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Abstract

Software systems have a natural tendency to grow in size and complexity.
A part of this growth comes with the addition of new features or bug fixes,
while another part is due to useless code that accumulates over time. This
phenomenon, known as “software bloat,” increases with the practice of reusing
software dependencies, which has exceeded the capacity of human developers
to efficiently manage them. Software bloat in third-party dependencies presents
a multifaceted challenge for application development, encompassing issues of
security, performance, and maintenance. To address these issues, researchers
have developed software debloating techniques that automatically remove un-
necessary code.

Despite significant progress has been made in the realm of software debloat-
ing, the pervasive issue of dependency bloat warrants special attention. In this
thesis, we contribute to the field of software debloating by proposing novel
techniques specifically targeting dependencies in the Java ecosystem.

First, we investigate the growth of completely unused software dependencies,
which we call “bloated dependencies.” We propose a technique to automatically
detect and remove bloated dependencies in Java projects built with MAVEN. We
empirically study the usage status of dependencies in the Maven Central reposi-
tory and remove bloated dependencies in mature Java projects. We demonstrate
that once a bloated dependency is detected, it can be safely removed as its future
usage is unlikely.

Second, we focus on dependencies that are only partially used. We introduce
a technique to specialize these dependencies in Java projects based on their
actual usage. Our approach systematically identifies the subset of functionalities
within each dependency that is sufficient to build the project and removes the
rest. We demonstrate that our dependency specialization approach can halve
the project classes to dependency classes ratio.

Last, we assess the impact of debloating projects with respect to client appli-
cations that reuse them. We present a novel coverage-based debloating technique
that determines which class members in Java libraries and their dependencies
are necessary for their clients. Our debloating technique effectively decreases the
size of debloated libraries while preserving the essential functionalities required
to successfully build their clients.

Keywords: Software debloating, software dependencies, Java bytecode, package
manager, static program analysis, dynamic program analysis
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Sammanfattning

Mjukvarusystem har en naturlig tendens att växa i storlek och komplexitet.
En del av denna tillväxt kommer med tillägget av nya funktioner eller buggfixar,
medan en annan del beror på onödig kod som ackumuleras över tiden. Detta
fenomen, känt som mjukvaru-bloat, ökar med praxis att återanvända mjukvaru-
bibliotek, vilket har överstigit kapaciteten hos mänskliga utvecklare att effektivt
hantera dem. Mjukvaru-bloat i tredjepartsbibliotek innebär en mångfacette-
rad utmaning för applikationsutveckling, som omfattar säkerhets-, prestanda-
och underhållsproblem. För att hantera dessa problem har forskare utvecklat
mjukvaruavbloatningstekniker som automatiskt tar bort onödig kod.

Trots att betydande framsteg har gjorts inom området för mjukvaruavblo-
atning, kräver det genomgripande problemet med bloat bland kodberoenden
särskild uppmärksamhet. I denna avhandling bidrar vi till området för mjuk-
varuavbloatning genom att föreslå nya tekniker som specifikt riktar sig mot
beroenden i Java-ekosystemet.

Först undersöker vi tillväxten av helt oanvända mjukvaruberoenden, som vi
kallar överflödiga (bloated) beroenden. Vi föreslår en teknik för att automatiskt
upptäcka och ta bort svullna beroenden i Java-projekt som byggs med Maven. Vi
studerar empiriskt användningsstatus för beroenden i Maven Central Repository
och tar bort överflödiga beroenden i mogna Java-projekt. Vi visar att när ett
överflödigt beroende upptäcks kan det säkert tas bort eftersom det är osannolikt
att det kommer att användas i framtiden.

För det andra fokuserar vi på beroenden som endast används delvis. Vi
introducerar en teknik för att specialisera dessa beroenden i Java-projekt baserat
på deras faktiska användning. Vår strategi identifierar systematiskt den delmängd
av funktioner inom varje beroende som är tillräcklig för att bygga projektet
och tar bort resten. Vi visar att vår beroendespecialiseringsmetod kan halvera
förhållandet mellan projektklasser och beroendeklasser.

Till sist bedömer vi effekten av att avbloata projekt med avseende på klien-
tapplikationer som återanvänder dem. Vi presenterar en ny täckningsbaserad
avbloatningsteknik som bestämmer vilka klassmedlemmar i Java-bibliotek och
dess beroenden som är nödvändiga för deras klienter. Vår avbloatningsteknik
minskar effektivt storleken på avbloatade bibliotek medan man bevarar de vä-
sentliga funktioner som krävs för att framgångsrikt bygga deras klienter.

Nyckelord: Mjukvaruavsvällning, mjukvaruberoenden, Java bytekod, pakethante-
rare, statisk programanalys, dynamisk programanalys
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Chapter 1

Introduction

“This is your last chance. After this there is no turning back. You take the
blue pill, the story ends. You wake up in your bed and believe whatever
you want to. You take the red pill, you stay in Wonderland, and I show
you how deep the rabbit hole goes. Remember, all I’m offering is the truth.
Nothing more.”

— Morpheus, The Matrix

CODE reuse is a software engineering practice in which developers rely on
pre-existing code components, libraries, or modules to build new software
applications, rather than implementing everything from scratch [17].

This approach has been advocated as a good practice since the early days of
software engineering, as it helps developers to increase productivity [18] and
learn from past experiences to create software that is more robust, efficient, and
maintainable [19]. As software engineering practices evolve, various mechanisms
have been developed to facilitate code reuse, such as object-oriented programming,
public APIs, open-source components, and package managers. These techniques
and tools have made it even more convenient and efficient for developers to
incorporate pre-existing code components into their projects.

In recent years, the use of package managers to handle software dependen-
cies (a.k.a. libraries) has become a standard software engineering practice [20].
Software ecosystems and package managers provide developers with a centralized
location to find and download the dependencies they need, as well as to keep
them up to date [21]. Part of the success of package managers is attributed to their
effectiveness in helping developers navigate the escalating complexity of code
reuse within the current software engineering lifecycle [22]. Package managers
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CHAPTER 1. INTRODUCTION

boost software reuse by creating a clear separation between the application and
its third-party dependencies [23]. As a result, software ecosystems and package
managers have become an essential part of modern software development and a
key enabler of the rapid pace of innovation in this field [24]. There exist package
managers for most programming languages, such as MAVEN for Java [25], NPM
for JavaScript [26], and PIP for Python [27]. Each of them effectively handles the
massive demands of code reuse across millions of dependencies hosted in public
repositories, such as the Maven Central repository [28] for the Java ecosystem.
This has greatly simplified the process of managing dependencies, making it easier
for developers to build and maintain complex software systems.

Software dependencies pervade the landscape of modern software develop-
ment. For example, in 2022 the average Java application depends on more than
40 third-party dependencies [29]. Despite the myriad of advantages that package
managers offer, such as streamlining software reuse and simplifying dependency
management, their widespread adoption has introduced new challenges that devel-
opers must contend with [30]. Developers of software applications must effectively
overcome the challenges of managing these third-party dependencies [31] to avoid
entering into the so-called “dependency hell” [32]. These challenges relate to en-
suring high-quality dependencies [33], keeping the dependencies up-to-date [34],
or making sure that heterogeneous licenses are compatible [35]. Consequently,
the effective management of software dependencies has become an indispensable
aspect of modern software development.

Dependencies are reusable software components that are commonly designed
for multiple uses and platforms [36]. For example, the Apache PDFBOX li-
brary [37] is a versatile and multi-functional project, serving a wide array of
features designed to run on various development environments. The PDFBOX APIs
enable developers to create, process, and extract content from PDF files, accom-
modating diverse use cases like text extraction, form filling, and PDF rendering.
This multi-functionality, while advantageous in providing diverse features and
capabilities to its users, often has an engineering cost. When used as a dependency
by another project, the Apache PDFBOX library may introduce a considerable
amount of unnecessary code, commonly referred to as “software bloat” [38]. This
is because PDFBOX is designed to cater to numerous use cases and platforms,
many of which may not be relevant to a specific user. As a result, applications that
rely on the PDFBOX and other multi-purpose libraries may suffer from increased
code complexity, memory usage, longer compilation times, and larger distribution
package sizes, potentially affecting the overall performance and user experience
in its dependent applications.
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1.1. SOFTWARE DEBLOATING

The problems associated with the presence of software bloat aggravates as
developers rely more on pre-existing code. The number of dependencies used in a
project can quickly add up, resulting in large amounts of unnecessary code [39].
Moreover, the excess of code not only takes up more disk space but can lead
to a number of problems, such as a higher risk of software vulnerabilities [40],
increased memory usage [41], and longer build times [42]. Additionally, as
software dependencies are often updated independently of the main project, it
can be difficult to keep track of the version of dependencies that a project relies
on and this could be a potential source of bugs [21]. As the challenges associated
with the phenomenon of software bloat escalate, researchers are turning their
attention to innovative solutions to mitigate its negative effects.

