping less fit or even
unexpressed genes as genetic material that is necessary in
order to adapt to unpredictable environmental changes [21],
[22]. Our study reveals that the immutability of Maven artifacts
provides the material for libraries to eventually fit the needs
of various users, which eventually results in the emergence
of diverse popular and timely versions. In the same way that
biological systems do, library maintainers can accommodate
the overhead of manual updates and conflict management in
order to contribute to the sustainability of the massively large
pool of software diversity that exists in Maven Central.

B. Threats to Validity

We report about internal, external, and reliability threats to
the validity of our study.

a) Internal validity: The internal threat relates to the
metrics employed, especially those to compare the popular-
ity of libraries and versions. In this work, we characterize
popularity in terms of number of usages and quantify it based
on well-known graph-based metrics [23]. Thus, we assume
that a widely reused library is a popular one, and we consider
only the relationships described in Maven Central, which do
not take into account usages from private projects. The jOOQ
library is one example among others. Because it is dual-
license, many OSS libraries avoid to depend on it, but other



closed-source software are still using it and there is no way
to quantify their number. However, as suggested in previous
studies, software popularity can be measured in a variety of
ways, depending on different factors such as social or technical
aspects [24]. Another concern relates to the fact that conven-
tions on semantic versioning are not really taken well into
account by library maintainers [25]. Still, we believe that at
the scale of the dataset employed in this study, our metrics are
a fair approximation of the state of practice in Maven Central.

b) External validity: Our results might not generalize
to other software repositories beyond the Maven Central
ecosystem (e.g., npm, RubyGems or CRAN). It should also
be noticed that Maven Central does not perform any real
vetting of the people that deploy artifacts or on the quality
of such artifacts. Thus, the integrity and origin of most
of our study subjects therein is not known or verifiable.
Moreover, this work takes into account version ordering as
well as temporal ordering relationships, which we believe are
sufficient to give a plausible representation of the way that
libraries are updated as well as their evolution trends.

c) Reliability validity: Our results are reproducible,
the dataset used in this study is publicly available online®.
Moreover, we provide all necessary code’ to replicate our
analysis, including Cypher queries and R notebooks.

VI. RELATED WORK

This paper is related to a long line of previous works
about mining software repositories and analysis of dependency
management systems. In this section we discuss the related
work along the following aspects.

a) Structure and updating behavior: Over the past years,
several research papers have highlighted the benefits of lever-
aging graph-based representations and ecologycal principles to
analyze the architecture of large-scale software systems [26]—
[29]. Raemaekers et al. [30] investigated the adherence to
semantic versioning principles in Maven Central as well as
the update trends of popular libraries. They found that the
presence of breaking changes has little influence on the actual
delay between the availability of a library and the use of the
newer version. Kula et al. [12] study the latency in trusting the
latest release of a library and propose four types of dependency
adoptions according to the dependency declaration time. De
Castilho et al. [31] use the Maven Central repository for
automatically selecting and acquiring tools and resources to
build efficient NLP processing pipelines. Their analysis relied
partially on Maven build files to collect library dependencies in
industrial systems. However, as far as we know, none of the ex-
isting works have studied the repercussion of the artifacts’ im-
mutability at the scale of the entire Maven Central repository.

b) Analysis of evolution trends: The evolution of soft-
ware repositories is a popular and widely-researched topic in
the area of empirical software engineering. Recently, Decan

Shttps://doi.org/10.5281/zenodo. 1489120
7https://github.com/castor-software/oss- graph-metrics/tree/master/
maven-central-diversity
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et al. [32] perform a comparison of the similarities and differ-
ences between seven large dependency management systems
based on the packages gathered and archived in the libraries.io
dataset. They observe that dependency networks tend to grow
over time and that a small number of libraries have a high
impact on the transitive dependencies of the network. Kikas
et al. [33] study the fragility of dependency networks of
JavaScript, Ruby, and Rust and report on the overall evolution-
ary trends and differences of such ecosystems. Abdalkareem et
al. [34] investigate about the reasons that motivate developers
to use trivial packages on the npm ecosystem. Raemaekers
et al. [35] construct a Maven dataset to track the changes on
individual methods, classes, and packages of multiple library
versions. Our work expands the existing knowledge in the area
by showing how software repositories can contribute to prevent
dependency monoculture by making available a more diverse
set of library versions for software reuse.

c) Security and vulnerability risks: Researchers have in-
vestigated and compared dependency issues across many pack-
aging ecosystems. Suwa et al. [11] investigate the occurrence
of rollbacks during the update of libraries in Java projects.
Their results confirm previous studies that show that library
migrations have no clear patterns and in many cases, the latest
available version of a library is not always the most used [36],
[37]. Mitropoulos et al. [38] present a dataset composed of
bugs reports for a total of 17,505 Maven projects. They use
FindBugs to detect numerous types of bugs and also to store
specific metadata together with the FindBugs results. Zapata
et al. [39] compare how library maintainers react to vulnerable
dependencies based on whether or not they use the affected
functionality in their client projects. Our work considers
security and vulnerability risks in software repositories from a
novel perspective, i.e., by taking into account the benefits and
drawbacks that come with the emergence of software diversity.

VII. CONCLUSION

In this paper, we performed an empirical study on the
diversity of libraries and versions in the Maven Central
repository. We studied the activity, popularity and timeliness
of 1,487,956 artifacts that represent all the versions of 73, 653
libraries. We defined various graph-based metrics based on
the dependencies among Maven artifacts that are captured
in the Maven Dependency Graph [1]. We found that ~40%
of libraries have two or more versions that are actively used,
while almost 4% never had any user in Maven Central. We
also found that more than 90% of the most popular versions
are not the latest releases, and that both active and significantly
popular versions are distributed across the history of library
versions. In summary, we presented quantitative empirical
evidence about how the immutability of artifacts in Maven
Central supports the emergence of natural software diversity,
which is fundamental to prevent dependency monoculture
during software reuse. Our next step is to investigate how
we can amplify this natural emergence of software diversity
through dependency transformations at the source code level.
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Abstract

Build automation tools and package managers have a profound influence on software devel-
opment. They facilitate the reuse of third-party libraries, support a clear separation between
the application’s code and its external dependencies, and automate several software develop-
ment tasks. However, the wide adoption of these tools introduces new challenges related to
dependency management. In this paper, we propose an original study of one such challenge:
the emergence of bloated dependencies. Bloated dependencies are libraries that are pack-
aged with the application’s compiled code but that are actually not necessary to build and run
the application. They artificially grow the size of the built binary and increase maintenance
effort. We propose DEPCLEAN, a tool to determine the presence of bloated dependencies in
Maven artifacts. We analyze 9,639 Java artifacts hosted on Maven Central, which include a
total of 723,444 dependency relationships. Our key result is as follows: 2.7% of the depen-
dencies directly declared are bloated, 15.4% of the inherited dependencies are bloated, and
57% of the transitive dependencies of the studied artifacts are bloated. In other words, it is
feasible to reduce the number of dependencies of Maven artifacts to 1/4 of its current count.
Our qualitative assessment with 30 notable open-source projects indicates that developers
pay attention to their dependencies when they are notified of the problem. They are willing
to remove bloated dependencies: 21/26 answered pull requests were accepted and merged
by developers, removing 140 dependencies in total: 75 direct and 65 transitive.

Keywords Dependency management - Software reuse - Debloating - Program analysis

1 Introduction

Software reuse, a long time advocated software engineering practice (Naur and Randell
1969; Krueger 1992), has boomed in the last years thanks to the widespread adoption of
build automation and package managers (Cox 2019; Soto-Valero et al. 2019). Package man-
agers provide both a large pool of reusable packages, a.k.a. libraries, and systematic ways to
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declare what are the packages on which an application depends. Examples of such package
management systems include Maven for Java, npm for Node.js, or Cargo for Rust. Build
tools automatically fetch all the packages that are needed to compile, test, and deploy an
application.

Package managers boost software reuse by creating a clear separation between the
application and its third-party dependencies. Meanwhile, they introduce new challenges
for the developers of software applications, who now need to manage those third-party
dependencies (Cox 2019) to avoid entering into the so-called “dependency hell”. These
challenges relate to ensuring high quality dependencies (Salza et al. 2019), keeping the
dependencies up-to-date (Bavota et al. 2015), or making sure that heterogeneous licenses
are compatible (Wu et al. 2017).

Our work focuses on one specific challenge of dependency management: the exis-
tence of bloated dependencies. This refers to packages that are declared as dependencies
for an application, but that are actually not necessary to build or run it. The major
issue with bloated dependencies is that the final deployed binary file includes more
code than necessary: an artificially large binary is an issue when the application is
sent over the network (e.g., web applications) or it is deployed on small devices (e.g.,
embedded systems). Bloated dependencies could also embed vulnerable code that can be
exploited, while being actually useless for the application (Gkortzis et al. 2019). Overall,
bloated dependencies needlessly increase the difficulty of managing and evolving software
applications.

We propose a novel, unique, and large scale analysis of bloated dependencies. So far,
research on bloated dependencies has been only touched with a study of copy-pasted depen-
dency declarations by McIntosh et al. (2014), and a study of unused dependencies in the
Rust ecosystem by Hejderup et al. (2018). Our previous work gives preliminary results on
this topic in the context of Java (Harrand et al. 2019). Yet, there is no systematic analy-
sis of the presence of bloated dependencies nor about the importance of this problem for
developers in the Java ecosystem.

Our work focuses on Maven, the most popular package manager and automatic build
system for Java and languages that compile to the JVM. In Maven, developers declare
dependencies in a specific file, called the POM file. In order to analyze thousands of arti-
facts on Maven Central, the largest repository of Java artifacts, manual analysis is not a
feasible solution. To overcome this problem, we have developed DEPCLEAN, a tool that per-
forms an automatic analysis of dependency usage in Maven projects. Given an application
and its POM file, DEPCLEAN collects the complete dependency tree (the list of dependen-
cies declared in the POM, as well as the transitive dependencies) and analyzes the bytecode
of the artifact and all its dependencies to determine the presence of bloated dependencies.
Finally, DEPCLEAN generates a variant of the POM in which bloated dependencies are
removed.

Armed with DEPCLEAN, we structured our analysis of bloated dependencies in two
parts. First, we automatically analysed 9,639 artifacts and their 723,444 dependencies.
We found that 75.1% of these dependencies are bloated. We identify transitive depen-
dencies and the complexities of dependency management in multi-module projects as the
primary causes of bloat. Second, we performed a user study involving 30 artifacts, for
which the code is available as open-source on GitHub and which are actively maintained.
For each project, we used DEPCLEAN to generate a POM file without bloated dependen-
cies and submitted the changes as a pull request to the project. Notably, our work yielded
21 merged pull requests by open-source developers and 140 bloated dependencies were
removed.
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To summarize, this paper makes the following contributions:

— A comprehensive study of bloated dependencies in the context of the Maven package
manager. We are the first to quantify the magnitude of bloat on a large scale (9,639
Maven artifacts) showing that 75.1% of dependencies are bloated.

— A tool called DEPCLEAN to automatically analyze and remove bloated dependencies
in Java applications packaged with Maven. DEPCLEAN can be used in future research
on package management as well as by practitioners.

— A qualitative assessment of the opinion of developers regarding bloated dependencies.
Through the submission of pull requests to notable open-source projects, we show that
developers care about removing dependency bloat: 21/26 of answered pull requests
have been merged, removing 140 bloated dependencies.

The remainder of this paper is structured as follows. Section 2 introduces the key con-
cepts about dependency management with Maven and presents an illustrative example.
Section 3 introduces the new terminology and describes the implementation of DEPCLEAN.
Section 4 presents the research questions that drive our study, as well as the methodology
followed. Section 5 covers our experimental results for each research question. Sections 6
and 7 provide a comprehensive discussion of the results obtained and present the threats
to the validity of our study. Section 8 concludes this paper and provides future research
directions.

2 Background

We provide an overview of the Maven package management system and of the essential
terminology. We illustrate these concepts with a concrete example.

2.1 Maven Dependency Management Terminology

Maven is a popular package manager and build automation tool for Java projects and other
languages that compile to the JVM (e.g., Scala, Kotlin, Groovy, Clojure, or JRuby). Maven
relies on a specific build file, known as the POM (acronym for “Project Object Model”),
where developers specify information about the project, its dependencies and its build pro-
cess. POM files can inherit from a base POM, known as the Maven parent POM. The
inheritance and declaration of dependencies is a design decision of developers.

Maven Project A Maven project includes source code files and build files. It can be a
single-module, or a multi-module project. The former has a single POM file, which includes
all the dependencies and build instructions to produce a single artifact (JAR file). The latter
allows to separately build multiple artifacts in a certain order through a so-called aggregator
POM. In multi-module projects, developers can define a parent POM that specifies the
dependencies used by all the modules.

Maven Artifact We refer to artifacts as compiled Maven projects that have been deployed
to a binary code repository. A Maven artifact is typically a JAR file that is uniquely iden-
tified with a triplet (G:A:V), G, the groupld, identifies the organization that develops the
artifact, A, the artifactld, is the name of the artifact, and V corresponds to its version. Maven
Central is the most popular public repository to host Maven artifacts.
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Dependency Resolution Maven resolves dependencies in two steps: (1) based on the POM
file(s), it determines the set of required dependencies, and (2) it fetches dependencies that
are not present locally from external repositories such as Maven Central. Maven constructs
a dependency tree, that captures all dependencies and their relationships. Given one artifact,
we distinguish between three types of Maven dependencies: direct dependencies that are
explicitly declared in the POM file; inherited dependencies, which are declared in the parent
POM; and rransitive dependencies obtained from the transitive closure of direct and inher-
ited dependencies. Dependency version management is a key feature of the dependency
resolution, which Maven handles with a specific dependency mediation algorithm.'

2.2 ABrief Journey in the Dependencies of the JxLs Library

We illustrate the concepts introduced previously with one concrete example: JXLS,? an
open source Java library for generating Excel reports. It is implemented as a multi-
module Maven project with a parent POM in jx1s-project, and three modules: jx1s,
jxls-examples, and jxls-poi.

Listing 1 shows an excerpt of the POM file of the jx1s-poi module, version 1.0.15. It
declares jx1s-project as its parent POM (lines 1 — 5) and a direct dependency towards
the poi Apache library (lines 10-14). Figure 1 depicts an excerpt of its Maven dependency
tree (we do not show testing dependencies here, such as JUnit, to make the figure more
readable). Nodes in blue, pink, and yellow represent direct, inherited, and transitive depen-
dencies, respectively, for the jx1s-poi artifact (as reported by the dependency:tree
Maven plugin).