1.1 Software Debloating

To address the phenomenon of software bloat, researchers are exploring a tech-
nique known as “software debloating,” which aims to remove unnecessary code
and features from software applications. Effectively debloating software involves
addressing three key challenges: 1) detecting the bloated code, 2) removing it,
and 3) assessing that the debloated artifact preserves its original behaviour. The
first challenge entails a thorough examination of the codebase and the software
development lifecycle to pinpoint areas containing unnecessary or redundant
code [43]. The second challenge involves surgically removing the bloated code
through code-specific transformation techniques [44]. Finally, assessing the va-
lidity of the debloated artifact requires comprehensive testing and validation to
ensure that the removal of bloated code has not introduced new errors or ad-
versely impacted the application’s functionality, performance, or reliability [45].
By effectively executing these tasks, developers can create leaner, more efficient
software, and ensure a better user experience.

Detecting code bloat is notably difficult due to the intricacies and complex-
ities associated with modern software systems. Identifying the unnecessary or
redundant code segments requires a deep understanding of the application’s
functionality, its dependencies, and the relationships between different code com-
ponents. Bloated code might be intertwined with essential functionalities, making
it difficult for developers to discern which parts are truly unnecessary. Current
techniques to detect code bloat rely on static [43] and dynamic [46] program
analysis to accurately determine the code segments contributing to bloat. Although
they are effective in most circumstances, often difficulties arise due to the dynamic
features that modern programming languages and libraries may include, such
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CHAPTER 1. INTRODUCTION

as reflection, dynamic loading, or runtime code generation [47]. These features
make it challenging to determine the precise set of code segments that are used
or unused at runtime, complicating the debloating process [48]. Moreover, the
effectiveness of these techniques may be limited by factors such as the scalability
of the bloat detection algorithm, the use of code obfuscation tools in the target
application, or the lack of well-defined criteria for determining the targeting code
bloat. Consequently, researchers continue to explore new methodologies and tools
to enhance the accuracy and efficiency of techniques to effectively detect code
bloat.

Removing bloated code presents its own set of challenges, as the process
involves finding a way to eliminate the unnecessary code parts without com-
promising the necessary functionalities of the applications or introducing new
bugs [49]. One significant challenge to this task lies in the interdependencies
present in complex software systems [50]. Software components are often tightly
interconnected, and removing a seemingly unnecessary piece of code (e.g. chang-
ing a single line of code in a configuration file) could inadvertently break other
parts of the application that depend on it, either directly or indirectly [51]. On the
other hand, dependencies between code components may not always be immedi-
ately apparent, leading to the inadvertent removal of critical code. Consequently,
the act of removing bloated code might result in unintended side effects, such as
performance degradation, instability, or altered application behavior. To mitigate
these risks, developers must adopt sound code transformation techniques, coupled
with thorough testing to ensure that the debloating process does not introduce
unforeseen issues.

Assessing the integrity of a debloated artifact is another critical aspect of the
software debloating process that poses unique challenges [52]. Ensuring that the
removal of the bloated code has not introduced new errors or adversely impacted
the application’s functionality, performance, or reliability requires comprehensive
testing and validation. Designing and executing a robust debloating assessment
mechanism that effectively covers all aspects of the application’s behavior can be
a time-consuming and resource-intensive task. Current debloating methodologies
depend on pre-existing applications’ test suites to assess the efficacy of the debloat-
ing approaches [53]. Nonetheless, false positives or negatives during the testing
process may result in unforeseen errors arising long after debloating has taken
place. Therefore, a thorough evaluation is required to ensure that all relevant
code paths are covered and that the removed code does not affect the application’s
functionality [54]. Overall, researchers must ensure that debloating techniques do
not significantly impact the maintainability and readability of the code. Striking
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1.2. DEBLOATING JAVA DEPENDENCIES

the right balance between removing the bloated code and preserving its integrity
and maintainability is still an open research endeavor.

1.2 Debloating Java Dependencies

In the context of this thesis, we investigate the use of debloating techniques to
remove the software bloat resulting from the addition of third-party dependencies.
Tackling software bloat within third-party dependencies poses unique challenges,
primarily due to the restricted influence that developers possess over the internals
of these libraries [55], which complicates the process of identifying and removing
unnecessary code without altering the libraries’ binaries. Moreover, bloated code
resulting from the practice of code reuse can manifest at various granularity levels,
from entire software modules to individual lines of code, adding to the complexity
and time-consuming nature of the debloating process [56]. Overcoming these
obstacles necessitates substantial engineering efforts, a thorough evaluation of the
debloated artifact, and a profound understanding of the target application and its
downstream dependencies.

In Java, as with many other programming languages, code reuse is a fun-
damental practice to increase developers’ productivity [57, 39, 58]. Package
managers, like MAVEN or GRADLE, streamline this practice by facilitating the task
of reusing dependencies hosted in external repositories [8]. However, effectively
handling Java dependencies poses several challenges for developers [59]. For
example, each package manager has its own unique set of protocols, tools, and
mechanisms that govern how dependencies are coordinated in software projects.
This means that developers must not only familiarize themselves with the specific
package manager’s syntax and conventions but also adapt their needs to its par-
ticular dependency resolution algorithms and dependency versioning schemes.
Furthermore, developers should also pay attention to the design choices made by
public software repositories hosting the dependencies they incorporate into their
projects For instance, software artifacts hosted in Maven Central are immutable,
once an artifact is uploaded and published, it cannot be removed or modified [1].
Consequently, Maven Central accumulates all the versions of all the dependencies
ever released there, and applications that declare a dependency towards a library
must ensure to pick the right version. Although MAVEN provides features allowing
developers to visualize the dependencies they utilize, managing dependency up-
dates proves challenging due to the intricate nature of dependency trees [21]. For
example, MAVEN could benefit from mechanisms that ascertain whether a declared
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dependency is truly essential for the project using it [2]. These complexities and
challenges associated with dependency management contribute significantly to
the emergence of code bloat in the Java ecosystem.

We have observed that code bloat is a prevalent issue that can emerge when
utilizing Java dependencies. To alleviate its detrimental effects, developers need to
carefully consider the dependencies they incorporate, ensuring that only those vital
to the project are included [43]. For instance, when using functionalities from the
Apache PDFBOX library, developers should assess their specific requirements and
only add the necessary features into their project [60]. If the project solely involves
extracting text from PDF files, there is no need to include the entire PDFBOX

library [61]. In this case, by selectively incorporating only the relevant modules
or classes for text extraction, developers can effectively reduce software bloat. In
addition, developers should also be aware of the different available versions of a
dependency, and use the most recent and stable one to avoid vulnerabilities and
issues associated to dependency conflicts [62].

Several software debloating techniques have been proposed to reduce the
size and complexity of applications through the removal of unnecessary third-
party code. For Java, various debloating techniques have emerged in the last
two decades. Most of these techniques rely on static analysis [63] and dynamic
analysis [48] to detect code bloat. While static and dynamic code analysis have
shown promising results in identifying unused features [64] and other types of
bloat in Java applications, there is still a need to extend their applicability to
third-party libraries. Thus, as new software features and libraries are developed,
debloating techniques must continue to evolve to keep up with the ever changing
landscape of modern software development.

On the other hand, when undertaking the process of debloating a software
project, t is essential to consider the potential impact on clients who will reuse its
code as a dependency [65]. The removal of seemingly unnecessary or redundant
code could inadvertently break the functionality of dependent projects if they rely
on the removed parts in their codebases. This interdependency between several
client projects can create challenges to the debloating efforts, as developers must
carefully balance the need to optimize their software while ensuring the continued
functionality of clients that rely on their code [66]. Despite some progress in this
area, there is still work to be done to fully debloat Java applications and reduce
their overall size and complexity. Comprehensive assessment of the debloating
results, as well as communication with the clients of the projects, are essential in
this context, as they help ensure that the debloating process does not compromise
the stability, functionality, or performance of the dependent software applications.
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1.3 Problem Statements

According to the discussions above, we identify three key problems to be
addressed in the field of software debloating in Java:

• P1: The pervasive practice of software reuse, fueled by the increase in the sup-
ply of software dependencies leads to dependency bloat in the Java ecosystem.

• P2: Most of the code shipped with the used dependencies is unused by the
dependent software projects.

• P3: Debloating software libraries could affect the clients that depend on these
libraries, and the extent of such an impact is currently unclear.

1.4 Summary of Thesis Contributions

The essence of this thesis is on tackling the code bloat that arises as a result of
the increasing complexity in software systems. The problems listed above repre-
sent the various facets of this phenomenon for a particular software ecosystem:
the Java MAVEN ecosystem. In particular, our contributions focus on the fact that
current debloating techniques for Java lack the ability to detect and remove code
bloat coming from third-party dependencies. To overcome the existing limitations,
we propose novel debloating techniques that prioritize minimally invasive changes
in the dependency tree of software projects, thereby making it easier for developers
to adopt them. Unlike existing debloating methods that focus on producing leaner
binaries and enhancing the precision of static and dynamic program analysis for
debloating, our contributions are centered on a different aspect. We target the
removal of code originating from the software supply chain of third-party libraries,
which we have identified as a fundamental source of code bloat. This not only
contributes to enhancing the maintainability of the applications, but also reduces
the attack surface and improves the projects’ build performance. By leveraging the
developers’ familiarity with build systems, we implement debloating techniques
that can readily debloat Java applications at build time. the development of
MAVEN-based debloating tools has not only demonstrated significant value in
addressing this challenge, but also facilitated user adoption.

In this thesis, we make the following technical contributions to the field of software
debloating:
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• C1 Removing Bloated Dependencies: In order to address P1, regarding the
increase of dependency bloat in the Java ecosystem, we propose a software
debloating approach to help developers identify and remove bloated depen-
dencies in Java projects that build with MAVEN. Our approach is implemented
in a tool called DEPCLEAN, which automatically removes direct, transitive, and
inherited dependencies and produces a fully debloated version of the project’s
dependency tree. The corresponding paper is published in the journal Springer
Empirical Software Engineering [2]. Moreover, armed with DEPCLEAN, we
performed a longitudinal study of bloated dependencies in the Java ecosystem.
We analyze the usage status of dependencies over time in order to determine
to what extent a bloated dependency is likely to be used in the future. Our
results are published as a conference paper in the Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering [3]. We present C1 in details
in Section 3.2.

• C2 Specializing Used Dependencies: In order to address P2, we develop a
novel technique that specializes the individual dependencies in the dependency
tree to the specific needs of Java projects. We implement this technique
in a tool called DEPTRIM, which removes unused class files in third-party
dependencies of projects that build with MAVEN. The corresponding paper is
currently submitted to the journal IEEE Transactions on Software Engineering,
and the PDF preprint is available on arXiv [6]. We present the details of C2
in Section 3.3.

• C3 Debloating w.r.t. Clients: To address P3 regarding the lack of insights
about the impact of debloating libraries on their clients, we propose a novel
debloating technique based on dynamic analysis that relies on the collection
of execution traces from a diverse set of code-coverage tools to determine
which class members in the Java libraries and their dependencies are actually
necessary for their clients. We implement this technique in a tool called JDBL,
and assess the applicability of this debloating technique on a large collection
of Java libraries. The paper is published in the journal ACM Transactions on
Software Engineering and Methodology [4]. We discuss C3 in Section 3.4.

In addition to the technical contributions outlined earlier, this thesis also provides
valuable experimental findings and makes meaningful contributions to public
research.
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Table 1.1: Mapping of the contributions in this thesis to the appended research papers.

RESEARCH PAPERS

CONTRIBUTIONS
I II III IV V VI

[1] [2] [3] [4] [5] [6]

C1 Removing Bloated Dependencies 3 3

C2 Specializing Used Dependencies 3

C3 Debloating w.r.t. Clients 3

C4 Reproducible Research 3 3 3 3 3 3

• C4 Reproducible Research: For each proposed technical contribution (C1, C2,
and C3), we design and carry out empirical studies that systematically assess
the effectiveness of our software debloating approaches. Our methodologies,
research protocols, and experimental outcomes serve as a valuable guide for
researchers interested in exploring dependency usage and developing software
debloating techniques in the future. Moreover, the datasets collected and
curated by the author of this thesis offer a solid foundation for additional
inquiries in this area. In support of open science, we share the complete source
code of our research tools, datasets, experiment scripts, and results on GitHub
and Zenodo.

Table 1.1 provides an overview of the technical contributions presented in the
papers included in Part II of this thesis. Each paper has a distinct emphasis on
the various technical contributions (C1, C2, and C3). Additionally, each technical
contribution is evaluated through rigorous experimental protocols, ensuring their
reliability and reproducibility. We have made a commendable effort in releasing
our proposed software solutions as open-source code, together with the associated
experiments and datasets, thereby promoting transparency and reproducibility
of our research. Overall, our papers contribute significantly to the field of soft-
ware debloating and dependency analysis in Java, offering experimental results,
research software prototypes, and datasets to further advance the field (C4).

1.5 Summary of Research Papers

This is a compilation thesis that includes six research papers, each of which
is summarized below. The papers are ordered based on the way in which the
contributions are presented in this thesis.
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Paper I: “The Emergence of Software Diversity in Maven Central”

César Soto-Valero, Amine Benelallam, Nicolas Harrand, Olivier Barais, and Benoit
Baudry
In Proceedings of the 16th International Conference on Mining Software Repositories
(2019)

Summary: The Maven Central repository is immutable, which means that any
artifact uploaded to Maven Central cannot be removed or altered, and upgrading a
dependency requires the release of a new version. As a result, Maven Central accu-
mulates all the versions of libraries published there, and any application declaring
a dependency on a library has the freedom to choose among any version of that
library. In this paper, we hypothesize that the immutability of MAVEN artifacts,
coupled with the flexibility of the clients to choose any version, is conducive to the
emergence of software diversity within Maven Central. To test our hypothesis, we
conduct an analysis of 1,487,956 artifacts, which represent all versions of 73,653
libraries. Our findings reveal that more than 30% of libraries have multiple ver-
sions that are actively being used by the latest artifacts. For popular libraries, over
50% of their versions are utilized. Moreover, more than 17% of libraries have
multiple versions that are significantly more frequently used than others. Our
results demonstrate that the immutability of artifacts in Maven Central supports a
sustainable level of diversity among library versions in the repository. This paper
contributes to C4.

Own contributions: The author of this thesis wrote the paper and established all
technical results, with extensive feedback from discussions with the co-authors.

Paper II: “A Comprehensive Study of Bloated Dependencies in the Maven
Ecosystem”

César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry
Springer Empirical Software Engineering (2021)

Summary: The prevalent practice of software reuse, driven by the growth in
the availability of software dependencies, results in an accumulation of excessive
dependencies within Java projects. This problem, presented in P1 and discussed
in Section 1.3, is known as dependency bloat. We propose a new technique,
implemented in a tool called DEPCLEAN, that automatically detects and removes
bloated dependencies in MAVEN projects. Bloated dependencies refer to third-
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party libraries that are included in the application binary, yet are unnecessary
for the application to function properly. DEPCLEAN detects bloated dependencies
by constructing a call graph of the Java bytecode class members by capturing
annotations, fields, and methods, and accounts for a limited number of dynamic
features such as class literals. DEPCLEAN produces a variant of the dependency
tree without bloated dependencies (i.e., a debloated pom.xml). We evaluate DEP-
CLEAN both quantitatively and qualitatively. First, we analyze 9,639 Java artifacts
hosted on Maven Central, which include a total of 723,444 dependency relation-
ships. Our empirical results show that 75% of the dependencies in Maven Central
are bloated (i.e., it is feasible to reduce the number of dependencies of MAVEN

artifacts to 1/4 of its current count). Our qualitative assessment of DEPCLEAN

with 30 notable open-source projects indicates that developers pay attention to
bloated dependencies when they are notified of the problem: 21/26 answered
pull requests proposing the removal of these dependencies were accepted and
merged by developers, removing 140 bloated dependencies in total. This paper
contributes specifically to C1.

Own contributions: The author of this thesis wrote the paper, implemented DEP-
CLEAN, and performed the experimental evaluation. The co-authors contributed
significantly to motivate the importance of removing “bloated dependencies” and
provided useful feedback during technical discussions.

Paper III: “A Longitudinal Analysis of Bloated Java Dependencies”

César Soto-Valero, Thomas Durieux, and Benoit Baudry
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (2021)

Summary: In order to address P1 regarding the uncertainty of developers when
coming across bloated dependencies, we perform a longitudinal study that delves
into the evolution and impact of bloated dependencies in the Java ecosystem.
We use DEPCLEAN to determine the usage status of dependencies (i.e., used or
bloated) across the the history of 435 Java libraries. This represents analyzing a
collection of 48,469 dependencies spanning a total of 31,515 versions of MAVEN

dependency trees. Our results indicate a steady increase of bloated dependencies
over time, with 89.2% of direct dependencies labeled as bloated remaining as
such in subsequent versions of the studied projects. Our empirical evidence sug-
gests that developers can confidently remove bloated dependencies to streamline
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application performance. Additionally, we discovered novel insights regarding
the unnecessary maintenance efforts induced by dependency bloat. Notably, we
found that 22% of dependency updates made by developers were performed on
bloated dependencies, and that DEPENDABOT, an automated dependency update
bot, suggests a similar ratio of updates on bloated dependencies. By contributing
these insights, we aim to inspire software developers to pay more attention to
their dependency trees and take immediate actions to address the issue of bloated
dependencies. This paper contributes to C1.