Listing 1 Excerpt of the POM <parent>

file corresponding to the module <grouplds>org.jxls</grouplds>

jxls-poi of the multi-module <artifactId>jxls-project</artifactId>
Maven project JXLS <version>2.6.0</version>

</parent>
<artifactId>jxls-poi</artifactIds>
<packaging>jar</packaging>
<version>1.0.15</version>
<dependenciess>
<dependency>
<groupld>org.apache.poi</groupIds>
<artifactIdspoi</artifactId>
<version>3.17</version>
</dependency>

</dependencies>

The library jcl-over-slf4j declares a dependency towards slf4j-api,
version 1.7.12, which is omitted by Maven since it is already added from the
jxls-project parent POM. On the other hand, JXLS declares dependencies to ver-
sion 1.7.26 of jcl-over-slf4j and slf4j-api, but the lower version 1.7.12 was

Uhttps:/maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html.
Zhttp://jxls.sourceforge.net
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Fig. 1 Excerpt of the dependency tree of the multi-module Maven project JXLS (dependencies used for
testing are not shown for the sake of simplicity)

org.slf4j
slf4j-api
1.7.12

chosen over it since it is nearer to the root in the dependency tree and, by default,
Maven resolves version conflicts with a nearest-wins strategy. Once Maven finishes
the dependency resolution, the classpath of jxls-poi includes the following arti-
facts: poi, commons-codec, commons-collections4, commons-jexl,
commons -1logging, jxls, commons-jexl3s, commons-beanutils,
commons-collections, logback-core, jcl-over-slf4j, and s1f4j-api.
The goal of our work is to determine if all the artifacts in the classpath of Maven projects
such as jx1s-poi are actually needed to build and run those projects.

3 Bloated Dependencies

In this section, we introduce the idea of bloated dependency, which is the fundamental
concept presented and studied in the rest of this paper. We describe our methodology to
study bloated dependencies, as well as our tools to automatically detect and remove them
from Maven artifacts.

Dependencies among Maven artifacts form a graph, according to the information
declared in their POMs. This graph has been introduced in our previous work about the
Maven Dependency Graph (MDG) (Benelallam et al. 2019). The MDG is defined as
follows:

Definition 1 (Maven Dependency Graph) The MDG is a vertex-labelled graph, where ver-
tices are Maven artifacts (uniquely identified by their G:A:V coordinates), and edges repre-
sent dependency relationships among them. Formally, the MDG is defined as G = (V, &),

where:

@ Springer



45 Page 6 of 44 Empir Software Eng (2021) 26: 45

— Vs the set of artifacts in the Maven Central repository
— £ CV x Vrepresent the set of directed edges that determine dependency relationships
between each artifact v € V and its dependencies

3.1 Novel Concepts

Each artifact in the MDG has its own Maven Dependency Tree (MDT), which is the
transitive closure of all the dependencies needed to build the artifact, as resolved by Maven.

Definition 2 (Maven Dependency Tree) The MDT of an artifact v € V) is a directed acyclic
graph of artifacts, with v as the root node, and a set of edges £ representing dependency
relationships between them.

In this work, we introduce the novel concept of bloated dependency as follows:

Definition 3 (Bloated Dependency) An artifact p is said to have a bloated dependency
relationship g, € & if there is a path in its MDT, between p and any dependency d of p,
such that none of the elements in the API of d are used, directly or indirectly, by p.

To reason about the bloated dependencies of an artifact, we introduce a new data
structure, called the Dependency Usage Tree (DUT) as follows.

Definition 4 (Dependency Usage Tree) The DUT of an artifact a, defined as DUT, =
V, &, V), is a tree, whose nodes are the same as the Maven Dependency for a and which
edges are all of the (a, a;), for all nodes a; € DUT,. A labeling function V assigns each
edge one of the following six dependency usage types: V : £ — {ud, ui, ut, bd, bi, bt} such
that:

ud, ifd isused and it is directly declared by p

ui, if d is used and it is inherited from a parent of p
ut, if d is used and it is resolved transitively by p

bd, ifd is bloated and it is directly declared by p

bi, ifd is bloated and it is inherited from a parent of p

V(p.d)) =

bt, ifd is bloated and it is resolved transitively by p

It is to be noted that, in the case of transitive dependencies, V assigns the bt label to the
relationship (a, a;) if and only if two conditions hold: 1) a does not use any member of a;,
and 2) none of the artifacts in the tree need to use g; to fulfill the requirements of a.

Given a Maven artifact ¢ we build both the MDT, and the DUT,. Both trees include
exactly the same set of nodes, but the edges are different. In the MDT,, an edge (ai, a2)
exists when the POM of a; declares a dependency towards a;. In the DUT,, all edges start
from a, and an edge (a, a;) means that a; is an artifact in the MDT,. In the case a; is not
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a direct dependency of a, then the edge (a, a1) does not exist in the MDT,, yet we need to
model it, since it is the relation (a, a;) that can be bloated or used.

3.2 Example

Figure 2 illustrates the dependency usage tree for the example presented in Fig. 1. Analyz-
ing the bytecode of jx1s-poi, we find no references to any API member of the direct
dependencies commons-jex1 (explicitly declared in the POM) and s147j (inherited from
its parent POM). Therefore, these dependency relationships are labelled as bloated-direct
(bd) and bloated-inherited (bi) dependencies, respectively.

Now let us consider the dependency to commons -codec. In the MDT of jx1ls-poi
(cf. Fig. 1), we observe that commons -codec is a transitive dependency of jx1ls-poi,
through poi. From the perspective of bloat, what we want to know is the following:
is commons-codec necessary to build and run jxls-poi? Therefore, we are inter-
ested in the relationship between jxls-poi and commons-codec, which we model
in the DUT of jxls-poi (cf. Fig. 2). To answer the question of usage we need two
analyses. First, an analysis of the bytecode of jxls-poi reveals that it does not use
commons -codec directly. Second, we observe that jxls-poi uses some members
of poi, and that these members of poi do not use commons-codec. So, we con-
clude that the relationship between jxls-poi and commons-codec is bloated, and
the corresponding edge is labelled bt. It is important to note that a bloated transitive
dependency relationship between jx1ls-poi and commons-codec does not mean that
commons -codec is bloated for poi, but only for the subpart of poi that is necessary
for jx1s-poi. Table 1 summarizes the labelling of all the dependency relationships of
jxls-poi.

Legend
org jxIs
—P dependency usage status jxls-poi )
~
1.0.15
() direct dependency . (o]
=
0 transitive dependency g
() inherited dependency o+
ud ui
bd ud
ut bi
or, he.poi bt W org jxls
g.apache.poi org.apache.commons i
poi commons-jexl jxls
317 211 26 bt w]
[¢]
ut ut - ko)
bt org.slfdj &
Jjcl-over-slf4j =]
17.12 Q.
[¢]
commons-codec commons-jex13 commons-beanutils logbaglf—core Q.
110 3.1 1.9.3 123 8
org.apache.commons commons-logging commons-collections org.slfdj
commons-collections4 commons-logging commons-collections slf4j-api
4.1 1.1.1 3.2.2 1.7.12

Fig.2 Dependency Usage Tree (DUT) for the example presented in Fig. 1. Edges are labelled according to
Definition 4 to reflect the usage status between jx1s-poi and each one of its dependencies

@ Springer



45 Page 8 of 44 Empir Software Eng (2021) 26: 45

Table 1 Contingency table of the different types of dependency relationships studied in this work for the
example presented in Fig. 2

Used Bloated

Direct poi, jxls commons-jex]

Inherited jcl-over-sl4j sl4j-api

Transitive commons-beanutils,logback-core, commons-logging, commons-collections,
commons-collections4 commons-codec, commons-jexI13

3.3 DePCLEAN: A Tool for Detecting and Removing Bloated Dependencies
For our study, we design and implement a specific tool called DEPCLEAN. An overview

of DEPCLEAN is shown in Fig. 3, it works as follows. It receives as inputs a built
Maven project and a repository of artifacts, then it extracts the dependency tree of

Project -
—
M |
Central E
POM o
DEPCLEAN
Dependency Debloated
Dependency tree usage analysis dependency tree

Maven dependency Bytecode analysis of Actually used
resolution API members calls dependencies

Debloated
Dependency POM file
usage report

mdinQ

Fig. 3 Overview of the tool DEPCLEAN to detect and remove bloated dependencies in Maven projects.
Rounded squares represent artifacts, circles inside the artifacts are API members, arrows between API mem-
bers represents bytecode calls between artifacts, arrows between artifacts represent dependency relationships

between them
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the projects and constructs a DUT to identify the set of dependencies that are actu-
ally used by the project. DEPCLEAN has two outputs: (1) it returns a report with the
usage status of all types of dependencies, and (2) it produces an alternative version
of the POM file (POMy) with all the bloated dependencies removed (i.e., the XML
node of the bloated dependency is removed). DEPCLEAN does not perform any mod-
ifications to the source code, bytecode, or configurations files in the project under
consideration.

Algorithm 1 details the main procedure of DEPCLEAN. The algorithm receives as
input a Maven artifact p that includes a set of dependencies in its dependency tree,
denoted as DT, and returns a report of the usage status of its dependencies and a
debloated version of its POM. Notice that DEPCLEAN computes two transitive closures:
over the Maven dependency tree (line 2) and over the call graph of API members
(line 3).

Algorithm 1 Main procedure to detect and remove bloated dependencies.

Input: A Maven artifact p.

Output: A report of the bloated dependencies of p and a clean POM file f of p
without bloated dependencies.

1 f <« copyPOM(p);

2 DT <« getDependencyTree(p);

3 UD < getUsedDependencies(p, DT); // refer to Algorithm 2

4 foreach d € DT do

5

6

if d € UD then
continue; // do nothing, the dependency is actually
used by p
7 end
8 if isDeclared(d, f) then
| report d as bloated-direct and remove(d, f);
10 else
11 | report d as bloated-inherited or bloated-transitive, and exclude(d, f);
12 end
13 end
14 return f;

The algorithm first copies the POM file of p, resolving all its direct and transitive depen-
dencies locally, and obtaining the dependency tree (lines 1 and 2). If p is a module of a
multi-module project, then all the dependencies declared in its parent POM are included
as direct dependencies of p. Then, the algorithm proceeds to construct a set with the
dependencies that are actually used by p (line 3).

Algorithm 2 explains the bytecode analysis. The detection component statically analyzes
the bytecode of p and all its dependencies to check which API members are being refer-
enced by the artifact, either directly or indirectly. Notice that it behaves differently if the
included artifact is a direct, inherited, or a transitive dependency. If none of the API mem-
bers of a dependency d € DT are called, even indirectly via transitive dependencies, then
d is considered to be bloated, and we proceed to remove it.
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Algorithm 2 Procedure to obtain all the dependencies used, directly or indirectly, by a
Maven artifact.
Input: A Maven artifact p and its dependency tree DT .
QOutput: A set of dependencies UD actually used by p.

1 UD < ;

2 foreach d € DT do

3 if (p, d) is a direct or inherited dependency then

4 party < extractMembers(p,d); // extract the subpart of d
used by p

5 if party # ¢ then

6 | add(d, UD);

7 else

8 | continue;

9 end

10 else

11 find the path [ = [p, ..., d] connecting p and d in DT;

12 a < p;

13 foreachb €I, , do

14 party < extractMembers(a, b);

15 if part, = ¢ then

16 | break;

17 else

18 ’ a <— partp;

19 end

20 if b = d then

21 | add(d, UD);

22 end

23 end

24 end

25 end

In Maven, we remove bloated dependencies in two different ways: (1) if the bloated
dependency is explicitly declared in the POM, then we remove its declaration clause directly
(line 9 in Algorithm 1), or (2) if the bloated dependency is inherited from a parent POM or
induced transitively, then we excluded it in the POM (line 11 in Algorithm 1). This exclusion
consists in adding an <exclusion> clause inside a direct dependency declaration, with
the groupld and artifactld of the transitive dependency to be excluded. Excluded dependen-
cies are not added to the classpath of the artifact by way of the dependency in which the
exclusion was declared.

DEPCLEAN is implemented in Java as a Maven plugin that extends the
maven-dependency-analyzer> tool, which is actively maintained by the Maven
team and officially supported by the Apache Software Foundation. For the construction of
the dependency tree, DEPCLEAN relies on the copy-dependencies and tree goals of
the maven-dependency-plugin. Internally, DEPCLEAN relies on the ASM* library

3http://maven.apache.org/shared/maven-dependency-analyzer
“https://asm.ow2.io
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to visit all the .class files of the compiled projects in order to register bytecode calls
towards classes, methods, fields, and annotations among Maven artifacts and their depen-
dencies. For example, it captures all the dynamic invocations created from class literals
by parsing the bytecodes in the constant pool of the classes. DEPCLEAN defines a cus-
tomized parser that reads entries in the constant pool of the . class files directly, in case
it contains special references that ASM does not support. This allows the plugin to stati-
cally capture reflection calls that are based on string literals and concatenations. Compared
to maven-dependency-analyzer, DEPCLEAN adds the unique features of detecting
transitive and inherited bloated dependencies, and to produce a debloated version of the
POM file. DEPCLEAN is open-source and reusable from Maven Central, the source code is
available at https://github.com/castor-software/depclean.

4 Experimental Methodology

In this section, we present the research questions that articulate our study. We also describe
the experimental protocols used to select and analyze Maven artifacts for an assessment of
the impact of bloated dependencies in this ecosystem.

4.1 Research Questions

Our investigation of bloated dependencies in the Maven ecosystem is composed of four
research questions grouped in two parts. In the first part, we perform a large scale
quantitative study to answer the following research questions:

— RQ1: How frequently do bloated dependencies occur? With this research question,
we aim at quantifying the amount of bloated dependencies among 9,639 Maven arti-
facts. We measure direct, inherited and transitive dependencies to provide an in-depth
assessment of the dependency bloat in the Maven ecosystem.

— RQ2: How do the reuse practices affect bloated dependencies? In this research
question, we analyze bloated dependencies with respect to two distinctive aspects
of reuse in the Maven ecosystem: the additional complexity of the Maven depen-
dency tree caused by transitive dependencies, and the choice of a multi-module
architecture.

The second part of our study focuses on 30 notable Maven projects and presents the qual-
itative feedback about how developers react to bloated dependencies, and to the solutions
provided by DEPCLEAN. It is guided by the following research questions:

— RQ3: To what extent are developers willing to remove bloated-direct dependen-
cies? Direct dependencies are those that are explicitly declared in the POM. Hence,
those dependencies are easy to remove since it only requires the modification of a
POM that developers can easily change. In this research question, we use DEPCLEAN
to detect and fix bloated-direct dependencies. Then, we communicate the results to the
developers. We report on their feedback.

— RQ4: To what extent are developers willing to exclude bloated-transitive dependen-
cies? Transitive dependencies are those not explicitly declared in the POM but induced
from other dependencies. We exchange with developers about such cases. This gives
unique insights about how developers react to excluding transitive dependencies from
their projects.
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4.2 Experimental Protocols
4.2.1 Protocol of the Quantitative Study (RQ1 & RQ2)

Figure 4 shows our process to build a dataset of Maven artifacts in order to answer RQ1
and RQ2. Steps @ and @ focus on the collection of a representative set, according to the
number of direct dependencies, of Maven artifacts: we sample our study subjects from the
whole MDG, then we resolve the dependencies of each study subject. In steps @ and @, we
analyze dependency usages with DEPCLEAN and compute the set of metrics to answer RQ1
and RQ2.