Own contributions: The author of this thesis wrote the paper in close collabora-
tion with co-authors. The author of this thesis led the work on the experimental
evaluation and the co-authors helped significantly with the data collection phases.

Paper IV: “Coverage-Based Debloating for Java Bytecode”

César Soto-Valero, Thomas Durieux, Nicolas Harrand, and Benoit Baudry
ACM Transactions on Software Engineering and Methodology (2022)

Summary: In order to address P3, related to the need for more knowledge re-
garding the impact of debloating software libraries for the clients that depend on
these libraries, we develop a new debloating technique based on dynamic analysis,
which we coined as “coverage-based debloating.” For its implementation, we
leverage state-of-the-art Java bytecode coverage tools to precisely capture which
class members of a Java project and its dependencies are necessary to execute a
specific workload. We implement this technique in a tool called JDBL. We use the
client’s test suite as a workload to remove code bloat and generate a debloated
version of the packaged libraries. The evaluation of JDBL using a dataset of 94
open-source Java libraries yielded that coverage-based debloating achieves the
removal of 68.3% of the libraries’ bytecode and 20.3% of their total dependencies
while maintaining the syntactic correctness and original functionality of the de-
bloated libraries. Furthermore, our results demonstrate that 81.5% of the clients
with at least one test using the library successfully compile and pass their test
suite when the original library is replaced by its debloated version. Our technique
represents an advance in the field of software debloating using dynamic analysis.
We offer a research tool for addressing the challenges posed by software bloat
in modern Java application development. This paper contributes specifically to C3.

Own contributions: The author of this thesis wrote the paper, implemented JDBL,
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and performed the experimental evaluation with the help of co-authors.

Paper V: “The Multibillion Dollar Software Supply Chain of Ethereum”

César Soto-Valero, Martin Monperrus, and Benoit Baudry
IEEE Computer (2022)

Summary: The advent of blockchain technologies has sparked a flurry of activity
in the research community, coding enthusiasts, and serious investors over the past
decade. Ethereum, as the largest programmable blockchain platform to date, has
enabled the trading of cryptocurrency, facilitated the creation of digital art, and
ushered in a new era of decentralized finance through the use of smart contracts.
The operation of the Ethereum blockchain is supported by a complex network of
nodes, which rely on a vast array of third-party software dependencies, maintained
by various organizations. The reliability and security of Ethereum are therefore
directly influenced by these software suppliers. In this paper, we conduct a rig-
orous analysis of the software supply chain of third-party dependencies of BESU

and TEKU, the two major Java Ethereum nodes. Our results uncover the inherent
challenges in maintaining and securing the dependencies of both cutting-edge
blockchain software projects. This paper contributes to C4.

Own contributions: The author of this thesis wrote the paper and performed the
data analysis in close collaboration with co-authors. The original idea of the paper
is from co-authors.

Paper VI: “Automatic Specialization of Third-Party Java Dependencies”

César Soto-Valero, Deepika Tiwari, Tim Toady, and Benoit Baudry
Under major revision at IEEE Transactions on Software Engineering (as of February
2023)

Summary: In C1, we remove bloated dependencies entirely from the dependency
trees of MAVEN projects. However, the partial use of remaining dependencies indi-
cates potential for further reduction of third-party code. P2 focuses on addressing
the presence of this unused code in non-bloated dependencies. To tackle this
issue, we introduce a novel technique that specializes Java dependencies based
on their actual usage. We implement our technique in a tool called DEPTRIM,
which systematically identifies the required subset of each dependency’s bytecode
necessary for building the, eliminating the unnecessary code parts. DEPTRIM
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repackages the specialized dependencies and integrates them into the projects’ de-
pendency trees. We evaluate DEPTRIM with 30 notable open-source Java projects.
DEPTRIM specializes 86.6% of the dependencies in these projects, successfully
rebuilding each with a specialized dependency tree. Through this specialization,
DEPTRIM removes 47.0% of unused classes from the dependencies, decreasing the
ratio of dependency classes to project classes from 8.7× in the original projects
to 4.4× after specialization. Our results emphasize the relevance of dependency
specialization, as it can significantly reduce the share of third-party code in Java
projects. This paper contributes to C2.

Own contributions: The author of this thesis wrote the paper, implemented
DEPTRIM, and performed the experimental evaluation with the help of co-authors.

1.6 Thesis Outline

As a compilation thesis, this document consists of two parts. In Part I, Chapter 1
introduces the problem of debloating Java dependencies and summarizes the
research papers included in this thesis that contribute to solving this particular
problem. Chapter 2 presents a state-of-the-art of the field of software debloating
and discusses the novelty of our contributions. Chapter 3 offers more details
regarding our technical contributions. Chapter 4 concludes the thesis and discusses
the potential future work. Part II of the thesis includes all the papers discussed in
Part I.
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Chapter 2

State of the Art

“La perfection est atteinte, non pas lorsqu’il n’y a plus rien à ajouter, mais
lorsqu’il n’y a plus rien à retirer.”

— Antoine de Saint-Exupéry

SOFTWARE bloat refers to code that is packaged in an application but is ac-
tually not necessary to run the application. In this chapter, we present an
overview of the phenomenon of software bloat in the software develop-

ment lifecycle and offer a comprehensive review of the most relevant research
papers in the field of software debloating, consolidating the necessary background
knowledge to comprehend our contributions. This consolidation of the literature is
essential for understanding the complexities and challenges associated to software
bloat, enabling researchers and practitioners to develop more effective debloating
techniques in order to improve software efficiency, security, and maintainability.
Our review involves a thorough examination of the pertinent published research
papers that investigate this subject. In particular, our investigation reveals that the
majority of the current literature can be categorized based on three fundamental
aspects: purposes for debloating, code analysis technique for debloating, and
granularity of the bloated code removal. We structure this chapter accordingly to
reflect these salient concepts.

In the last part of this chapter, we position our contributions to the field of
software debloating in relation to the most closely related tools and techniques.
This provides a more concrete understanding of the unique and novel aspects of
our contributions. In addition, we also draw attention to the current resources
available, such as tools and datasets, which can be utilized as groundwork or
benchmarks for forthcoming studies on software debloating.
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2.1 Code Bloat in the Software Engineering Lifecycle

Software systems have a natural tendency to grow in size and complexity over
time whether or not there is a need for it. This happens due to various factors such
as advancements in hardware [56], contemporary programming practices [67],
or sometimes for no apparent reason at all [38]. Consequently, software bloat
emerges as a result of the natural increase in software complexity [68], e.g.,
through the addition of non-essential features, bug fixes, or just by the accu-
mulation of useless code that adds up over time [69]. This phenomenon has
several unfortunate consequences. For example, it needlessly increases the size
of the packaged software artifacts [38], makes software harder to understand
and maintain [70], increases the attack surface [71], and degrades the overall
performance [41]. The existence of software bloat poses challenges in the soft-
ware development landscape. Therefore, it becomes increasingly important for
developers and researchers to devise efficient strategies to mitigate its adverse
effects for enhancing software quality.

Software bloat refers to code that is packaged in an application but is actually
not necessary to build and execute the application to provide a given functionality.

As software systems grow in size and sophistication, software stacks have also
evolved to be more intricate and layered [72]. Modern applications are built on
top of runtimes, which are in turn built on top of operating systems that depend on
specific hardware architectures, and so on. Each layer adds its own set of features
and dependencies, which may not be essential to the correct execution of one
specific, user-facing application. Therefore, the escalating complexity throughout
the entire software stack contributes to the increase of software bloat, making room
for the introduction of unnecessary features, dependencies, and redundancies at
various stages of the software development lifecycle [73]. In particular, software
bloat increases when building on top of software frameworks [71], as well as
with the practice of code reuse [74]. Moreover, software bloat accumulates across
the entire software system, leading to performance issues, increased memory
usage, and longer development and deployment times. This increasing level of
complexity across the software engineering lifecycle makes it more difficult for
developers to control the diverse components of applications [75], which further
exacerbates the problem of software bloat.

Figure 2.1 illustrates the pervasive presence of software bloat throughout the
software engineering lifecycle. The figure highlights three crucial phases of this
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Figure 2.1: Presence of software bloat in the software engineering lifecycle when developing
and deploying a software application.

process: implement & communicate, build & check, and release & deploy (depicted
as green rounded rectangles). At the top of the figure, we represent dependencies
as reusable software components managed by package managers, such as MAVEN

for Java, NPM for JavaScript, and PIP for Python, which developers utilize during
all software development phases.