Filter Artifacts In the first step, we leverage the Maven Dependency Graph (MDG) from
previous research (Benelallam et al. 2019), a graph database that captures the complete
dependency relationships between artifacts in Maven Central at a given point in time.
Figure 5a shows the distribution of the number of direct dependencies of the artifacts with
at least one direct dependency in the MDG. The number of direct dependencies is a repre-
sentative measure that reflects the initial intentions of developers with respect to code reuse.
We select a representative sample that includes 14,699 Maven artifacts (Fig. 5b). Repre-
sentativeness is achieved by sampling over the probability distribution of the number of
direct dependencies per artifact in the MDG, per the recommendation of Shull (2007, Chap-
ter 8.3.1). From the sampled artifacts, we select as study subjects all the artifacts that meet
the following additional criteria:

—  Public API: The subjects must contain at least one . class file with one or more public
methods, i.e., can be reused via external calls to their API.

— Diverse: The subjects all have different groupld and artifactld, i.e., they belong to
different Maven projects.
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Fig. 4 Experimental framework used to collect artifacts and analyze bloated dependencies in the Maven
ecosystem
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Fig. 5 Distribution of the number of direct dependencies of the artifacts at the different stages of the data
filtering process

— Reused: The subjects are used by at least one client via direct declaration.

—  Complex: The subjects have at least one direct dependency with compile scope, i.e., we
can analyze the dependency tree and the reused artifacts.

— Latest: The subjects are the latest released version at the time of the experiment
(October, 2019).

After this systematic selection procedure, we obtain a dataset of 9,770 Maven artifacts.
The density of artifacts with a number of direct dependencies in the range [3, 9] in our
dataset (Fig. 5c) is higher than in the MDG (Fig. 5a). This is a direct consequence of
our selection criteria where artifacts must have at least one direct dependency with com-
pile scope. This filter removes artifacts that contain only dependencies that are not shipped
in the JAR of the artifact (e.g., fest dependencies). Therefore, the 9,770 artifacts used as
study subjects are representative of the artifacts in Maven Central that include third-party
dependencies in the JAR.

Resolve Dependencies In the second step, we download the binaries of all the selected
artifacts and their POMs from Maven Central and we resolve all their direct and transitive
dependencies to a local repository. To ensure the consistency of our analysis, we discard
the artifacts that depend on libraries hosted in external repositories. In case of any other
error when downloading some dependency, we exclude the artifact from our analysis. This
occurred for a total of 131 artifacts in the dataset obtained in the first step.

Table 2 shows the descriptive statistics about the 9,639 artifacts in our final dataset
for RQ1 and RQ2. The dataset includes 44,488 direct, 180,693 inherited, and 498,263
transitive dependency relationships (723,444 in total). We report about their depen-
dencies with compile scope, since those dependencies are necessary to build the
artifacts. Columns #C, #M, and #F give the distribution of the number of classes,
methods, and fields per artifact (we count both the public and private API mem-
bers). The size of artifacts varies, from small artifacts with one single class (e.g.,
org.elasticsearch.client:transport:6.2.4), to large libraries with thou-
sands of classes (e.g., org.apache.hive:hive-exec:3.1.0). In total, we analyze
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Table 2 Descriptive statistics of the 9,639 Maven artifacts selected to conduct our quantitative study of
bloated dependencies (RQ1 & RQ2)

API Members Dependencies

#C #M #F #D #1 #T
Min. 1 1 0 1
Ist-Q 10 63 21 2
Median 32 231 75 4 2 20
3rd-Q 111 891 279 7 18 59
Max. 47,241 435,695 129,441 148 453 1,776
Total 2,397,879 22,633,743 6,510,584 44,488 180,693 498,263

the bytecode of more than 30 millions of API members. Columns #D, #I, and #T
account for the distributions of direct, inherited, and transitive dependencies, respectively.
com.bbossgroups .pdp:pdp-system:5.0.3.9 is the artifact with the largest
number of declared dependencies in our dataset, with 148 dependency declarations in its
POM file, while be .atbash.json:octopus-accessors-smart:0.9.1 has the
maximum number of transitive dependencies: 1,776. The distributions of direct and transi-
tive dependencies are notably different: typically the number of transitive dependencies is
an order of magnitude larger than direct dependencies, with means of 20 and 4, respectively.

Dependency Usage Analysis This is the first step to answer RQ1 and RQ2: collect the
status of all dependency relationships for each artifact in our dataset. For each artifact, we
first unpack its JAR file, as well as its dependencies. Then, for each JAR file, we analyze
all the bytecode calls to API class members using DEPCLEAN. This provides a Dependency
Usage Tree (DUT) for each artifact, on which each dependency relationship is labeled with
one of the six categories as we illustrated in Table 1: bloated-direct (bd), bloated-inherited
(bi), bloated-transitive (bt), used-direct (ud), used-inherited (ui), or used-transitive (ut).

Collect Dependency Usage Metrics This last step consists of collecting a set of metrics
about the global presence of bloated dependencies. We define our analysis metrics with
the goals of studying 1) the dependency usage relationships in the DUT (RQ1), and 2) the
complexity resulting from the adoption of the multi-module Maven architecture (RQ2).

In RQI1, we analyze our dataset as a whole, looking at the usage status of dependency
relationships from two perspectives:

—  Global distribution of dependency usage. This is the normalized distribution of each
category of dependency usage, over each dependency relationship of each of the 9,639
artifacts in our dataset.

—  Distribution of dependency usage type, per artifact. For each of the six types of depen-
dency usage, we compute the normalized ratio over the total number of dependency
relationships for each artifact in our dataset.

In RQ2, we analyze how the specific reuse strategies of Maven relate to the presence of
bloated dependencies. First, we use the number of transitive dependencies and the height of
the dependency tree as a measure of complexity. The former measure is guided by the fact
that transitive dependencies are more difficult to handle by developers; the latter measure is
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guided by the idea that dependencies that are deeper in the dependency tree are more likely
to be bloated. We use the following metrics:

—  Bloated dependencies w.r.t. the number of transitive dependencies. For each artifact that
has at least one transitive dependency, we determine the relation between the ratio of
transitive dependencies and the ratio of bloated dependencies.

—  Bloated-transitive dependencies w.r.t. to the height of the dependency tree. Given an
artifact and its Maven dependency tree, the height of the tree is the longest path between
the root and its leaves. To compute this metric, we group our artifacts according to
the height of their tree. The maximum dependency tree height that we observed is 14.
However, there are only 152 artifacts with a tree higher than 9. Therefore, we group all
artifacts with height > 9. For each subset of artifact with the same height, we compute
the size of the subset and the distribution of bloated-transitive dependencies of each
artifact in the subset.

Second, we distinguish the presence of bloated dependencies between single and multi-
module Maven projects, according to the following metrics:

—  Global distribution of dependency usage in a single or multi-module project. We present
two plots that measure the distribution of each type of dependency usage in the set
of single and multi-module projects. It is to be noted that the plot for single-module
projects does not include bloated-inherited (bi) and used-inherited (ui) dependencies
since they have no inherited dependencies.

—  Distribution of dependency usage type, per artifact, in a single or multi-module project.
We present two plots that provide six distributions each: the distribution of each type of
dependency usage type for artifacts that are in a single-module or multi-module project.

4.2.2 Protocol of the Qualitative Study (RQ3 & RQ4)

In RQ3 and RQ4, we perform a qualitative assessment of the relevance of bloated depen-
dencies for the developers of open-source projects. We systematically select 30 notable
open-source projects hosted on GitHub to conduct this analysis. We query the GitHub API
to list all the Java projects ordered by their number of stars. Then, we randomly select a set of
projects that fulfil all the following criteria: (1) we can build them successfully with Maven,
(2) the last commit was at the latest in October 2019, (3) they declare at least one depen-
dency in the POM, (4) they have a description in the README about how to contribute
through pull requests, and (5) they have more than 100 stars on GitHub.

Table 3 shows the selected 30 projects per those criteria, to which we submitted at least
one pull request. They are listed in decreasing order according to their number of stars on
GitHub. The first column shows the name of the project as declared on GitHub, followed
by the name of the targeted module if the project is multi-module. Notice that in the case of
jenkins we submitted two pull requests targeting two distinct modules: core and c11i.
Columns two to four describe the projects according to its category as assigned to the cor-
responding released artifact in Maven Central, the number of commits in the master branch
in October 2019, and the number of stars at the moment of conducting this study. Columns
five to seven report about the total number of direct, inherited, and transitive dependencies
included in the dependency tree of each considered project.
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Table 3 Maven projects selected to conduct our qualitative study of bloated dependencies (RQ3 & RQ4)

Project Description Dependencies
Category #Commits #Stars #D #I #T
jenkins [core] Automation Server 29,040 14,578 51 2 87
jenkins [cli] Automation Server 29,040 14,578 17 2 0
mybatis-3 [mybatis] Relational Mapping 3,145 12,196 23 0 51
flink [core] Streaming 19,789 11,260 14 10 34
checkstyle [checkstyle] Code Analysis 8,897 8,897 18 0 36
auto [common] Meta-programming 1,081 8331 8 0 24
neo4j [collections] Graph Database 66,602 7069 8 2 21
CoreNLP NLP 15,544 6,812 23 0 45
moshi [moshi-kotlin] JSON Library 793 5731 14 0 21
async-http-client [http-client] HTTP Client 4,034 5233 29 16 130
error-prone [core] Defects Detection 4,015 4915 44 0 35
alluxio [core-transport] Database 30,544 4442 6 14 73
javaparser [symbol-solver-logic] Code Analysis 6,110 2,784 3 0 8
undertow [benchmarks] ‘Web Server 4,687 2,538 10 0 19
wc-capture [driver-openimajl Webcam 629 1,618 3 0 84
teavm [core] Compiler 2,334 1,354 9 0 9
handlebars [markdown] Templates 916 1,102 6 0 13
jooby [joobyl] Web Framework 2,462 1,083 23 0 68
tika [parsers] Parsing library 4,650 929 81 0 67
orika [eclipse-tools] Object Mapping 970 864 3 0 3
spoon [core] Meta-programming 2,971 840 16 2 59
accumulo [core] Database 10,314 763 26 1 51
couchdb-lucene Text Search 1,121 752 25 0 112
jHiccup Profiling 215 519 0 1
subzero [server] Cryptocurrency 158 499 6 0 100
vulnerability-tool [shared] Security 1,051 324 6 4 2
para [core] Cloud Framework 1,270 310 47 2 112
launch4j-maven-plugin Deployment Tool 316 194 7 0 ol
jacop CP Solver 1,158 155 7 0 9
selenese-runner-java Interpreter 1,688 117 23 0 148
commons-configuration Config library 3,159 100 31 0 49

We answer RQ3 according to the following protocol: 1) we run DEPCLEAN, we build
the artifact with the debloated POM file, 2) if the project builds successfully, we analyze the
project to propose a relevant change to the developers per the contribution guidelines, 3) we
propose a change in the POM file in the form of a pull request, and 4) we discuss the pull
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<dependency>
<groupId>org.apache.httpcomponents</groupId>
<artifactId>httpmime</artifactId>

</dependency>

Fig. 6 Example of commit removing the bloated-direct dependency
org.apache.httpcomponents:httpmime in the project Undertow

request through GitHub. Figure 6 shows an excerpt of the diff of such a change in the POM
file. We note that the submitted pull requests contain a small modification in a single file:
the POM.

In the first step of the protocol, we use DEPCLEAN to obtain a report about the usage of
dependencies. We analyze dependencies with both compile and test scope. Once a bloated-
direct dependency is found, we remove it directly in the POM and proceed to build the
project. If the project builds successfully after the removal (all the tests pass), we submit the
pull request with the corresponding change. If after the removal of the dependency the build
fails, then we consider the dependency as used dynamically and do not suggest removing
it. In the case of multi-module projects, with bloated dependencies in several modules, we
submitted a single pull request per module.

For each pull request, we analyze the Git history of the POM file to determine when
the bloated dependency was declared or modified. Our objective is to collect information in
order to understand how the dependencies of the projects change during their evolution. This
allows us to prepare a more informative pull request message and to support our discussion
with developers. We also report on the benefits of tackling these bloated dependencies by
describing the differences between the original and the debloated packaged artifact of the
project in terms of the size of the bundle and the complexity of its dependency tree, when
the difference was significant. Each pull request includes an explanatory message. Figure 7
shows an example of the pull request message submitted to the project Undertow.’> The
message explains the motivations of the proposed change, as well as the negative impact of
keeping these bloated dependencies in the project.

To answer RQ4, we follow the same pull request submission protocol as for RQ3. We
use DEPCLEAN to detect bloated-transitive dependencies and submit pull requests suggest-
ing the addition of the corresponding exclusion clauses in each project POM. Figure 8
shows an example of a pull request message submitted to the project Apache Accumulo®,
while Fig. 9 shows an excerpt of the commit proposing the exclusion of the transitive
dependency org.apache.httpcomponents:httpcore from the direct dependency
org.apache.thrift:libthrift inits POM.

Additional information related to the selected projects and the research methodology
employed is publicly available as part of our replication package at https://github.com/
castor-software/depclean-experiments.

Shttps://github.com/undertow-io/undertow
Shttps://github.com/apache/accumulo
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&3 Conversation 3 -o-Commits 1 & Checks 0 Files changed 1
e cesarsotovalero commented on Nov 13 Contributor

Hello, | noticed that dependencies undertow-servlet , undertow-websockets-jsr, jboss-logging-
processor , xnio-nio, jmh-generator-annprocess,and httpmime are declared inthe pom of the
undertow-benchmarks module. However, these dependencies are not used in any of the four classes of
the module. Removing these unused dependencies in the pom has an impact on the size of the
packaged jar file for the benchmarks (reduction is more than 1MB), and also decreases the complexity
of the Maven dependency tree of the module.

Fig.7 Example of message of a pull request sent to the project Undertow on GitHub

59 Conversation 4 -0 Commits 1 ® Checks 0 Files changed 1
g cesarsotovalero commented Nov 11, 2019 Contributor ,,,

Hello, | noticed that dependencies com.google.guava:listenablefuture ,
org.apache.httpcomponents:httpcore , and io.netty:netty are notused. Hence, these transitive
dependencies with compile scope can be safely excluded in the pom . This makes the core of accumulo
slimmer in size and its dependency tree becomes less complex and easier to maintain.

Fig.8 Example of message in a pull request sent to the project Apache Accumulo on GitHub

Fig.

<dependency>
<groupId>org.apache.thrift</groupId>
<artifactId>libthrift</artifactId>
+ <exclusions>
+ <exclusion>
+ <groupId>org.apache.httpcomponents</groupId>
+ <artifactId>httpcore</artifactId>
+ </exclusion>
+ </exclusions>
9 Example of commit excluding the bloated-transitive

org.apache.httpcomponents:httpcore in the project Apache Accumulo
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5 Experimental Results

We now present the results of our in-depth analysis of bloated dependencies in the Maven
ecosystem.

5.1 RQ1: How Frequently do Bloated Dependencies Occur?

In this first research question, we investigate the status of all the dependency relationships
of the 9,639 Maven artifacts under study.

Figure 10 shows the overall status of the 723,444 dependency relationships in our dataset.
The x-axis represents the percentages, per usage type, of all the dependencies considered
in the studied artifacts. The first observation is that the bloat phenomenon is massive:
543,610 (75.1%) of all dependencies are bloated, they are not needed to compile and run
the code. This bloat is divided into three separate categories: 19,673 (2.7%) are bloated-
direct dependency relationships (explicitly declared in the POMs); 111,649 (15.4%) are
bloated-inherited dependency relationships from parent module(s); and 412,288 (57%) are
bloated-transitive dependencies. Figure 10 shows that 75.1% of the relationships (edges
in the dependency usage tree) are bloated dependencies. Note that this observation does
not mean that 543,610 artifacts are unnecessary and can be removed from Maven Central.
The same artifact can be present in several DUTSs, i.e., reused by different artifacts, but be
part of a bloated dependency relationship only in some of these DUTs, and part of a used
relationship in the other DUTs.