First, in the implementation phase, developers fetch dependencies from exter-
nal repositories to local repositories in order to reuse functionalities and expedite
the application development process. Upon the compilation of the developers’
source code, the second phase involves testing and building the application (i.e.,
packaging the application’s code along with the third-party code from dependen-
cies, generally resulting in a single binary file). When the binary file is prepared, it
is released and deployed into an execution environment, typically external servers
that provide abstraction and isolation for reliable and efficient application execu-
tion (e.g., cloud services powered by Docker and Kubernetes clusters). Figure 2.1
also displays software development tools at the bottom, assisting developers in
each development phase (e.g., IDEs, build automation tools, IaC, monitoring tools).
For instance, in the case of a Java application, the Open JDK comprises the Java
Runtime Environment (JRE) and additional tools necessary for building a Java
application, including the Java compiler, debugger, and other development tools.

Figure 2.1 pinpoints three critical stages where software bloat appears, accord-
ing to our experience. First, software bloat can occur after the implementation
phase when developers include redundant source code or unnecessary features in
their software projects [76]. This can encompass bloat in the code directly written
by developers, as well as in the remaining configuration files required to build
and check the software application. Second, when the software is built, compilers
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and other tools may transform software artifacts (e.g., when adding the code from
third-party dependencies or inserting logging traces across the application for
monitoring purposes). This additional code transformations can be a significant
source of software bloat. In particular, compiled third-party dependencies are
fetched from external repositories, added entirely, and packaged alongside the
application’s binaries.

By reusing dependencies developers are able to build more complex and pow-
erful software systems with less effort. However, they can substantially contribute
to software bloat, particularly when developers rely heavily on code coming from
third-party libraries and frameworks. Furthermore, we observed that software
repositories themselves may contain unnecessary or redundant dependencies. For
example, each dependency is available in multiple versions, and each version
contains its own set of downstream dependencies [1]. On the other hand, it is
important to note that although the hardware layer supporting the running appli-
cation is not a direct contributor to software bloat, more powerful hardware can
encourage software developers to incorporate potentially bloated features [77].

As depicted in Figure 2.1, the engineering lifecycle of software applications
is adversely affected by increased exposure to software bloat. This results from
the challenges in identifying and eliminating redundant or unnecessary code
within the numerous development phases and the inherent complexity of modern
software systems. For example, one of the causes of software bloat is known as
“feature creep,” where software developers add new functionalities to software
applications without considering their impact on the overall size and efficiency
of the application [78, 79, 80]. We observe that the practice of code reuse can
inadvertently contribute to increased software bloat. This practice can lead to the
accumulation of unnecessary code and features that bloat the software and make
it more difficult to maintain and optimize. Another cause of software bloat is code
duplication, where developers copy and paste code without considering its rele-
vance or impact on the overall software structure [81]. Furthermore, developers
have limited control over certain stack components, such as the operating system
or hardware, making it challenging to eliminate code bloat from these sources.
Therefore, it is essential for developers to proactively address and manage the
sources of bloat that are within their control, mitigating its adverse effects on the
deployed software applications.

Software bloat affecting applications has been a widely-discussed topic in
software engineering research. Numerous research papers have investigated
the causes and consequences of software bloat, proposing various code removal
techniques to eliminate unnecessary code and optimize software performance.
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Specifically, software bloat has been identified as a significant challenge con-
cerning software size, maintenance, performance, and security. Recent studies
have concentrated on measuring the impact of software bloat across the software
stack, encompassing user-level programs [36], OS kernels [82], and virtual ma-
chines [45]. Other research efforts have focused on elucidating the implications
of software bloat on global energy consumption [44, 83, 84]. Lately, the research
community has shown interest in examining the effects of software bloat on the
software supply chain of dependencies [31], as it can contribute to increased
complexity, diminished performance, and vulnerabilities [50]. In summary, the
research findings demonstrate that software bloat is widespread and significant,
affecting a substantial portion of code throughout the software development life-
cycle. This situation is a unique opportunity for researches to develop innovative
techniques for software debloating.

2.2 Related Work on Software Debloating

To address the issue of software bloat, various debloating techniques have been
proposed in the research literature. One prevalent approach involves using static
program analysis methods to identify unused or redundant code within compiled
software applications [43], followed by code transformations and synthesis to
remove these parts. Another approach employs dynamic analysis tools, which
instrument and execute the application using a workload to detect code areas
unnecessary for the workload execution [85], subsequently removing them. More
recently, researchers have suggested employing a combination of both static and
dynamic analysis techniques to enhance the accuracy and completeness of the
bloat detection process. The effectiveness of the debloating task is enhanced when
focusing on pinpointing code areas causing performance problems or consuming
excessive resources.

Software debloating is the process of automatically detecting and removing
software bloat across the software development lifecycle.

Despite the existence of debloating techniques, removing code bloat is an
active research field in software engineering. Automatic debloating software poses
three key challenges: 1) determining the location of the bloated parts [79], 2)
removing these parts effectively [86], and 3) ensuring that debloated artifacts
preserve the original behavior and provide useful features [85]. One major
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Figure 2.2: Overview of the methodology that we followed to find, categorize, and tabulate
the state-of-the-art research papers on software debloating.

incentive for debloating is the complexity of modern software applications [87],
which often consist of thousands or even millions of lines of code, leading to
increasing technical debt [67]. This technical debt contributes to code bloat as
developers may prioritize addressing urgent tasks or implementing new features
over refactoring and optimizing existing code, resulting in the accumulation
of redundant, unnecessary, or inefficient code segments [72]. Identifying and
removing bloated code in such large-scale applications can be a daunting task,
demanding significant time and resources from practitioners. Additionally, the
interdependencies between different parts of software applications can make it
difficult to remove code without breaking other parts of the software stack that
serves the application.

Software debloating is a widely studied topic in the software engineering
domain. In the the following, we present a comprehensive literature review on
this topic. To provide a solid foundation for understanding the current state of
research on software debloating, we first identify a list of papers covering the
area according to a set of specific criteria. In particular we focus on papers in
which a software debloating tool is proposed or an experiment to address software
bloat is performed. We have read the selected papers carefully to consolidate
a comprehensive knowledge of the field. Based on our analysis, we identified
three aspects that characterize the state-of-the-art on this topic, which we propose
as part of our contribution: (i) the objective or purpose of the debloating task,
(ii) the code analysis technique employed to detect and remove code bloat, and
(iii) the granularity at which the bloated code is removed. Our literature review
highlights the more relevant tools and techniques, as well as the granularity at
which bloat is addressed, based on this categorization.

Figure 2.2 illustrates the main steps of the methodology that we adopt in
order to find the most relevant related work as of early 2023. Throughout the
development of this thesis, we have been surveying the state-of-the-art, and now
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we aim to consolidate a comprehensive list of relevant work using the methodology
described as follows.

First Ê, we curated a list of keywords after careful consideration of the software
debloating research field. Then, we search for relevant research papers using these
keywords in three prominent databases: Scopus, WoS, and Google Scholar. Second
Ë, we filter the list of papers obtained based on our expertise in the software
debloating domain, ensuring that only the most relevant ones were included in
further analysis. After filtering, we manually organize the papers by author names,
venue of publication, title, and programming language used. Then, we categorize
the papers based on their main debloating purposes, code analysis techniques
employed, and granularity of the code removal approach. This categorization
process facilitates a comprehensive analysis of the papers and helps identify trends
and patterns among the previous contributions to this research field. Finally Ì,
we organize and tabulate the relevant resulting papers, presenting a thorough and
up-to-date overview of software debloating.

Table 2.1 presents the comprehensive list of research papers on software
debloating published between 2002 and 2022. The table encompasses all the
categories previously mentioned, offering a clear and detailed insight into the
research landscape. By following the methodology outlined earlier, we provide
an extensive overview of the pivotal research papers in this domain. We believe
that this compilation could serve as a valuable resource for researchers and
practitioners interested in the field of software debloating.

As a result of our analysis of papers published in various venues (column
VENUE), we observe that previous works on software debloating propose diverse
techniques, each tailored to a specific programming language (column PL). No-
tably, significant efforts have been dedicated to debloating C/C++ executable
binaries, while debloating approaches for programming languages other than
C/C++, Java, and JavaScript are almost nonexistent in the literature. In this
context, we observe that the debloating process operates on programs that have
already statically compiled and linked dependencies [88, 85], disregarding the
bloat that arises from other aspects of the software engineering lifecycle, e.g., from
the usage and reliance on package managers. We also note that the majority of
debloating efforts primarily focus on reducing program size, with less emphasis on
improving maintainability (column PURP.). This imbalance in focus leads to the un-
intended consequence of creating software that is smaller in size but still difficult to
maintain, update, and extend, ultimately hindering long-term software quality and
manageability. Most works predominantly rely on static analysis to detect unreach-
able code, such as [89], [63], and [64], which is the most frequently employed
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technique (column ANLYS.). Regarding debloating granularity (column GRAN.),
a considerable amount of work is dedicated to removing bloat at the applications’
fine-grain levels. However, we observe that there is a limited amount of research on
debloating code from third-party dependencies introduced across various stages of
the software development lifecycle. In the subsequent sections, we provide a more
detailed overview of the key research papers for each of the distinguishing cate-
gories: debloating purpose, code analysis technique, and debloating granularity.