Figure 11 shows the overall status of the dependencies with respect to the type of the
dependency relationship (direct, inherited, and transitive). We observe that approximately
1/3 of direct dependencies are bloated (34.23%), whereas inherited and transitive depen-
dencies have a higher percentage of bloat (61.79% and 82.5% of bloat, respectively). These
results indicate that artifacts with inherited and transitive dependencies are more likely to
have more bloated dependencies. They also confirm that transitive dependencies are the
most susceptible to bloat.

In the following, we illustrate the three types of bloated dependency relationships with
concrete examples.

Bloated-Direct We found that 2.7% of the dependencies declared in the POM file
of the studied artifacts are not used at all via bytecode calls. Recall that detect-
ing this type of bloated dependencies is good, because they are easy to remove

. bloated-direct (bd) bloated-inherited (bi) bloated-transitive (bt)
used-direct (ud) used-inherited (ui) used-transitive (ut)
n
3
2
b= 2A7% 15.4% 57% 3.4% 9.5% 11.9%
£ (19,673)  (111,649) (412,288) (24,815) (69.044)  (85,975)
<
0% 25% 50% 75% 100%
%Dependencies

Fig. 10 Ratio per usage status of the 723,444 dependency relationships analyzed. Raw counts are inside
parentheses below each percentage
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Bloated Used

34.23% 65.77%

1001p

61.79% 38.21%

Artifacts
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%Dependencies

Fig. 11 Ratio per dependency type of bloated and used dependencies of the 723,444 dependency relation-
ships analyzed

by developers with a single change in the POM file of the project under con-
sideration. As an example, the Apache Ignite’ project has deployed an artifact:
org.apache.ignite:ignite-zookeeper:2.4 .0, which contains only one class
in its bytecode: TcpDiscoveryZookeeperIpFinder, and it declares a direct depen-
dency in the POM towards s1f47j, a widely used Java logging library. However, if we
analyze the bytecode of ignite-zookeeper, no call to any API member of s147 exists,
and therefore, it is a bloated-direct dependency. After a manual inspection of the commit
history of the POM, we found that s14j was extensively used across all the modules of
Apache Ignite at the early stages of the project, but it was later replaced by a dedicated
logger, and its declaration remained intact in the POM.

Bloated-Inherited In our dataset, a total of 4,963 artifacts are part of multi-module Maven
projects. Each of these artifacts declares a set of dependencies in its POM file, and
also inherits a set of dependencies from a parent POM. DEPCLEAN marks those inher-
ited dependencies are either bloated-inherited or used-inherited. Our dataset includes a
total of 111,649 dependency relationships labeled as bloated-inherited, which represents
15.4% of all dependencies under study and 61.8% of the total of inherited depen-
dencies. For example, the artifact org.apache.drill:drill-protocol:1.14.0
inherits dependencies commons-codec and commons-io from its parent POM
org.apache.drill:drill-root:1.14.0, however, those dependencies are not
used in this module, and therefore they are bloated-inherited dependencies.

Bloated-Transitive In our dataset, bloated-transitive dependencies represent the major-
ity of the bloated dependency relationships: 412,288 (57%). This type of bloat is a
natural consequence of the Maven dependency resolution mechanism, which automat-
ically resolves all the dependencies whether they are explicitly declared in the POM
file of the project or not. Transitive dependencies are the most common type of depen-
dency relationships, having a direct impact on the growth of the dependency trees. This
type of bloat is the most common in the Maven ecosystem. For example, the artifact

7https://github.com/apache/ignite
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package org.apache.streams.filters;

import com.google.common.base.Preconditions;

public class VerbDefinitionDropFilter implements
StreamsProcessor {

@Override
public List<StreamsDatum> process (StreamsDatum entry) {

Preconditions.checkArgument (entry.getDocument () instanceof
Activity);
return result;

}
.

Listing 2 Code snippet of the class VerbDefinitionDropFilter present in the artifact
org.apache.streams:streams-filters:0.6.0. The library com.google.guava:guava:
20.0 is included in its classpath via transitive dependency and called from the source code, but no
dependency towards guava is declared in its POM

org.eclipse.milo:sdk-client:0.2.1 ships the transitive dependency gson in
its MDT, induced from its direct dependency towards bsd-parser-core. However, the
part of bsd-parser-core used by sdk-client does not call any API member of
gson, and therefore it is a bloated-transitive dependency.

In the following, we discuss the dependencies that are actually used. We observe that
direct dependencies represent only 3.4% of the total of dependencies in our dataset. This
means that the majority of the dependencies that are necessary to build Maven artifacts are
not declared explicitly in the POM files of these artifacts.

It is interesting to note that 85,975 of the dependencies used by the artifacts under
study are transitive dependencies. This kind of dependency usage occurs in two differ-
ent scenarios: (1) the artifact uses API members of some transitive dependencies, without
declaring them in its own POM file; or (2) the transitive dependency is necessary to provide
a functionality to another, actually used dependency, in the dependency tree of the artifact.

package org.duracloud.audit.task;
import org.duracloud.common.json.JaxbdsonSerializer;
public class AuditTask extends TypedTask {

private static JaxbJsonSerializer<Map<String, Strings>>
getPropsSerializer () {
return new JaxbJdsonSerializer<>((Class<Map<String,
String>>) (Object) new HashMap<String,
String> () .getClass()) ;

}

Listing 3 Code snippet of the class AuditTask present in the artifact org.duracloud:auditor:
4.4 .3. The library org.codehaus.jackson:jackson-mapper-asl:1.6.2 is used indirectly
through the direct dependency org.duracloud: common-json:4.4.3

We now discuss an example of the first scenario based on the
org.apache.streams:streams-filters:0.6.0 artifact from the Apache
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Fig. 12 Distributions of the six types of dependency usage relationships for the studied artifacts. The thicker
areas on each curve represent concentrations of artifacts per type of usage

Streams® project. It contains two classes: VerbDefinitionDropFilter and

VerbDefinitionKeepFilter. Listing 2 shows part of the source code of the class
VerbDefinitionDropFilter, which imports the class PreCondition from
library guava (line 2) and uses its static method checkArgument in line 8 of method
process. However, if we inspect the POM of streams-filters, we notice that
there is no dependency declaration towards guava. It declares a dependency towards
streams-core, which in turn depends on the streams-utils artifact that has a
direct dependency towards guava. Hence, guava is a used-transitive dependency of
streams-filters, called from its source code.

Let us now present an example of the second scenario. Listing 3 shows an excerpt of
the class AuditTask included in the artifact org.duracloud:auditor:4.4.3,
from the project DuraCloud.” In line 6, the method getPropsSerializer
instantiates the JaxbJsonSerializer object that belongs to the direct depen-
dency org.duracloud:common-json:4.4.3. This object, in turn, creates
an ObjectMapper from the transitive dependency jackson-mapper-asl.
Hence, jackson-mapper-asl is a necessary, transitive provider for
org.duracloud:auditor:4.4.3.

Figure 12 shows the distributions of dependency usage types per artifact. The figure
presents superimposed log-scaled box-plots and violin-plots of the number of dependency
relationships corresponding to the six usage types studied. Box-plots indicate the stan-
dard statistics of the distribution (i.e., lower/upper inter-quartile range, max/min values, and
outliers), while violin plots indicate the entire distribution of the data.

We observe that the distributions of the bloated-direct (bd) and bloated-transitive (bt)
dependencies vary greatly. Bloated-direct dependencies are distributed between 0 and 1
(1st-Q and 3rd-Q), with a median of 0; whereas the second ranges between 2 and 41 (1st-
Q and 3rd-Q), with a median of 11. These values are in line with the statistics presented in

8hitps://streams.apache.org
9https://duraspace.org
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Table 2, since the number of direct and transitive dependencies in general differ approxi-
mately by one order of magnitude. Overall, from the 9,639 Maven artifacts studied, 3,472
(36%) have at least one bloated-direct dependency, while 8,305 (86.2%) have at least one
bloated-transitive.

On the other hand, the inter-quartile range of bloated-direct (bd) dependencies is more
compact than the used-direct (ud). In other words, the dependencies declared in the POM
are mostly used. This result is expected, since developers have more control over the edition
(adding/removing dependencies) of the POM file of their artifact.

The median number of used-transitive (ut) dependencies is significantly lower than the
median number of bloated-transitive (bt) dependencies (2, vs. 11). This suggests that the
default dependency resolution mechanism of Maven is suboptimal with respect to ensuring
minimal dependency inclusion.

The number of outliers in the box-plots differs for each wusage type.
Notably, the bloated-direct dependencies have more outliers (in total, 25 arti-
facts have more than 100 bloated-direct dependencies). In particular, the artifact
com.bbossgroups.pdp:pdp-system:5.0.3.9 has the maximum number of
bloated-direct dependencies: 133, out of the 147 declared in its POM. The total number of
artifacts with at least one bloated-direct dependency in our dataset is 2,298, which repre-
sents 23.8% of the 9,639 studied artifacts.

/Answer to RQ1: The analysis of the 723,444 analysed dependency relationships in
our dataset reveals that 543, 610 (75%) of them are bloated. Most of the bloated depen-
dencies are transitive 412; 288 (57%). Overall, 36% of the artifacts have at least one
bloated dependency that is declared in their POM file. To our knowledge, this is the
first scientific observation of this phenomenon.

Implications: Since developers have more control over direct dependencies, up to
17,673 (2:7%) of dependencies can be removed directly from the POM of Maven arti-
facts, in order to obtain smaller binaries and reduced attack surface. RQ3 will explore
the willingness of developers to do so. )

5.2 RQ2: How do the Reuse Practices Affect Bloated Dependencies?

In this research question, we investigate how the reuse practices that lead to these distinct
types of dependency relationships are related to the bloated dependencies that emerge in
Maven artifacts.

Figure 13 shows the distributions, in percentages, of the direct, inherited, and transitive
dependencies for the 9,639 studied artifacts. The artifacts are sorted, from left to right, in
increasing order according to their ratio of direct dependencies. The y-axis indicates the
ratio of each type of dependency for a given artifact. First, we observe that 4,967 arti-
facts belong to multi-module projects. Among these artifacts, the extreme case (far left of
the plot) is org. janusgraph: janusgraph-berkeleyje: 0.4 .0, which declares
only 1.4% of its dependencies in its POM, while the 48.6% of its dependencies are inher-
ited from parent POM files, and 50% are transitive. Second, we observe that the ratio of
transitive dependencies is not equally distributed. On the right side of the plot, 879 (9.1%)
artifacts have no transitive dependency (they have 100% direct dependencies). Mean-
while, 5,561 (57.7%) artifacts have more than 50% transitive dependencies. The extreme
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Fig. 13 Distribution of the percentages of direct, inherited, and transitive dependencies for the 9,639 artifacts
considered in this study

case iS org.apereo.cas:cas-server-core-api-validation:6.1.0, with
77.6% transitive dependencies.

In summary, the plot in Fig. 13 offers a big picture of the distribution of the three types of
dependency usage in our dataset. The inherited and transitive dependencies are a significant
phenomenon in Maven: 8,742 (90.7%) artifacts in our dataset have transitive dependen-
cies, and 51.5% of artifacts belong to multi-module projects. This observation confirms the
results of the previous section, most of the bloated dependencies in our dataset are either
transitive (57%) or inherited (15.4%).

5.2.1 Transitive Dependencies

Figure 14 plots the relation between the ratio of transitive dependencies and the ratio of
bloated dependencies. Each dot represents an artifact. Dots have a higher opacity in the
presence of overlaps.

The key insight in Fig. 14 is that the larger concentration of artifacts is skewed to the
top right corner, indicating that artifacts with a high percentage of transitive dependencies
also tend to exhibit higher percentages of bloated dependencies. Indeed, both variables are
positively correlated, according to the Spearman’s rank correlation test (o = 0.65, p-value
< 0.01).

100% - *—
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g L ] @ °
*§ ° . .
—= 25% . s e
% L] N ° ®
B L] °
0% ec e o o o0 ° oo ce °
0% 25% 50% 5% 100%

%Transitive dependencies

Fig. 14 Relation between the percentages of transitive dependencies and the percentage of bloated depen-
dencies in the 9,639 studied artifacts
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Fig. 15 Distribution of the percentages of bloated-transitive dependencies for our study subjects with respect
to the height of the dependency trees. Height values greater than 10 are aggregated. The bar plot at the top
represents the number of study subjects for each height

Figure 15 shows the distribution of the ratio of transitive bloated dependencies according
to the height of the dependency tree. The artifact in our dataset with the largest height
is top.wboost : common-base-spring-boot-starter:3.0.RELEASE, with a
height of 14. The bar plot on top of Fig. 15 indicates the number of artifacts that have the
same height. We observe that most of the artifacts have a height of 4: 2,226 artifacts in total.
Considering the number of dependencies, this suggests that the dependency trees tend to be
wider than deep. This is direct consequence of the automatic dependency management by
Maven: any dependency that already appears at a level closer to the root will be omitted by
Maven if it is referred to at a deeper level.

Looking at the 58 artifacts with height > 9, we notice that most of
them belong to multi-module projects, and declare other modules in the same
project as their direct dependencies. This is a regular practice of multi-module
projects, which allows to release each module as an independent artifact. Mean-
while, this increases the complexity of dependency trees. For example, artifact
org.wso2.carbon.devicemgt:org.wso2.carbon.apimgt.handlers:3.0.192
is the extreme case of this practice in our dataset, with two direct dependencies towards
other modules of the same project that in turn depend on other modules of this project.
As a result, this artifact has 342 bloated-transitive and 87 bloated-inherited dependencies,
a dependency tree of height 11, and is part of a multi-module project with a total of 79
modules released in Maven Central.

The plot in Fig. 15 shows a clear increasing trend of bloated-transitive dependencies as
the height of the dependency tree increases. Indeed, both variables are positively correlated,
according to the Spearman’s rank correlation test (o = 0.54, p-value ; 0.01). For artifacts
with a dependency tree of height greater than 9, at least 28% of their transitive dependen-
cies are bloated, while the median of the percentages of bloated-transitive dependencies for
artifacts with height larger than 5 is more than 50%.

This finding confirms and complements the results of Fig. 14, showing that the height
of the dependency tree is directly related to the occurrence of bloat. However, the height of
the tree may not be the only factor that causes the bloat. For example, we hypothesize that
number of transitive dependencies is another essential factor.
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In order to validate this hypothesis, we perform a Spearman’s rank correlation test
between the number of bloated-transitive dependencies and the size of the dependency tree,
i.e., the number of nodes in each tree. We found that there is a significant positive correla-
tion between both variables (p =0.67, p-value < 0.01). This confirms that the actual usage
of transitive dependencies decreases with the increasing complexity of the dependency tree.
This result is aligned with our previous study that suggest that most of the public API
members of transitive dependencies are not used by its clients (Harrand et al. 2019).

In summary, our results point to the excess of transitive dependencies as one of the
fundamental causes of the existence of bloated dependencies in the Maven ecosystem.

5.2.2 Single-Module vs. Multi-Module

Let us investigate on the differences between single and multi-module architectures with
respect to the presence of bloated dependencies. Figure 16 compares the distributions
of bloated and used dependencies between multi-module and single-module artifacts in
our dataset. We notice that, in general, multi-module artifacts have slightly more bloat
than single-module, precisely 3.1% more (the percentage of bloat in single-module is
5.8% + 67.3% = 73.1% vs. 0.9% + 24.2% + 51.1% = 76.2% in multi-module). More
interestingly, we observe that a majority of the inherited dependencies are bloated: 24.2%
of the dependencies among multi-module project are bloated-inherited (bi), while only 15%
are used-inherited (ui). This suggests that most of the dependencies inherited by Maven
artifacts that belong to multi-module artifacts are not used by these modules.

We observe that the percentage of bloated-direct dependencies in multi-module artifacts
is very small (0.9%) in comparison with single-module (5.8%). Meanwhile, the percentage
of bloated-transitive dependencies in single-module (67.3%) is larger than in multi-module
(51.1%). This is due to the “shift” of a part of direct and transitive dependencies into
inherited dependencies when using a parent POM. Indeed, the “shift” from direct to
inherited is the main motivation for having a parent POM: to have one single declara-
tion of dependencies for many artifacts instead of letting each artifact manage their own
dependencies.
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Fig. 16 Comparison between multi-module and single-module artifacts according to the percentage status of
their dependency relationships. Raw counts are inside parentheses below each percentage
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This “shift” in the nature of dependencies between single and multi-module artifacts
is further emphasized in Fig. 17. This plot shows superimposed log scaled box-plots and
violin-plots comparing the distributions of the number of distinct dependency usage types
per artifact, for single-module (top part of the figure) and multi-module (bottom part).

We observe that multi-module artifacts have less bloated-direct (1st-Q = 0, median
= 0, 3rd-Q = 0) and less bloated-transitive (1st-Q = 2, median = 9, 3rd-Q = 40),
compared to single-modules, as shown in Fig. 17. However, multi-module artifacts
have a considerably larger number of bloated-inherited dependencies instead (1st-Q
= 1, median = 5, 3rd-Q = 20). The extreme case in our dataset is the artifact
co.cask.cdap:cdap-standalone: 4.3 .4, with 326 bloated-inherited dependen-
cies in total.

In summary, the multi-module architecture in Maven projects contributes to limit redun-
dant dependencies and facilitates the consistent versioning of dependencies in large projects.
However, it introduces two challenges for developers. First, it leads to the emergence of
bloated-inherited dependencies because of the friction of maintaining a common parent
POM file: it is more difficult to remove dependencies from a parent POM than from an
artifact’s own POM. Second, it is more difficult for developers to be aware of and under-
stand the dependencies that are inherited from the parent POM. This calls for better tooling
and user interfaces to help developer grasp and analyze the inherited dependencies in multi-
module projects, in order to detect bloated dependencies. To our knowledge, this type of
tools is absent in the current Java dependency management ecosystem.

\

Answer to RQ2: Reuse practices that lead to complex dependency trees and multi-
module architecture are correlated with the presence of bloated dependencies: the
higher a dependency tree, the more bloated-transitive dependencies. In multi-module
artifacts, part of the bloat associated with direct and transitive dependencies is shifted
as bloated-inherited dependencies.

Implications: Developers should carefully consider reusing artifacts with several
dependencies because they introduce bloat. They should also contemplate the risks of
having bloated dependencies when considering adopting a multi-module architecture.
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Fig. 17 Comparison between multi-module and single-module projects according to their distributions of
dependency usage relationships
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5.3 RQ3: To what Extent are Developers Willing to Remove Bloated-Direct
Dependencies?

In this research question, our goal is to see how developers react when made aware of
bloated-direct dependencies in their projects. We do this by proposing the removal of
bloated-direct dependencies to lead developers of mature open-source projects, as described
in Section 4.2.2.

Table 4 shows the list of 19 pull requests submitted. Each pull request proposes the
removal of at least one bloated-direct dependency in the POM. We received response from
developers for 17 pull request. The first and second columns in the table show the name of
the project and the pull request on GitHub. Columns three and four represent the number of
bloated dependencies removed in the POM and the total number of dependencies removed
from the dependency tree with the proposed change, including transitive ones. The last
column shows the status of the pull request (v accepted, v'* accepted with changes, X
rejected, or % pending). The last row represent the acceptance rate calculated with respect
to the projects with response, i.e., the total number of dependencies removed divided by
the number of proposed removals. For example, for project undertow we proposed the
removal of 6 bloated dependencies in its module benchmarks. As a result of this change,
17 transitive dependencies were removed from the dependency tree the module.

Overall, from the pull requests with responses from developers, 16/17 were accepted
and merged. In total, 75 dependencies were removed from the dependency trees of the
projects. This result demonstrates the relevance of handling bloated-direct dependencies for
developers, and the practical usefulness of DEPCLEAN.

Let us now summarize the developer feedback. First, all developers agreed on the impor-
tance of refining the projects’ POMs. This is reflected in the positive comments received.
Second, their quick responses suggest that it is easy for them to understand the issues asso-
ciated with the presence of bloated-direct dependencies in their projects. In 8/17 projects,
the response time was less than 24 hours, which is an evidence that developers consider this
type of improvement as a priority.

Our results also provide evidence of the fact that we, as external contributors to those
projects, were able to identify the problem and propose a solution using DEPCLEAN. In the
following, we discuss four cases of pull requests that are particularly interesting and the
feedback provided by developers.

5.3.1 Jenkins

DEPCLEAN detects that jtidy and commons-codec are bloated-direct dependen-
cies present in the modules core and cli of jenkins. jtidy is an HTML syntax
checker and pretty printer. commons - codec is an Apache library that provides an API to
encode/decode from various formats such as Base64 and Hexadecimal.

Developers were reluctant to remove jtidy due to their concerns of affect-
ing the users of jenkins, which could be potential consumers of this depen-
dency. After further inspection, they found that the class HTMLParser of the
nis-notification-lamp-plugin!® project relies on jtidy transitively for per-
forming HTML parsing.

10https://github.com/jenkinsci/nis-notification-lamp-plugin
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jenkinsci/jenkins/pull/4378
mybatis/mybatis-3/pull/1735
apache/flink/pull/10386
checkstyle/checkstyle/issues/7307
neo4j/neo4j/pull/12339
stanfordnlp/CoreNLP/pull/965
AsyncHttpClient/async-http-client/pull/1675
google/error-prone/pull/1409
Alluxio/alluxio/pull/10567
javaparser/javaparser/pull/2403
undertow-io/undertow/pull/824
jknack/handlebars.java/pull/719
jooby-project/jooby/pull/1412
rnewson/couchdb-lucene/pull/279
giltene/jHiccup/pull/42
square/subzero/pull/122
SAP/vulnerability-assessment-tool/pull/290
lukaszlenart/launch4j-maven-plugin/pull/113
radsz/jacop/pull/35
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Developers also pointed out the fact that there is no classloader isolation in jenkins,
and hence all dependencies in its core module automatically become part of its public
API. A developer also referred to issues related to past experiences removing unused depen-
dencies. He argued that external projects have depended on that inclusion and their builds
were broken by such a removal. For example, the Git client plugin of jenkins mistak-
enly included Java classes from certain Apache authentication library. When they removed
the dependency, some downstream consumers of the library were affected, and they had to
include the dependency directly.

Consequently, we received the following feedback from an experienced developer of
jenkins:

We’re not precluded from removing an unused dependency, but I think that the project
values compatibility more than removal of unused dependencies, so we need to be
careful that removal of an unused dependency does not cause a more severe problem
than it solves.

After some discussions, developers agreed with the removal of commons-codec in
module c11i. Our pull request was edited by the developers and merged to the master branch
one month after.

5.3.2 Checkstyle

DEPCLEAN identifies the direct dependency junit-jupiter-engine as bloated. This
is a test scope dependency that was added to the POM of checkstyle when migrating
integration tests to JUnit 5. The inclusion of this dependency was necessary due to the dep-
recation of junit-platform-surefire-provider in the Surefire Maven plugin.
However, the report of DEPCLEAN about this bloated-direct dependency was a false posi-
tive. The reason for this output occurs because junit-jupiter-engine is commonly
used through reflective calls that cannot be captured at the bytecode level.

Althoughthis pull request was rejected, developers expressed interest in DEPCLEAN,
which is encouraging. They also proposed a list of features for the improvement of our
tool. For example, the addition of an exclusion list in the configuration of DEPCLEAN for
dependencies that are known to be used dynamically, improvements on the readability of the
generated report, and the possibility of causing the build process to fail in case of detecting
the presence of any bloated dependency. We implemented each of the requested functional-
ities in DEPCLEAN. As a result, developers opened an issue to integrate DEPCLEAN in the
Continuous Integration (CI) pipeline of checkstyle, in order to automatically manage
their bloated dependencies.!!

5.3.3 Alluxio

DEPCLEAN detects that the direct dependency grpc-netty, declared in the module
alluxio-core-transport is bloated. Figure 18 shows that this dependency also
induces a total of 10 transitive dependencies that are not used (4 of them are omitted by
Maven due to their duplication in the dependency tree). Developers accepted our pull request
and also manifested their interest on using DEPCLEAN for managing unused dependencies
in the future.

Mhttps://github.com/checkstyle/checkstyle/issues/7307
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+- io.grpc:grpc-netty:jar:1.17.1:compile

+- (io.grpc:grpc-core:jar:1.17.1:compile - omitted for duplicate)

+- io.netty:netty-codec-http2:jar:4.1.30.Final:compile

| +- io.netty:netty-codec-http:jar:4.1.30.Final:compile

| | \- ilo.netty:netty-codec:jar:4.1.30.Final:compile

| \- (io.netty:netty-transport:jar:4.1.30.Final:compile - omitted for duplicate)
| \- io.netty:netty-handler:jar:4.1.30.Final:compile

| +- io.netty:netty-buffer:jar:4.1.30.Final:compile

| | \- io.netty:netty-common:jar:4.1.30.Final:compile

| +- (io.netty:netty-transport:jar:4.1.30.Final:compile - omitted for duplicate)
| \- (io.netty:netty-codec:jar:4.1.30.Final:compile - omitted for duplicate)

Fig. 18 Transitive dependencies induced by the bloated-direct dependency grpc-netty in the dependency
tree of module alluxio-core-transport. The tree is obtained with the dependency : tree Maven
goal

5.3.4 Undertow

DEPCLEAN detects a total of 6 bloated-direct dependencies in the benchmarks module
of the project undertow: undertow-servlet, undertow-websockets-jsr,
jboss-logging-processor, xnio-nio, jmh-generator-annprocess, and
httpmime. In this case, we received a rapid positive response from the developers two
days after the submission of the pull request. Removing the suggested bloated-direct
dependencies has a significant impact on the size of the packaged JAR artifact of the
undertow-benchmarks module. We compare the sizes of the bundled JAR before and
after the removal of those dependencies: the binary size reduction represents more than
IMB. It is worth mentioning that this change also reduced the complexity of the depen-
dency tree of the module.

Summary of RQ3: We used DEPCLEAN to propose 19 pull requests removing
bloated-direct dependencies, from which 17/19 were answered. 16/ 17 pull requests
with response were accepted and merged by open-source developers (In total, 75
dependencies were removed from the dependency tree of 16 projects).

Implications: Removing bloated-direct dependencies is relevant for developers and it
is perceived as a valuable contribution. This type of change in the POM files are small,
and they can have a significant impact on the dependency tree of Maven projects.

5.4 RQ4: To what Extent are Developers Willing to Exclude Bloated-Transitive
Dependencies?

In this research question, our goal is to see how developers react when made aware of
bloated-transitive dependencies. We do this by proposing the exclusion of bloated-transitive
dependencies to them, as described in Section 4.2.2.

Table 5 shows the list of 13 pull requests submitted. Each pull request proposes the
exclusion of at least one transitive dependency in the POM. We received response from
developers for 9 pull requests. The first and second columns show the name of the project
and the pull request on GitHub. Columns three and four represent the number of bloated-
transitive dependencies explicitly excluded and the total number of dependencies removed
in the dependency tree as resulting from the exclusion. The last column shows the status of
the pull request (v accepted, X rejected, or % pending). The last row represents the accep-
tance rate with respect to the projects with response. For example, for the project spoon
we propose the exclusion of four bloated-transitive dependencies in its core module. As a
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result of this change, 31 transitive dependencies were removed from the dependency tree of
this module.

Overall, from the pull requests with responses from developers, 5 were accepted and 4
were rejected. In total, 65 bloated dependencies were removed from the dependency trees
of 5 projects. We notice that the accepted pull requests involve those projects for which
the exclusion of transitive dependencies also represents the removal of a large number of
other dependencies from the dependency tree. This result suggests that developers are more
careful concerning this type of contribution.

As in RQ3, we obtained valuable feedback from developers about the pros and cons of
excluding bloated-transitive dependencies. In the following, we provide unique qualitative
insights about the most interesting cases and explain the feedback obtained from developers
to the research community.

5.4.1 Jenkins

DEPCLEAN detects the bloated-transitive dependencies constant -pool - scanner and
eddsa in the module core of jenkins. These bloated dependencies were induced
through the direct dependencies remoting and c11i, respectively. In the message of the
pull request, we explain how their exclusion contributes to make the core of jenkins
slimmer and its dependency tree clearer.

Although both dependencies were confirmed as unused in the core module of
jenkins, developers rejected our pull request. They argue that excluding such dependen-
cies has no valuable repercussion for the project and might actually affect its clients, which
is correct. For example, constant-pool-scanner is used by external components,
e.g., the class RemoteClassLoader in the remot ing!? project relies on this library to
inspect the bytecode of remote dependencies.

As shown in the following quote from an experienced developer of Jenkins, there is a
consensus on the usefulness of removing bloated dependencies, but developers need strong
facts to support the removal of transitive dependencies:

Dependency removals and exclusions are really useful, but my recommendation
would be to avoid them if there is no substantial gain.

5.4.2 Auto

DEPCLEAN reports on the bloated-transitive dependencies listenablefuture and
auto-value-annotations in module auto-common of the Google auto project.
We proposed the exclusion of these dependencies and submitted a pull request with the
POM change.

Developers express several concerns related to the exclusion of these dependencies. For
example, a developer believes that it is not worth maintaining exclusion lists for dependen-
cies that cause no problem. They point out that although 1istenableFuture is a single
class file dependency, its presence in the dependency tree is vital to the project, since it
overrides the version of the guava library that have many classes. Therefore, the inclusion
of this dependency is a strategy followed by guava to narrow the access to the interface
ListenableFuture and not to the whole library.'3

Zhttps://github.com/jenkinsci/remoting
Bhttps://groups.google.com/forum/#!topic/guava-announce/Km82fZG68Sw/discussion
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https://github.com/
jenkinsci/jenkins/pull/4378
google/auto/pull/789
square/moshi/pull/1034
INRIA/spoon/pull/3167
square/moshi/pull/1034
sarxos/webcam-capture/pull/750
konsoletyper/teavm/pull/439
apache/tika/pull/299
orika-mapper/orika/pull/328
apache/accumulo/pull/1421
Erudika/para/pull/69
vmi/selenese-runner-java/pull/313
apache/commons-configuration/pull/40
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On the other hand, developers agree that auto-value-annotations is bloated.
However, they keep it, arguing that it is a test-only dependency, and they prefer to keep
annotation-only dependencies and let end users exclude them when desired.