Table 2.1: Categorization of research papers on software debloating (years 2002 – 2022).

REF. VENUE TITLE PL PURP. ANLYS. GRAN.

[90] FSE Cimplifier: automatically debloating containers C/C++ size dynamic Docker
containers

[91] TOSEM Guided feature identification and removal for
resource-constrained firmware

C/C++ size dynamic features

[92] FEAST CARVE: Practical security-focused software de-
bloating using simple feature set mappings

C/C++ size dynamic features

[93] GECCO Removing the Kitchen Sink from Software C/C++ size dynamic features

[94] SIGPLAN Automatic feature selection in large-scale
system-software product lines

C/C++ size dynamic features

[85] USENIX RAZOR: A Framework for Post-deployment Soft-
ware Debloating

C/C++ size dynamic instruc-
tions

[95] TECS Honey, I shrunk the ELFs: Lightweight binary
tailoring of shared libraries

C/C++ size hybrid libraries

[96] SAC Automated software winnowing C/C++ size static functions

[97] DIMVA BinTrimmer: Towards static binary debloating
through abstract interpretation

C/C++ size static instruc-
tions

[98] ICSE Perses: Syntax-guided program reduction C/C++ size static tokens

[42] FMICS Wholly!: a build system for the modern software
stack

C/C++ size, perfor-
mance

dynamic packages

[99] CCS Effective program debloating via reinforcement
learning

C/C++ size, perfor-
mance

static features

[100] EuroSec Configuration-driven software debloating C/C++ size, security dynamic features

[79] ASE TRIMMER: application specialization for code
debloating

C/C++ size, security dynamic features

[101] FEAST TOSS: Tailoring online server systems through
binary feature customization

C/C++ size, security dynamic features

[102] CO-
DASPY

Code specialization through dynamic feature
observation

C/C++ size, security dynamic instruc-
tions

[103] USENIX LIGHTBLUE: Automatic profile-aware debloat-
ing of bluetooth stacks

C/C++ size, security static features

[88] USENIX Debloating software through piece-wise compi-
lation and loading

C/C++ size, security static features

[104] DTRP Large-scale debloating of binary shared libraries C/C++ size, security static functions

[105] ASPLOS One size does not fit all: security hardening
of mips embedded systems via static binary de-
bloating for shared libraries

C/C++ size, security static instruc-
tions

[106] ASIACCS Pacjam: Securing dependencies continuously
via package-oriented debloating

C/C++ size, security static packages

[107] NIER Program debloating via stochastic optimization C/C++ size, security static statements

[108] ACSAC Nibbler: debloating binary shared libraries C/C++ size, security static libraries

[109] PLDI Blankit library debloating: Getting what you
want instead of cutting what you dont

C/C++ size, security,
performance

dynamic features,
functions

Continued on next page
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Table 2.1: Categorization of research papers on software debloating (years 2002 – 2022). (Continued)

[53] TSE Trimmer: An automated system for
configuration-based software debloating

C/C++ size, security,
performance

hybrid instruc-
tions

[110] CCS Binary control-flow trimming C/C++ size, security dynamic features

[111] USENIX DECAF: Automaticlasses, adaptive de-bloating
and hardening of COTS firmware

C/C++ size, security static instruc-
tions

[112] FSE Cachetor: Detecting cacheable data to remove
bloat

Java performance dynamic collections

[113] ISMM A bloat-aware design for big data applications Java performance dynamic objects

[44] ECOOP Reuse, recycle to de-bloat software Java performance dynamic objects

[114] PLDI Detecting Inefficiently-Used Containers to Avoid
Bloat

Java performance hybrid objects

[115] OOPSLA Combining concern input with program analysis
for bloat detection

Java performance static statements

[78] TSE Xdebloat: Towards automated feature-oriented
app debloating

Java size dynamic features

[116] MOBILE-
Soft

Identifying features of android apps from exe-
cution traces

Java size dynamic features

[117] SCP Slimming a Java virtual machine by way of cold
code removal and optimistic partial program
loading

Java size dynamic JVMs

[48] FSE JShrink: In-Depth Investigation into Debloating
Modern Java Applications

Java size hybrid functions,
methods,
classes

[55] FSE Binary reduction of dependency graphs Java size static classes

[118] ISSRE RedDroid: Android application redundancy cus-
tomization based on static analysis

Java size static classes,
methods

[89] TOPLAS Practical extraction techniques for Java Java size static functions,
methods,
classes

[63] COMP-
SAC

JRed: Program customization and bloatware
mitigation based on static analysis

Java size, security,
maintenance,
performance

static classes,
methods

[119] CCS Dissecting Residual APIs in Custom Android
ROMs

Java size, security static APIs

[70] SIEP Piranha: Reducing feature flag debt at Uber Java size, mainte-
nance

static features

[64] HASE Feature-based software customization: Prelimi-
nary analysis, formalization, and methods

Java size, security static features

[120] WWW Unnecessarily Identifiable: Quantifying the fin-
gerprintability of browser extensions due to
bloat

JS size dynamic browser
extensions

[80] IST Slimming JavaScript applications: An approach
for removing unused functions from JavaScript
libraries

JS size hybrid functions

[121] TSE Evolving JavaScript code to reduce load time JS size static source
code

[122] TSE Momit: Porting a JavaScript interpreter on a
quarter coin

JS size, perfor-
mance

dynamic features

[46] EMSE Stubbifier: debloating dynamic server-side
JavaScript applications

JS size, security,
performance

hybrid functions

[123] CCS Slimium: debloating the chromium browser
with feature subsetting

JS size, security static features

[124] USENIX Mininode: Reducing the Attack Surface of
Node.js Applications

JS size, security static files

[125] EISA JSLIM: Reducing the known vulnerabilities of
JavaScript application by debloating

JS size, security static functions

[126] ACSAC DeView: Confining Progressive Web Applica-
tions by Debloating Web APIs

JS size, security dynamic APIs

[127] OOPSLA Detecting redundant CSS rules in HTML5 appli-
cations: a tree rewriting approach

CSS maintenance static statements
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Software
debloating
purposes

Size
Q: Is it possible reducing the size of
code while preserving the original

functionalities?

Performance
Q: Is it possible removing

unnecessary functionalities to make
software faster?

Maintenance
Q: Is it possible removing code

bloat to make software more easy to
change?

Security
Q: Is it possible decreasing the

attack surface through the removal
of unnecessary code?

Figure 2.3: Illustration of the four main purposes for software debloating and their respective
relevant research questions.

2.2.1 Purposes for debloating

We found that there are four key objectives of debloating that are widely ac-
knowledged in the software engineering community: reducing applications’ size,
improving their performance, enhancing their security, and making software easier
to maintain and update. Figure 2.3 depicts these objectives along with their
corresponding critical research questions. In the following sections, we explore
each of these purposes in detail.

Debloating for code size reduction

A primary goal of debloating software is to minimize its size. Bloated software can
consume substantial disk space and bandwidth, posing challenges for users with
limited storage or slow internet connections. By removing unnecessary code and
other resources, debloated software artifacts can be accommodated on smaller
devices and transferred more swiftly, resulting in improved download and upload
times for users. From an engineering standpoint, smaller applications require
fewer build resources, potentially reducing deployment costs and mitigating build
errors [128].

Significant research effort has been directed towards reducing software size by
removing unused API members, as there is evidence that a considerable proportion
of API members are not widely used [14], e.g., many classes, methods, and fields of
popular Java libraries are provided but they are not used in practice [129]. Seminal
work by Tip et al. [89] presents a set of techniques for reducing the size of Java
applications. They propose a uniform approach for modeling dynamic language
features and supplying additional user input through a modular specification
language, reducing the class file archives of Java programs to 37.5% of their
original size. Pham et al. [130] implement a bytecode-based analysis tool to learn
about the actual API usage of Android frameworks. The empirical evaluation
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based on 200K Android apps shows that most APIs usages are confined to a
limited set of functionalities, which can be effectively learned and predicted to
offer highly accurate API recommendations. Hejderup [131] study the actual
usage of modules and dependencies in the Rust ecosystem and propose PRÄZI, a
tool for constructing fine-grained call-based dependency networks for the Cargo
package manager [132]. Using PRÄZI, the authors found that packages call only
40% of their resolved dependencies, which emphasizes the need of reducing the
size of those dependencies. Lämmel et al. [133] perform a similar large-scale
study on API usage based on the migration of Abstract Syntax Trees (AST) code
segments. Other studies have focused on understanding how developers use
APIs on a daily basis [66, 134]. Some of the motivations include improving API
design [135], reducing the amount of dependency code [14], and increasing
developers’ productivity [136]. Agadakos et al. [108] propose NIBBLER: a system
that identifies and erases unused functions within shared libraries. NIBBLER works
in tandem with defenses like continuous code re-randomization and control-flow
integrity, enhancing them without incurring additional runtime overhead. The
authors developed and tested a prototype of NIBBLER on x86-64 Linux. NIBBLER

reduces the size of shared libraries and the number of available functions by up to
56% and 82%, respectively in a set of real-world programs.