The response from developers suggests that bloated dependencies with test scope are
perceived as less harmful. This is reasonable since test dependencies are only available
during the test, compilation, and execution phases and are not shipped transitively in the
JAR of the artifact. However, we believe that although it is a developers’ decision whether
they keep this type of bloated dependency or not, the removal of testing dependencies is
regularly a desirable refactoring improvement.

5.4.3 Moshi

DEPCLEAN detects that the bloated-transitive dependency kotlin-stdlib-common
is present in the dependency tree of modules moshi-kotlin,
moshi-kotlin-codegen, and moshi-kotlin-tests of project moshi. This
dependency is induced from a common dependency of these modules: kot1lin-stdlib.

Developers rejected our pull requests, arguing that excluding such transitive depen-
dency prevents the artifacts from participating in the proper dependency resolu-
tion of their clients. They suggest that clients interested in reducing the size of
their projects can use specialized shrinking tools, such as ProGuard,'* for this
purpose.

Although the argument of developers is valid, we believe that delegating the task of
bloat removal to their library clients imposes an unnecessary burden on them. On the other
hand, recent studies reveal that library clients do not widely adopt the usage of dependency
analysis tools for quality analysis purposes (Nguyen et al. 2020).

5.4.4 Spoon

DEPCLEAN detects that the transitive dependencies org.eclipse.core.resources,
org.eclipse.core.runtime, org.eclipse.core.filesystenm, and
org.eclipse.text org.eclipse.jdt.core are bloated. All of these
transitive dependencies were induced by the inclusion of the direct dependency
org.eclipse.jdt.core, declared in the POM of core module of the spoon library.

Table 6 shows how the exclusion of these bloated-transitive dependencies has a positive
impact on the size and the number of classes of the library. As we can see, by excluding
these dependencies the size of the jar-with-dependencies of the core module of
spoon is trimmed from 16.2MB to 12.7MB, which represents a significant reduction in
size of 27.6%. After considering this improvements, the developers confirmed the relevance
of this change and merged our pull request into the master branch of the project.

5.4.5 Accumulo

DEPCLEAN detects the bloated-transitive dependencies listenablefuture,
httpcore and netty in the core module of Apache accumulo. These dependencies
were confirmed as bloated by the developers. However, they manifested their concerns
regarding their exclusion, as expressed in the following comment:

Y https://www.guardsquare.com/en/products/proguard
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Table 6 Comparison of the size and number of classes in the bundled JAR of the core module of spoon,
before and after the exclusion of bloated-transitive dependencies

JAR Size(MB) #Classes
Before 16.2 7,425
After 12.7 5,593
Reduction(%) 27.6% 24.7%

I’m not sure I want us to take on the task of maintaining an exclusion set of transitive
dependencies from all our deps POMs, because those can change over time, and we
can’t always know which transitive dependencies are needed by our dependencies.

After the discussion, developers decided to accept and merge the pull request. Overall,
developers considered that the proposal is a good idea. They suggest that it would be better
to approach the communities of each of the direct dependencies that they use, and encour-
age them to mark those dependencies as optional, thus they would not be automatically
inherited by their users.

5.4.6 Para

DEPCLEAN detects the bloated-transitive dependency flexmark-jira-converter.
This dependency is induced through the direct dependency flexmark-ext-emoji,
declared in the core module of the para project. Our further investigation on the Maven
dependency tree of this module revealed that this bloated dependency adds a total of 19
additional dependencies to the dependency tree of the project, of which 15 are detected as
duplicated by Maven.

Because of this large number (19) of bloated-transitive dependencies removed, develop-
ers accepted the pull request and merged the change into the master branch of the project
the same day of the pull request submission.

Answer to RQ4: We used DEPCLEAN to propose 13 pull requests to exclude
bloated-transitive dependencies, with 9 answered, 5/9 pull requests with response
were accepted and merged by developers (65 dependencies were removed from the
dependency tree of 5 projects).

Implications: The handling of bloated-transitive dependencies is a topic with no clear
consensus among developers. Developers consider this kind of bloat as relevant, but
they are concerned about the maintenance of a list of exclusion directives. Some devel-
opers agree to remove them based on practical facts (e.g., JAR size reduction), while
other developers prefer to keep bloated-transitive dependencies in order to avoid the
potential negative impact on their clients. )

6 Discussion

In this section, we discuss the implications of our findings and the threats to the validity of
the results obtained.
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6.1 Implications of Results

Our results indicate that most of the dependency bloat is due to transitive dependencies and
the Maven dependency inheritance mechanism. This suggests that the Maven dependency
resolution strategy, which always picks the dependency that is closer to the root of the tree,
may not be the best selection criterion for minimizing transitive dependency bloat. The offi-
cial Maven dependency management guidelines'> encourage developers to take control over
the dependency resolution process via explicit declaration of dependencies in the POM file.
This is a good practice to provide better documentation for the project and to keep one’s
artifact dependencies independent of the choices of other libraries down the dependency
tree. Dependencies declared in this way have priority over the Maven mediation mecha-
nism, allowing developers to have a clear knowledge about which library version they are
expecting to be used through transitive dependencies. However, since backward compati-
bility is not always guaranteed, having fixed transitive dependency versions, and therefore
non-declared dependencies, still remains as a widely accepted practice. In this context, the
introduction of the module construct in Java 9 provides a higher level of aggregation above
packages. This new language element, if largely adopted, may help to reduce the transitive
explosion of dependencies. Indeed, this mechanism enables developers to fine tune public
access restrictions of API members, explicitly declaring what set of functionalities a mod-
ule can expose to other modules. This leads to two benefits: (1) it enables reuse declaration
at a finer grain than dependencies, and (2) it makes the debloat techniques described in this
work safer as it constrains reflection to white-listed modules.

Our results show that even notable open-source projects, which are maintained by devel-
opment communities with strict development rules, are affected by dependency bloat.
Developers confirmed and removed most of the reported bloated-direct dependencies
detected by DEPCLEAN. However, they are more careful about excluding bloated-transitive
dependencies. The addition of exclusion clauses to the POM files is perceived by some
developers as an unnecessary maintainability burden. Interestingly, our quantitative results
indicate that bloated-transitive dependency relationships represent the largest portion of
bloated dependencies, yet, our qualitative study reveals that these bloated relationships are
also the ones that developers find the most challenging to handle and reason about. Overall,
this work opens the door to new research opportunities on debloating POMs and other build
files.

6.2 Threats to Validity

In the following, we discuss construct, internal and external threats to the validity of our
study.

Construct Validity The threats to construct validity are related to the novel concept of
bloated dependencies and the metrics utilized for its measurement. For example, the DUT
constructed by DEPCLEAN could be incomplete due to issues during the resolution of the
dependencies. We mitigate this threat by building DEPCLEAN on top of Maven plugins to
collect the information about the dependency relationships. We also exclude from the study
those artifacts for which we were unable to retrieve the full dependency usage information.

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
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It is possible that developers repackage a library as a bundle JAR file along with its
dependencies, or copy the source code of dependencies directly into their source code,
in order to avoid dependency related issues. Consequently, DEPCLEAN will miss such
dependencies, as they are not explicitly declared in the POM file. Thus, the analysis of
dependencies can underestimate the part of bloated dependencies. However, considering the
size of our dataset and the feedback obtained from actively maintained projects, we believe
that these corner cases do not affect our main results.

Internal Validity The threats to internal validity are related to the effectiveness of DEP-
CLEAN to detect bloated dependencies. The dynamic features of the Java programming
language, e.g., reflection or dynamic class loading present particular challenges for any
automatic analysis of Java source code (Landman et al. 2017; Lindholm et al. 2014). Since
DEPCLEAN statically analyzes bytecode, anything that does not get into the bytecode is not
detected (e.g., constants, annotations with source-only retention police, links in Javadocs),
which can lead to false positives. To mitigate this threat, DEPCLEAN can detect classes
or class members that are created or invoked dynamically using basic constructs such
as class.forName ("someClass") or class.getMethod ("someMethod",
null).

To evaluate the impact of this limitation in practice, we ran DEPCLEAN on 10 addi-
tional popular projects. The experiment consists in running the test suite of the projects
with the debloated version of the POM files, i.e., relying on dynamic analysis as a vali-
dation mechanism. Table 7 shows the results obtained after running the test suite of the
version of the project without bloated dependencies. The first column shows the URL of the
project on GitHub, the second and third columns represent the number bloated-direct and
bloated-transitive dependencies detected by DEPCLEAN, and the fourth column is the result
of the test (v/ pass, or X fail). As we observe, 9/10 projects pass the test suite, and only
one project fails: raft - java. We found that the reason of the failure was the dependency
org.projectlombok:lombok:1.18.4, which heavily relies on reflection and other
dynamic mechanisms of Java. To prevent the occurrence of false positives, the users of DEP-
CLEAN can add dependencies that are known to be used only dynamically to an exclusion
list. Once added this dependency to the exclusion list of DEPCLEAN, it is not considered as
bloated, and all the tests pass with the other bloated dependencies removed.

Table 7 Evaluation of the results of DepClean by checking if all the test pass after the removal of bloated
dependencies

URL (https://github.com/) #bd #bt Test result
pf4j/pfaj 3 3 v
apilayer/restcountries 5 13 v
modelmapper/modelmapper 2 14 v
xtuhcy/gecco 0 3 v
yaphone/itchat4j 1 1 v
electronicarts/ea-async 0 7 v
twitter/hbe 0 1 v
skyscreamer/JSONassert 0 1 v
wenweihu86/raft-java 2 8 X
liaochong/myexcel 0 2 v
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External Validity The relevance of our findings in other software ecosystems is one threat
to external validity. Our observations about bloated dependencies are based on Java and
the Maven ecosystem and our findings are restricted to this scope. More studies on other
dependency management systems are needed to figure out whether our findings can be
generalized. Another external threat relates to the representativeness of the projects consid-
ered for the qualitative study. To mitigate this threat, we submitted pull requests to a set of
diverse, mature, and popular open-source Java projects that belong to distinct communities
and cover various application domains. This means that we contributed to improving the
dependency management of projects that are arguably among the best of the open-source
Java world, which aims to get as strong external validity as possible.

7 Related Work

In this work, we propose the first systematic large-scale analysis of bloat in the Maven
ecosystem. Here, we discuss the related works in the areas of software debloating and
dependency management.

7.1 Analysis and Mitigation of Software Bloat

Previous studies have shown that software tends to grow over time, whether or not there is
a need for it (Holzmann 2015; Quach et al. 2017). Consequently, software bloat appears as
a result of the natural increase of software complexity, e.g., the addition of non-essential
features to programs (Brooks 1987). This phenomenon comes with several risks: it makes
software harder to understand and maintain, increases the attack surface, and degrades the
overall performance. Our paper contributes to the analysis and mitigation of a novel type of
software bloat: bloated dependencies.

Celik et al. (2016) presented MOLLY, a build system to lazily retrieve dependencies in
CI environments and reduce build time. For the studied projects, the build time speed-up
reaches 45% on average compared to Maven. DEPCLEAN operates differently than MOLLY:
it is not an alternative to Maven as MOLLY is, but a static analysis tool that allows Maven
users to have a better understanding and control about their dependencies.

Yu et al. (2003) investigated the presence of unnecessary dependencies in header files
of large C projects. Their goal was to reduce build time. They proposed a graph-based
algorithm to statically remove unused code from applications. Their results show a reduction
of build time of 89.70% for incremental builds, and of 26.38% for fresh builds. Our work
does not focus on build performance, we analyze the pervasiveness of dependency bloat
across a vast and modern ecosystem of Maven packages.

In recent years, there has been a notable interest in the development of debloating tech-
niques for program specialization. The aim is to produce a smaller, specialized version of
programs that consume fewer resources while hardening security (Azad et al. 2019). They
range from debloating command line programs written in C (Sharif et al. 2018), to the spe-
cialization of JavaScript frameworks (Vazquez et al. 2019) and fully fledged containerized
platforms (Rastogi et al. 2017). Most debloating techniques are built upon static analy-
sis and are conservative in the sense that they focus on trimming unreachable code (Jiang
et al. 2016), others are more aggressive and utilize advanced dynamic analysis techniques
to remove potentially reachable code (Heath et al. 2019). Our work addresses the same
challenges at a coarser granularity. DEPCLEAN removes unused dependencies, which is,
according to our empirical results, a significant cause of program bloat.
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Qiu et al. (2016) empirically show evidence that a considerable proportion of API mem-
bers are not widely used, i.e., many classes, methods, and fields of popular libraries are
not used in practice. (Pham et al. 2016) implement a bytecode based analysis tool to learn
about the actual API usage of Android frameworks. Hejderup (2015) study the actual usage
of modules and dependencies in the Rust ecosystem, and propose PRAZI, a tool for con-
structing fine-grained call-based dependency networks (Hejderup et al. 2018). Ldmmel et al.
(2011) perform a large-scale study on API usage based on the migration of AST code seg-
ments. Other studies have focused on understanding how developers use APIs on a daily
basis (Roover et al. 2013; Bauer et al. 2014). Some of the motivations include improv-
ing API design (Myers and Stylos 2016; Harrand et al. 2019) and increasing developers
productivity (Lim 1994). All these studies hint at the presence of bloat in APIs. To sum
up, our paper is the first empirical study that explores and consolidates the concept of
bloated dependencies in the Maven ecosystem, and is the first to investigate the reaction of
developers to bloated dependencies.

Program slicing (Horwitz et al. 1988; Sridharan et al. 2007; Binkley et al. 2019) is
a program analysis technique used to compute the subset of statements (“slice”) that
affect the values of a given program. Static slicing removes unused code by computing a
statement-based dependence graph and identifies the statements that are directly or transi-
tively reachable from a seed on the graph. DEPCLEAN uses a similar approach for debloat,
where the slices are bytecode calls between dependencies computed by backtracking usages
between the artifact and its dependencies.

7.2 Dependency Management in Software Ecosystems

Library reuse and dependency management has become mainstream in software develop-
ment. McIntosh et al. (2012) analyze the evolution of automatic build systems for Java (ANT
and Maven). They found that Java build systems follow linear or exponential evolution pat-
terns in terms of size and complexity. In this context, we interpret bloated dependencies as a
consequence of the tendency of build automation systems of evolving towards open-ended
complexity over time.

Decan et al. (2019, 2017) studied the fragility of packaging ecosystems caused by
the increasing number of transitive dependencies. Their findings corroborate our results,
showing that most clients have few direct dependencies but a high number of transitive
dependencies. They also found that popular libraries tend to have larger dependency trees.
However, their work focuses primarily on the relation between the library users and their
direct providers and does not take into account the inherited or transitive dependencies of
those providers. We are the first, to the best of our knowledge, to conduct an empirical anal-
ysis of bloated dependencies in the Maven ecosystem considering both, users and providers,
as potential sources of software bloat.

Bezemer et al. (2017) performed a study of unspecified dependencies, i.e., dependen-
cies that are not explicitly declared in the build systems. They found that these unspecified
dependencies are subtle and difficult to detect in make-based build systems. Seo et al.
(2014) analyzed over 26 millions builds in Google to investigate the causes, types of errors
made, and resolution efforts to fix the failing builds. Their results indicate that, inde-
pendent of the programming language, dependency errors are the most common cause
of failures, representing more than two thirds of fails for Java. Based on our results, we
hypothesize that removing dependency bloat would reduce spurious CI errors related to
dependencies.
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Jezek and Dietrich (2014) describe, with practical examples, the issues caused by tran-
sitive dependencies in Maven. They propose a static analysis approach for finding missing,
redundant, incompatible, and conflicting API members in dependencies. Their experiments,
based on a dataset of 29 Maven projects, show that problems related to transitive depen-
dency are common in practice. They identify the use of wrong dependency scopes as a
primary cause of redundancy. Our quantitative study extends this work to the scale of the
Maven Central ecosystem, and provides additional evidence about the persistence of the
dependency redundancy problem.

Callo Arias et al. (2011) performed a systematic review about dependency analysis solu-
tions in software-intensive systems. Bavota et al. (2015) studied performed an empirical
study on the evolution of declared dependencies in the Apache community. They found
that build system specifications tend to grow over time unless explicit effort is put into
refactoring them. Our qualitative results complement previous studies that present empir-
ical evidence that developers do not systematically update their dependency configuration
files (MclIntosh et al. 2014; Kula et al. 2018).

8 Conclusion

In this work, we presented a novel conceptual analysis of a phenomenon originated from
the practice of software reuse, which we coined as bloated dependencies. This type of
dependency relationship between software artifacts is intriguing: from the perspective of
the dependency management systems that are unable to avoid it, and from the standpoint of
developers who declare dependencies but do not use them in their applications.

We performed a quantitative and qualitative study of bloated dependencies in the Maven
ecosystem. To do so, we implemented a tool, DEPCLEAN, which analyzes the bytecode of
an artifact and all its dependencies that are resolved by Maven. As a result of the analysis,
DEPCLEAN provides a report of the bloated dependencies, as well as a new version of its
POM file which removes the bloat. We use DEPCLEAN to analyze the 723,444 dependency
relationships of 9,639 artifacts in Maven Central. Our results reveal that 75.1% of them
are bloated (2.7% are direct dependencies, 15.4% are inherited from parent POMs, and
57% are transitive dependencies). Based on these results, we distilled two possible causes:
the cascade of unwanted transitive dependencies induced by direct dependencies, and the
dependency heritage mechanism of multi-module Maven projects.

We complemented our quantitative study of bloated dependencies with an in-depth qual-
itative analysis of 30 mature Java projects. We used DEPCLEAN to analyze these projects
and submitted the results obtained as pull request on GitHub. Our results indicated that
developers are willing to remove bloated-direct dependencies: 16 out of 17 answered pull
requests were accepted and merged by the developers in their code base. On the other hand,
we found that developers tend to be skeptical regarding the exclusion of bloated-transitive
dependencies: 5 out of 9 answered pull requests were accepted. Overall, the feedback from
developers revealed that the removal of bloated dependencies clearly worth the additional
analysis and effort.

Our study stresses the need to engineer, i.e., analyze, maintain, test POM files. The feed-
back from developers shows interest in DEPCLEAN to address this challenge. While the tool
is robust enough to analyze a variety of real-world projects, developers now ask questions
related to the methodology for dependency debloating, e.g., when to analyze bloat? (in every
build, in every release, after every POM change), who is responsible for debloat of direct
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or transitive dependencies? (the lead developers, any external contributor), how to properly
managing complex dependency trees to avoid dependency conflicts? These methodological
questions are part of the future work to further consolidate DEPCLEAN.
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ABSTRACT

We study the evolution and impact of bloated dependencies in a
single software ecosystem: Java/Maven. Bloated dependencies are
third-party libraries that are packaged in the application binary
but are not needed to run the application. We analyze the history
of 435 Java projects. This historical data includes 48,469 distinct
dependencies, which we study across a total of 31,515 versions of
Maven dependency trees. Bloated dependencies steadily increase
over time, and 89.2 % of the direct dependencies that are bloated
remain bloated in all subsequent versions of the studied projects.
This empirical evidence suggests that developers can safely remove
a bloated dependency. We further report novel insights regarding
the unnecessary maintenance efforts induced by bloat. We find that
22 % of dependency updates performed by developers are made on
bloated dependencies, and that Dependabot suggests a similar ratio
of updates on bloated dependencies.
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1 INTRODUCTION

Software is bloated. From single Unix commands [14] to web browsers
[23], most applications embed a part of code that is unnecessary to
their correct operation. Several debloating tools have emerged in
recent years [15, 22, 23, 25, 27, 30] to address the security and main-
tenance issues posed by excessive code at various granularity levels.
However, these works do not analyze the evolution of bloat over
time. Understanding software bloat in the perspective of software
evolution [13, 31, 33] is crucial to promote debloating tools towards
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software developers. In particular, developers, when proposed to
adapt a debloating tool, wonder if a piece of bloated code might be
needed in coming releases, or what is the actual issue with bloat.

This work proposes the first longitudinal analysis of software
bloat. We focus on bloat among software dependencies [5, 7, 11, 28]
in the Java/Maven ecosystem. Bloated dependencies are software
libraries that are unnecessarily part of software projects, i.e., when
the dependency is removed from the project, it still builds success-
fully. In previous work [30], we showed that the Maven ecosystem
is permeated with bloated dependencies, and that they are present
even in well maintained Java projects. Our study revealed that soft-
ware developers are keen on removing bloated dependencies, but
that removing code is a complex decision, which benefits from solid
evidence about the actual benefits of debloating.

Motivated by these observations about bloated dependencies,
we conduct a large scale empirical study about the evolution of
these dependencies in Java projects. We analyze the emergence of
bloat, the evolution of the dependencies statuses, and the impact of
bloat on maintenance. We have collected a unique dataset of 31,515
versions of dependency trees from 435 open-source Java projects.
Each version of a tree is a snapshot of one project’s dependencies,
for which we determine a status, i.e. bloated or used. We rely on
DEPCLEAN, the state-of-the-art tool to detect bloated dependencies
in Maven projects. We analyze the evolution of 48,469 distinct
dependencies per project and we observe that 40,493/48,469 (83.5 %)
of them are bloated at one point in time, in our dataset.

Our longitudinal analysis of bloated Java dependencies inves-
tigates both the evolution of bloat and, as well as its impact on
the maintenance of dependencies. We first show a clear increasing
trend in the number of bloated dependencies. Next, we investigate
how the usage status of dependencies evolves over time. This anal-
ysis is a key contribution of our work where we demonstrate that
a dependency that is bloated is very likely to remain bloated over
subsequent versions of a project. We present the first observations
about the impact of bloat on maintenance activities, and the role of
Dependabot, a popular dependency management bot, on these activ-
ities. We observe that developers spend significant efforts updating
dependencies, either as part of their regular maintenance efforts,
or after a Dependabot suggestion, even though the dependency is
bloated. Furthermore, we systematically investigate the root of the
bloat emergence, and find that 84.3 % of the bloated dependencies
are bloated as soon as they are added in the dependency tree of a
project. To summarize, the contributions of this paper are:

o A longitudinal analysis of software dependencies’ usage
in 31,515 versions of Maven dependency trees of 435 Java
projects.

o Evidence about the stability of bloat: once they are bloated,
89.2 % of direct dependencies remain bloated. This is a strong
incentive to remove bloat.
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Figure 1: Dependency declaration.

e Evidence that developers spend some unnecessary mainte-
nance effort on bloated dependencies, including maintenance
suggested by Dependabot.

e A qualitative analysis of the origin of bloated dependencies,
which reveals that adding dependencies is the principal root
cause for this type of software bloat.

2 BACKGROUND

In this work, we consider a software project as a collection of Java
source code files and configuration files organized to be build with
Maven.! In this section, we present the key concepts for the analysis
of a project p in the context of the set of its software dependencies,
denoted as D.

Definition 2.1. Maven dependency: A Maven dependency de-
fines a relationship between a project p and another compiled
project d € D. Dependencies are compiled JAR files, uniquely
identified with a triplet (G:A:V) where G is the groupId, A is the
artifactId, and V is the version. Dependencies are defined
within a scope, which determines at which phase of the Maven build
cycle the dependency is required (e.g., compile, test, runtime).

A Maven project declares a set of direct dependencies in a spe-
cific configuration file known as pom.xml (acronym for “Project
Object Model”), located at the root of the project. Figure 1 shows an
excerpt of the dependency declaration in the pom.xml of a project
p. In this example, developers explicitly declare the usage of three
dependencies: dj, dz, and d3. Note that the pom.xml of a Maven
project is a configuration file subject to constant change and evolu-
tion: developers usually commit changes to add, remove, or update
the version of a dependency.

Definition 2.2. Direct dependency: The set of direct dependen-
cies Dgirect € D of a project p is the set of dependencies declared in
p’s pom.xml file. Direct dependencies are declared in the pom.xml
by the developers, who explicitly manifest the intention of using
the dependency.

Definition 2.3. Transitive dependency: The set of transitive de-
pendencies Dyransitive € D of a project p is the set of dependencies
obtained from the transitive closure of direct dependencies. Tran-
sitive dependencies are resolved automatically by Maven, which
means that developers do not need to explicitly declare these de-
pendencies.

Definition 2.4. Dependency tree: The dependency tree of a
Maven project p is a direct acyclic graph of the dependencies of

!https://maven.apache.org

Transitive dependency

Figure 2: Dependency tree.
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Figure 3: Dependency usage.

p, where p is the root node and the edges represent dependency
relationships between p and the dependencies in D.

To construct the dependency tree, Maven relies on its specific
dependency resolution mechanism [1]. First, Maven determines
the set of declared dependencies based on the pom.xm1 file of the
project. Then, it fetches the JARs of the dependencies that are not
present locally from external repositories, e.g., Maven Central.?

Figure 2 illustrates the dependency tree of the project p, which
pom. xml file is in Figure 1. The project has three direct dependen-
cies, as declared in its pom.xml, and three transitive dependencies,
as a result of the Maven dependency resolution mechanism. dy4 and
ds are induced transitively from d;, whereas the transitive depen-
dency dg is induced from d3. Note that all the bytecode of these
transitive dependencies is present in the classpath of project p,
and hence they will be packaged with it, whether or not they are
actually used by p.

Definition 2.5. Bloated dependency: A dependency d € D
in a software project p is said to be bloated if there is no path in
the dependency tree of p, between p and d, such that none of the
elements in the API of d are used, directly or indirectly, by p.

We introduced the concept of bloated dependencies in 2020 [30].
Although they are present in the dependency tree of software
projects, bloated dependencies are useless and, therefore, devel-
opers can consider removing them.

Definition 2.6. Dependency usage status: The usage status of
a dependency d € D determines if d is used or bloated w.r.t. to p,
at a specific time of the development of p.

Figure 3 shows an hypothetical example of the dependency usage
tree of project p. Suppose that p directly calls two sets of instruc-
tions in the direct dependency d; and the transitive dependency de.
Then, the subset of instructions called in d; also calls instructions
in d4. In this case, the dependencies dj, d4, and dg are used by p,
while dependencies d2, d3, and d5 are bloated dependencies.

Figures 1, 2 and 3 illustrate the status of a project’s dependencies
at some point in time. Yet, the pom.xm1 file, the dependency tree,
and the status of dependencies are prone to change for several rea-
sons. For example, a dependency that was used can become bloated
after a dependency migration or after some refactoring activities
that remove the usage link between the project and some of its
dependencies. It is also possible that developers add dependencies
in the pom. xm1 file or that more transitive dependencies appear in
the tree, e.g., when updating the direct dependencies. This work

2https://mvnre‘positoxy.com repos/central
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Figure 4: Overview of our data collection pipeline. From a set of 147,991 Java projects on GitHub, we analyze the usage status
of the dependencies in 435 Maven projects over time, to produce a dataset of 31,515 dependency trees.

investigates these software evolution changes and their impact on
bloat and maintenance.

3 STUDY DESIGN

In this section, we present the research protocols that we follow
to conduct our empirical study, including the research questions
(RQs), the tooling utilized to detect bloated dependencies, the data
collection, and our methodology to address each RQ.

3.1 Research Questions

In this paper, we study four different aspects of bloated dependen-
cies. Our analysis is guided by the following research questions.

RQ1. How does the amount of bloated dependencies evolve

across releases? With this first question, we aim at consoli-
dating the body of knowledge about software bloat. Several

recent studies have shed light on the massive presence of

bloat in different types of software projects [6, 15, 22, 25, 27].
The growth of bloat is an important motivation for these

works. Yet, this growth has never been assessed nor quanti-
fied. Our first research question addresses this lack, analyzing

the evolution of the amount of bloat over time.

Do bloated dependencies stay bloated across time? Tools
that remove bloated code are designed under the assumption

that a piece of code that is bloated at some point in time will

always be bloated, hence it makes sense to remove it. In this

second research question, we investigate whether this as-
sumption holds true in the case of bloated Java dependencies.
We analyze how the usage status of dependencies evolves

over time, from used to bloated, or vice versa.

Do developers maintain dependencies that are bloated?
Bloated dependencies needlessly waste time and resources,
e.g., space on disk, build time, performance. However, one

of the major issues related to this type of dependency is the

unnecessary maintenance effort. In this research question,
we investigate how often developers modify the pom.xm1 to

update dependencies that are actually bloated.

What development practices change the usage status

of dependencies? The emergence of bloat is due to various

code maintenance activities, e.g., refactoring the code, or

modifying the pom. xm1. In this research question, we expand

the quantitative analysis of the status of each dependency

and perform an in-depth analysis of the causes of dependency

bloat.

RQZ.

RQ3.

RO4.
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3.2 Detection of Bloated Dependencies

To analyze the status of dependencies of Maven projects, we rely on
DepCrEAN.? This is an open-source tool that implements a practical
way of detecting bloated dependencies in the complete dependency
tree of a Java Maven project. DEPCLEAN runs a static analysis, at the
bytecode level, to detect the usage of direct and transitive depen-
dencies. To do so, DEPCLEAN constructs a static call-graph of API
members’ calls among the bytecode of the project and its dependen-
cies. Then, it determines which dependencies are referenced, either
directly by the project or indirectly via transitive dependencies. If
none of the API members of a dependency are referenced, DEp-
CLEAN reports the dependency as bloated, i.e., the dependency is not
necessary to build the project. DEPCLEAN generates a report with
the status of each dependency, a list of API members that are used
at least once, for each used dependency. The tool also generates a
modified version of the pom.xml without bloated dependencies.

3.3 Data Collection

The dataset used in our study consists of a collection of subsequent
versions of Maven dependency trees [9]. Each dependency in these
trees is analyzed in order to determine its status: used or bloated.
Figure 4 summarizes the process we follow to collect this dataset.
Rounded rectangles represent procedures, non-rounded rectangles
represent intermediate data results.