Beyond APIs, the reduction of Docker container sizes has the advantage of
decreasing the amount of data that needs to be transferred during applications’
deployment or scaling, ultimately leading to lower network traffic and associated
costs. In this context, the work of Rastogi et al. [90] specifically targets container
debloating. They introduce a tool called CIMPLIFIER, designed to address bloat
concerns in Docker containers by utilizing user-defined constraints. CIMPLIFIER

partitions containers into streamlined, isolated units that communicate only when
necessary and include solely the essential resources for their functionalities. Eval-
uations performed on popular DockerHub containers indicate that CIMPLIFIER not
only preserves the original functionality but also significantly reduces image sizes
by up to 95%, efficiently processing even large containers in under 30 seconds.

Insights on Debloating for Code Size Reduction

Despite significant progress in software debloating for reducing code size, there
is still ample opportunity for further research and development in this area.
For example, exploring innovative debloating techniques for a broader range of
programming languages and focusing on debloating dependencies can lead to
more effective and efficient size reductions across various software ecosystems.
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Debloating for performance improvement

Debloating software not only reduces size but also enhances its performance.
Bloated software frequently includes redundant or unnecessary code, leading to
slower execution due to increased resource consumption. For instance, in Java,
class initializers might create unused objects, resulting in higher memory usage
and unnecessary overhead at runtime [137]. Eliminating such language specific
code initializers through debloating could streamline Java applications, enabling
faster execution times and improving overall performance, ultimately benefiting
users.

Runtime bloat could significantly impair the performance and scalability of soft-
ware systems. Xu and Rountev [114] introduce static and dynamic analysis tools
for identifying inefficient container usage in Java programs. Their experiments
reveal notable performance optimization opportunities for statically-identified
containers, particularly those with high memory allocation frequency at runtime.
Bhattacharya et al. [44] concentrate on detecting bloat arising from the tem-
porary creation of containers and String objects within loops and propose a
source-to-source transformation for efficient object reuse. The proposed method
substantially reduces temporary object allocations and execution time, especially
in programs with high churn rates or memory-intensive demands. Bhattacharya et
al. [115] suggest leveraging feature information in program analysis to estimate
the propensity to execute bloated code chunks in Java programs with optional
concerns. The proposed approach enables the identification of specific statements
likely causing bloat, which reveals the negative impact of optional features on
runtime performance.

A large body of debloating techniques focuses on reducing applications build
time. Celik et al. [138] present MOLLY, a build system to lazily retrieve dependen-
cies in Continuous Integration (CI) environments and reduce build time. They
show that MOLLY can speed-up the build time 45% on average compared to the
standard MAVEN build pipeline for a set of studied projects. Yu et al. [139] in-
vestigated the presence of unnecessary dependencies in header files of large C
projects. They proposed a graph-based algorithm to statically remove unused code
by pre-processing dependencies at the program units level, resulting in minimized
build time. Nguyen and Xu [112] propose a novel runtime profiling tool called CA-
CHETOR, which uses dynamic dependence profiling and value profiling to identify
and report operations that generate identical data values, addressing the runtime
bloat issues affecting modern object-oriented software by identifying optimization
opportunities for performance improvement. Gelle et al. [42] present WHOLLY,
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a tool designed to achieve reproducible and verifiable builds of optimized and
debloated software that runs uniformly on traditional desktops, the cloud, and
IoT devices. WHOLLY uses the clang compiler to generate LLVM bitcode for all
produced libraries and binaries to allow for whole program analysis, specialization,
and optimization. Furthermore, it uses Linux containers to ensure the integrity
and reproducibility of the build environment.

Insights on Debloating for Performance

Although various techniques have been developed to reduce runtime bloat and
optimize build times, further research is needed to explore new methods and en-
hance existing ones for even better performance gains. By continuing to investi-
gate debloating strategies, the software engineering community can effectively
tackle performance-related challenges, ensuring faster, more efficient software
and building systems that ultimately benefit users and developers alike.

Debloating for security enhancement

Bloated software can contain hidden vulnerabilities that hackers can exploit to
gain unauthorized access to systems and steal sensitive data. By removing unnec-
essary code and eliminating redundant features, software debloating can reduce
its attack surface and improve its overall security. For example, the “Heartbleed”
vulnerability [140], discovered in 2014 in the OpenSSL cryptographic software
library, was caused by a buffer over-read vulnerability in OpenSSL’s implementa-
tion of the Transport Layer Security (TLS) protocol’s heartbeat extension. Using
software debloating techniques to remove unused or rarely used features, such
as the heartbeat extension [105], can reduce the attack surface and make the
codebase easier to audit and more secure for its clients.

Significant work has focused on decreasing the attack surface of program bina-
ries compiled to LLVM bitcode. Brown and Pande [92] propose CARVE, a simple
yet effective security-focused debloating technique that utilizes static source code
annotation to map software features, introduces debloating with replacement
and removing vulnerabilities in four network protocol implementations across
12 scenarios. CARVE eliminates the need for advanced software analysis during
debloating and reduces the overall level of technical sophistication required by
the user when compared with other tools. Ghaffarinia and Hamlen [110] in-
troduce a new method for automatically reducing the attack surfaces of binary
software by removing unwanted or unused features, even in the absence of formal
specifications or metadata, through a combination of runtime tracing, machine
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learning, in-lined reference monitoring, and contextual control-flow integrity
enforcement, resulting in low overhead and successful elimination of zero-day
vulnerabilities. Koo et al. [100] propose a software debloating approach to miti-
gate the proliferation of code reuse attacks. The proposed debloating technique
reduces the number of instruction sequences that may be useful for an attacker
and eliminates potentially exploitable bugs. This approach is configuration-driven
and removes feature-specific code that is exclusively needed only when certain
configuration directives are specified, which are often disabled by default. The
technique identifies libraries solely needed for a particular functionality and maps
them to certain configuration directives, so feature-specific libraries are not loaded
if their corresponding directives are disabled.

The prevailing goal of reducing the number of gadgets (a.k.a. features) avail-
able in a software package to reduce its attack surface and improve security has
received significant interest from researchers and practitioners [88]. Decreasing
the number of gadgets available in a software package reduces its attack surface
and makes mounting gadget-based code reuse exploits, such as those based on
return-oriented programming (ROP), more difficult for an attacker [53]. Brown
and Pande [45] propose new metrics based on quality rather than quantity for
assessing the security impact of software debloating. They show evidence that the
process of software debloating can effectively reduce gadget counts at high rates.
However, it may not effectively constrain an attacker’s ability to fabricate an exploit.
Furthermore, in certain situations, the reduction in gadget count may obscure
the introduction of new quality gadgets, leading to a worsening of security rather
than an improvement, such as in smartphone applications [141]. Koishybayev
and Kapravelos [124] discuss the use of JavaScript as a programming language
for both client-side and server-side logic, enabled by Node.js and its package
manager, NPM. The paper introduces MININODE, a static analysis tool for Node.js
applications that measures and removes unused code and dependencies, which
can be integrated into the building pipeline of Node.js applications to produce
applications with significantly reduced attack surface. MININODE was evaluated by
analyzing 672K Node.js applications, identifying 1,660 vulnerable packages, and
successfully removing 2,861 of these packages while still ensuring builds succeed.
More recently, Oh et al. [126] propose a tool called DEVIEW for reducing the
attack surface of progressive web applications (PWAs) by blocking unnecessary
but accessible web APIs. DEVIEW tackles PWA debloating challenges through
record-and-replay web API profiling and compiler-assisted browser debloating,
maintaining original functionality and preventing 76.3% of known exploits on
average.
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Insights on Debloating for Security Enhancement

There remains a substantial amount of work to be done on debloating for
security purposes, particularly in addressing vulnerabilities arising from third-
party dependencies, which are known sources of security issues [142]. As
the research has shown, there is potential for further exploration in this area,
including enhancing security by mitigating gadget-based code reuse exploits,
refining metrics for assessing the impact of debloating on long-term security,
and improving the safety of software that relies heavily on code reuse.