@ Collect. Our data collection pipeline starts from the list of Java
projects extracted from GitHub by Loriot et al. [20]. The authors
queried the GitHub API on June 9th of 2020, and provide a list of
GitHub URLs including all projects that use Java as the primary
programming language. From this list, we keep only projects with
more than 5 stars. This initial dataset contains a total of 147,991
Java projects. Then, we inspect the projects’ files and select those
containing a single pom.xml file in the root of the repository, to
focus our longitudinal analysis on single-module Maven projects.
This first data collection step provides a set of 34,560 Java projects.

@ Filter. In this second step, we check all the commits on the
pom.xml file to determine the version of the project declared in
the pom.xml. Each time the version of the project changes and it is
not a SNAPSHOT or a beta-version, we consider that the commit
represents a new release. We sort the list of projects by the num-
ber of releases and then we select the first 500 projects. We focus
on release commits since a release represents a stable version of
the project, which is a suitable moment to consider the presence

3https://github.com/castor-software/depclean
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Table 1: Descriptive statistics of the dependencies in the 435
analyzed projects.

| Min | 1stQu. | Median | Avg. | 3rdQu. | Max

# Months 5 48.5 75.5 81.01 109.5 235
# Analyzed commits 2 41.0 58.0 73.51 79.0 819
# Direct initial 0 3.0 5.0 8.28 10.0 120
# Transitive initial 0 2.0 10.5 46.77 56.0 300
# Direct final 0 5.0 10.0 13.97 18.0 111
# Transitive final 0 6.5 25.0 66.56 82.5 515

of bloated dependencies. In addition to the project releases, we
collect the commits that have been created by Dependabot,* a pop-
ular software bot that automatizes the update of dependencies on
GitHub [8]. The goal is to determine how many bloated dependen-
cies have been updated as a result of a pull request not made by a
human. We identify 2,017 Dependabot commits for 143/500 (28.6 %)
projects. At the end of this step, we have a total of 500 projects, as
well as 49,293 commits, including 47,276 release commits.

® Analyze. The final and most complex step in our pipeline is
to analyze the status of dependencies in the 49,293 commits. We
perform the following tasks: 1) clone the repository and checkout
the commit, 2) compile the project using Maven, 3) if the project
compiles, then we execute DEPCLEAN on the commit to obtain the
dependency usage status. We analyze dependencies that have a
compile or test scope. The compilation task is the most crucial
and difficult task because it involves downloading dependencies,
having the correct version of Java and having a proper project state,
i.e., the Java code needs to be valid. We mitigate those problems
by compiling the projects with Java 11 and then with Java 8. By
trying to compile with Java 8 when the project does not compile
with Java 11, we increase the number of successful compilations
by around 20 %. We also use a proxy for Maven that caches and
looks for dependencies in five different repositories to increase
the chances to resolve them. In total, the proxy cached 198,611
dependencies and 165 Gb of data. As side effects, the proxy speeds
up the resolution of dependencies and increases the reproducibility
of the study, i.e., Maven will always resolve the same dependencies
even if we recompile the projects after several years.

This final step of our pipeline outputs the definitive dataset for
our longitudinal study: the dependency usage trees of 31,515 (63.9 %)
commits collected from 435 (87.0 %) projects. These trees capture
the history of 48,469 dependency relationships, including 1,987
direct dependencies and 23,442 transitive dependencies. Among the
commits, 29,822 (63.1 %) are project releases and 1,693 (83.9 %) are
Dependabot commits. We have kept only the projects for which
we can successfully analyze at least two dependency tree versions.
The dataset consists of a JSON file per commit for each project,
containing the status of each dependency at every point in time. The
dataset and the scripts are available in our experiment repository.®

Table 1 shows descriptive statistics of our dataset. The 435 projects
have been active for periods ranging from five months to 235
months (12 years and 7 months), with most of them in the range
48.5 months (1st Qu.) to 109.5 months (3rd Qu.). The number of
dependency trees analyzed for each project ranges from 2 to 819
(Median = 58, 1st Qu. = 41, 3rd Qu. = 79). The table also reports

“https://dependabot.com
Shttps://github.com/castor-software/longitudinal-bloat

1024

César Soto-Valero, Thomas Durieux, and Benoit Baudry

the number of direct dependencies in the oldest analyzed commit
(Median = 5, 1st Qu. = 3, 3rd Qu. = 10), and transitive dependencies
(Median = 10.5, 1st Qu. = 2, 3rd Qu. = 56). The last two lines in the
table give the number of direct dependencies in the most recent
analyzed commit (Median = 10, 1st Qu. = 5, 3rd Qu. = 18), and
transitive dependencies (Median = 25, 1st Qu. = 6.5, 3rd Qu. = 82.5).

3.4 Methodology for RQ1

In RQ1, we analyze the evolution of the number of bloated depen-
dencies over time. We start with a global analysis of the bloat trend
in direct and transitive dependencies. To do so, we aggregate the
total number of bloated dependencies in all projects on a monthly
basis and compute the average values. Next, we look at each project
separately and assign a bloat evolution trend to each of them. We
represent the number of dependencies at each commit in a project
as a time series. Let p be a Maven project, 8), = by, by, ...b, repre-
sents a time series of length n. A time step in this series represents
one commit that modifies the pom.xml of p. Each b; is the total
number of bloated dependencies reported by DEPCLEAN at the i h
commit on the pom.xml. We collect two series for each project, for
bloated-direct and bloated-transitive dependencies.

For each project p, we determine the overall trend for the evolu-
tion of the number of bloated dependencies: increase, decrease or
stable. The following function over 8, shows how we determine
the trend for a project:

inc if slope(Im(Bp)) > 0 A3bj € By : b; < bjy
f(Bp) = {dec if slope(Im(Bp)) < 0A3bj € By : bj > bjy

stable ifVb; € By : bj = bj—1

We notice that several projects do not have a monotonic trend
in the number of bloated dependencies (i.e. the value increases
and decreases at different time intervals). To account for projects
that have a non-monotonic number of bloated dependencies, we
fit a simple linear regression model, denoted as Im, and determine
the trend of the time series based on the sign of the slope of the
regression line. A project labelled as inc is a project for which the
sign of the slope is positive, i.e., the number of bloated dependencies
increase over time. A project labelled as dec is a project for which the
sign of the slope is negative, i.e., the number of bloated dependencies
decreases over time. If the number of bloated dependencies is the
same across all the data points in the time series of a project, we
label it as stable.

3.5 Methodology for RQ2

In this research question, we analyze the evolution of the usage sta-
tus of the 48,469 dependencies in our dataset. Given a dependency
d € D, present in the dependency tree of a project p, we collect the
status of d at each analyzed commit (see data collection Section 3.3).
This provides a sequence of usage statuses for d and serves as the
basis to determine the occurrence of transitional patterns between
used and bloated statuses.

Let ‘V; be a vector representing the history of usage statuses of
dependency d across the releases of a project, where each release
is ordered by its date. We label the usage status of a dependency d
as B if it is a bloated dependency, or U if it is a used dependency.
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Figure 5: Example of a dependency analyzed over time. It
has a transition of usage status: from used at version 1.1.0 to
bloated at 1.1.1 (RQ2). The dependency has two subsequent
updates after bloated: at versions 1.1.1 and 2.0.0 (RQ3).

Figure 5 illustrates a transition in the usage status of a depen-
dency from used (U) to bloated (B). In this case, the dependency
is identified as used at the two first releases of the project, then it
becomes bloated at the third release, and stays as such. Therefore,
the usage pattern for this dependency results in [U, U, B, B]. Since
we are interested in analyzing transitional patterns, the consecutive
elements of the same category in the vector can be compressed to
a single status, e.g., the previous example is represented as [U, B].

In this research question, we focus on analysing the occurrence
of five transitional patterns: [U], [B], [U,B], [B,U], and fluctuating.
In the cases where the usage status of a dependency flickers over
time, we consider the status of the dependency as fluctuating.

3.6 Methodology for RQ3

We conjecture that developers could save some maintenance efforts
in the absence of bloated dependencies. In this research question,
we investigate how many times developers update the version of
dependencies that are in fact bloated. This type of change in the
pom.xml of a project is an unnecessary engineering effort that
could be avoided. We analyze two types of commits: the commits
where the developers update the version of the project to a new sta-
ble version (e.g., 1.0.0), and the Dependabot commits. Dependabot®
is a dependency management bot very active on GitHub. It cre-
ates pull requests that update the dependencies to remove known
vulnerabilities. Dependabot was launched on May 26, 2017 with
support for Ruby and JavaScript, and now it is supporting more
than ten languages, including Java since August, 2018.

We analyze Dependabot commits because they only contain edits
on the dependency versions in the pom.xml. It provides a clean
point of analysis to detect the impact of a dependency update. And
it allows us to study how many bloated dependencies are updated
by developers as a result of the suggestion of automatic bots.

Figure 5 illustrates a typical case of a dependency that continues
to be updated even after it becomes bloated. The dependency is
used by the project until version 1.1.0. Afterward, the dependency
is no longer used, but it is still updated twice, to version 1.1.1 and
then to version 2.0.0.

To answer this research question, we consider the 15,230 com-
mits in our dataset that perform dependency updates in projects
that have at least one Dependabot commit. We obtain the number of
times a dependency is updated by a developer, by Dependabot, and
how many of those updates are performed on bloated dependencies.
For the dependency usage analysis, we tag each dependency as

Shttps://dependabot.com
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used or bloated. We count every time the version of a direct depen-
dency is updated, and we count separately the number of updates
applied on bloated dependencies. In the example of Figure 5, we
count one update on a used dependency (when the used depen-
dency is updated to version 1.1.0), and two updates on a bloated
dependency (when the bloated dependency is updated to version
1.1.1 and version 2.0.0). Using this approach, we can compare the
ratio of updates made by developers and by Dependabot.

3.7 Methodology for RQ4

In this research question, we investigate the origins of bloated
dependencies. Each time a bloated dependency appears for the first
time in a project’s history, we first determine if it was used in the
commit that immediately precedes the apparition of bloat. If the
dependency was used in the previous commits, we determine in
which class it was used. By analyzing a dependency at the time it
appears as bloated, we can identify what causes the emergence of
bloat. We have identified four different situations:

(1) New dependency (ND): The bloated dependency was not present
in the previously analyzed commit. It indicates that the depen-
dency was introduced in the project but never used.

(2) Removed code (RC): The bloated dependency was present in
the previously analyzed commit and all the classes where the
dependency was used are removed.

(3) Updated code (UC): The bloated dependency was present in the
previously analyzed commit, yet at least one class where the
dependency was used is still present in this commit. It means
that the code has been updated to remove the usage of the
dependency but the pom.xm1 still contains the dependency.

(4) New version (NV): The bloated dependency was present in the
previously analyzed commit and the version of the dependency
changed. In the case of transitive dependency, the parent de-
pendency has been updated and the project does not use the
transitive dependency anymore.

For each of the 31,515 dependency trees, we identify the bloated
dependencies. Then, we check the status of the dependency in the
previous commit. If the dependency is not present in the previous
commit, we consider the origin as ND. Otherwise, we check in the
previous commit in which classes the bloated dependency is used.
We then compare those classes with the new commit. If all classes
are removed, we consider the origin of the bloat as RC. If at least
one of the classes is still present, we consider the origin of the
bloat as UC. Additionally, we compare the version of the bloated
dependency with the previous commit. If the version changes, and
at least one class is still present, we mark the origin as UC and NV,
since both reasons could be the origin of the bloat.

4 RESULTS

In this section, we answer the four RQs presented in Section 3.1.

4.1 RQL1. Bloat Trend

In this research question, we analyze how the number of bloated
dependencies evolves over time. We hypothesize that this number
tends to grow. Following the protocol described in Section 3.3, we
analyze the usage status of each dependencies in 31,515 dependency
trees along the history of 435 projects, as reported by DEPCLEAN.
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We assign bloat trend labels to each project, according to the three
categories defined in Section 3.4.

Figure 6 shows the monthly evolution trend of the number of
bloated-direct and bloated-transitive dependencies, from January
2011 to November 2020. The y-axis is the average number of bloated
dependencies of the 435 projects. Each data point represents the
average of bloat measured each month. The lines represent linear
regression functions, fitted to show the trend of bloated-direct and
bloated-transitive dependencies, at a 95% confidence interval.

We observe that bloated-transitive dependencies have a clear ten-
dency to grow over time, whereas bloated-direct dependencies grow
at significantly lower pace. For example, the number of bloated-
transitive dependencies in 2011 was 1,695, and by the end 2020 this
number grew up to 286,228 (increase > 250x). The bloat is more
pervasive and variable (SD = 17.2) among transitive dependencies,
representing a larger share in comparison with direct dependencies
that are less numerous and less variable (SD = 1.3). We conclude
that, overall, the amount of bloat increases, being more notable for
transitive dependencies.
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Figure 6: Trend of the average number of bloated-direct and
bloated-transitive dependencies per month.

Figure 6 shows an overall growing trend for the number of
bloated dependencies. Now, we look in more details at each project
separately. We count the number of projects that have different
trend of bloated dependencies. Figure 7 shows examples of time
series of projects in our dataset for which the bloated-direct de-
pendencies are labelled according to each category (increasing,
decreasing, and stable). The name of the projects correspond to
the <user>/<repository> on GitHub. The x-axis is the date of the
analyzed commits. The y-axis represents the number of bloated
dependencies detected. For instance, the time series of the project
zapr-oss/druidry has a total of 51 commits on the pom.xml (i.e.,
data points in the time series), and it is labelled as inc w.r.t. to both
the direct and transitive dependencies because both series tend to
continuously increase over time.

Figure 8 shows the distribution of the trend of bloated-direct and
bloated-transitive dependencies. The x-axis indicates the number of
projects with bloated-direct dependencies in each specific evolution
trend, given on the y-axis. Each bar in the plot is partitioned in three
parts that correspond to the share of projects with a given trend for
the number of bloated-transitive dependencies. For example, the top
bar of Figure 8 shows (i) that the number of bloated-direct depen-
dencies tends to increase for 245 (56.3 %) projects; and (ii) among
these 245 projects, 180 also have a number of bloated-transitive
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Figure 7: Example of projects in the three classes of bloat
trend defined in Section 3.4.

dependencies that tends to increases, 59 of these projects have a de-
creasing number of bloated-transitive dependencies and 6 projects
have a stable number of bloated-transitive dependencies. The bar in
the middle of the figure indicates that the number of bloated-direct
dependencies tends to decrease for 106 (24.4 %) projects and the
bottom bar shows that this type of bloat is stable for 84 (19.3 %)
projects because no new bloated dependencies are introduced in
the pom. xml.

Looking at the partitions of each bar in Figure 8, we first observe
that whatever the trend for the number of bloated-direct dependen-
cies, the number of bloated-transitive dependencies can evolve in
any way. Yet, the majority of projects have an increasing number
of bloated dependencies among their transitive dependencies. In
total, 286 (65.7 %) projects have an increasing number of bloated-
transitive, whereas for 113 (26.0 %) projects this number decreases.
The number of projects with stable transitive-dependencies, 36
(8.3 %), is relatively low.

Interestingly, from the 84 projects with a stable number of bloated-
direct dependencies, 41 (48.8 %) of the bloated-transitive depen-
dencies increase and 18 (21.4 %) decreases (e.g., as in the project
percy/percy-java-selenium in Figure 7). This result indicates that
the usage status of dependencies change regardless of 