Debloating for maintenance

Bloated software can be more difficult to maintain and update, particularly if it
contains redundant or poorly designed code. Debloating software projects can
improve maintainability resulting in better overall software quality and developers
satisfaction [143]. For example, current web applications include a large set
of JavaScript files, some of which contain code that is never executed. Part of
this code may have been added during the development process, but it is no
longer needed for the application to function correctly [126]. Removing these
unnecessary JavaScript files would decrease the size of the application, and with
less code to worry about, developers can more easily understand and modify
the codebase, which can reduce the amount of time it takes to make changes or
fix bugs. In addition, debloated software can also lead to a more reliable and
stable application because there are fewer opportunities for bugs or errors to be
introduced [144]. Smaller codebases are also easier to test and can have faster
testing times, which can lead to faster release cycles and more frequent updates
and deployments.

There is scarce research work on the use of debloating for maintainability
purposes. Jiang et al. [63] use a set of well-known code complexity metrics,
including Chidamber and Kemerer (CK) object-oriented metrics [145], to assess the
impact of debloating on code quality. They found that debloating can help reduce
code complexity and increase code quality, but the degree of these improvements
depends on the program’s design and the nature of the application functions.
Hague et al. [127] introduce an approach to detect redundant CSS rules in
HTML5 applications by using an abstraction based on monotonic tree-rewriting,
establishing the precise complexity of the problem, and proposing an efficient
reduction to an analysis of symbolic push-down systems that yields a fast method
for checking redundancy in practice, with demonstrated efficacy. They show
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that code complexity is significantly reduced. Ramanathan et al. [70] presents
PIRANHA, an automated code refactoring tool that generates differential revisions
to remove code related to stale feature flags. PIRANHA analyzes the program’s
ASTs to generate refactoring suggestions and assigns the diff to the author of the
flag for further processing before the application is landed. This tools has been
implemented in multiple apps within Uber for removing unnecessary features in
code written in Objective-C, Java, and Swift.

Insights on Debloating for Maintenance

Despite the existing evidence that debloating can improve code quality, reduce
its complexity, and facilitate faster release cycles, there remains a significant
need for more research to better understand its impact on maintainability. By
further investigating debloating techniques and their applications, the software
engineering community can work towards producing more maintainable, reli-
able, and efficient software systems that lead to higher user satisfaction and
better overall software quality.

2.2.2 Code analysis techniques for debloating

In the last few years, a range of techniques has been developed by researchers
to detect code bloat. Detecting code bloat is a challenging task as it requires the
identification of unnecessary code or code that is almost never executed, which
may be intertwined with necessary code segments that are often executed. Code
bloat may be caused by various factors, such as excessive code reuse, lack of
refactoring, or inadequate configurations, which makes it difficult to pinpoint a
specific source of bloat. Existing bloat detection techniques rely on static analysis,
dynamic analysis, or a hybrid approach that utilizes both techniques. Static
analysis is useful for detecting potential sources of code bloat by analyzing the
source code without actually executing it [146]. However, static analysis is more
conservative and may fail to identify certain types of code bloat, such as those
that are only apparent under specific conditions [147, 148, 149, 47]. On the other
hand, dynamic analysis techniques are more aggressive, and the accuracy of the
debloating heavily depends on the completeness of the workload employed.

Listing 2.1 shows a code example illustrating the challenges of using static
and dynamic analysis for debloating, specifically when dealing with the dynamic
features of the Java programming language. In this example, the method named
unusedMethod is never called (line 31), and it could be safely detected and re-
moved by debloating techniques that rely on static analysis. However, static analy-
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1 import java.lang.reflect.Method;
2 import java.util.Scanner;
3
4 public class Foo {
5 public static void main(String[] args) {
6 Scanner scanner = new Scanner(System.in);
7 try {
8 String className = "Foo";
9 String methodName = "greet";

10 String personName = scanner.next();
11 // Dynamically loading a class
12 Class<?> clazz = Class.forName(className);
13 // Dynamically invoking a method using reflection
14 Method method = clazz.getDeclaredMethod(methodName, String.class);
15 method.invoke(null, personName);
16 } catch (Exception e) {
17 // Catch the exception
18 }
19 }
20
21 // This method is invoked using reflection
22 public static void greetAlice(String name) {
23 if (name.equalsTo("Alice"){
24 System.out.println("Hello, " + name);
25 } else {
26 System.out.println("Sorry, I don’t know you");
27 }
28 }
29
30 // This method is never called and could be removed by debloating
31 public static void unusedMethod() {
32 System.out.println("This method is never used.");
33 }
34 }

Listing 2.1: Example of the challenges when using static and dynamic program analysis
techniques to detect code bloat in a Java program that uses reflection.

sis techniques struggle to accurately identify the dependencies and relationships
between classes and methods [150] when reflection is used [151]. For example,
the class Foo is loaded via reflection (line 12) and the method greetAlice is
invoked using reflection (line 15). Traditional static analyzers have difficulty
identifying the relationship between this method and its invocation, leading to
potential debloating errors. On the other hand, dynamic analysis involves the
execution of the code and can identify instances of code bloat that appear only
under specific conditions. Dynamic analysis techniques rely on the completeness
of the workload or test suite to identify which parts of the code are actually used
during execution. However, if the test suite or workload does not cover all possible
use cases [152], there is a risk that the debloating process might remove code
that is actually required in certain scenarios, leading to application failures when
removing too much code. In this case, the value of the variable personName de-
pends on the user-provided input (line 10), and therefore it is not possible to infer
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which branch of the if-else statement will be executed (line 23) in all possible
cases. Notice that if the user-provided workload is the String Alice then line 24
is executed, otherwise line 26 is executed instead. Dynamic program analysis
may be computationally expensive as it requires executing the code, and may not
cover all code paths. Combining the dynamic and static analysis approaches can
improve the accuracy and efficiency of code debloating efforts.

It is worth noting that, while the Java compiler performs optimizations during
compilation, it typically does not remove unused methods at this stage [137]. The
Java Virtual Machine (JVM) and its Just-In-Time (JIT) compiler conduct more
extensive optimizations at runtime, such as inlining methods and eliminating
dead code. Nevertheless, these runtime optimizations usually do not remove
unused methods from the generated class files or JAR files. As a result, although
unused classes and methods may not impact the performance of the running
application, they still add to the size of the compiled binary files [153]. To
address this, debloating techniques and other post-compilation optimizations can
be utilized to remove unused code, minimize the binary size, and enhance the
overall maintainability of the codebase.

Debloating using static analysis

Using static analysis for debloating involves examining the source code of a
software application to identify potential sources of code bloat. Sources of bloat
include unused variables, functions, and classes, as well as code that is redundant
or can be simplified. Static analysis tools use a range of algorithms and heuristics
to identify code that can be removed or refactored, and some tools can even
suggest alternative implementations that can improve performance. An advantage
of static analysis techniques lies in their scalability and performance, as there is
no need to execute the code, which is an expensive task (e.g., when running tests
or building artifacts).

Most debloating techniques for C/C++ are built upon static analysis and are
conservative in the sense that they focus on detecting unreachable code (i.e.,
sections of a program’s code that can never be executed during the program’s
execution). Redini et al. [97] propose BINTRIMMER, a tool to perform static
program debloating on binaries. The authors propose a novel abstract domain
technique, based on abstract interpretation, to improve the soundness of static
analysis to reliably perform program debloating. According to the evaluation,
BINTRIMMER is 98% more precise than the related work. Malecha et al. [96]
propose “winnowing”, a static analysis and code specialization technique that uses
partial evaluation. The process preserves the normal semantics of the original
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program, that is, any valid execution of the original program on specified inputs is
preserved in its winnowed form. Invalid executions, such as those involving buffer
overflows, may be executed differently. Biswas et al. [102] propose ANCILE, a code
specialization technique that leverages fuzzing (based on user-provided seeds) to
discover the code necessary to perform the functions required by the user.

In the Java ecosystem, Jiang et al. [63] propose JRED, a static analysis tool
built on top of the SOOT framework to automatically detect unused code from
both Java applications and the JRE. Additionally, the same authors present a novel
approach [64] for customizing Java bytecode through static dataflow analysis and
enhanced programming slicing, enabling developers to tailor Java programs based
on users’ requirements or remove redundant features in legacy projects. In the
context of Android applications, Jiang et al. [118] conducts a comprehensive study
of software bloat, categorizing it into compile-time and install-time redundancy,
and proposes a static analysis-based approach for effectively identifying sources of
code bloat in Android applications.

Insights on Debloating using Static Analysis

Debloating using static analysis has proven to be an effective approach for
debloating software applications, providing scalability and performance ad-
vantages due to the absence of code execution. While existing tools such as
JRED, BINTRIMMER, and ANCILE have demonstrated success in debloating Java
and C/C++ applications, further research and development of debloating
techniques are necessary to expand their applicability and effectiveness. For
example, there is still room for improvement and innovation in developing
novel tools that not only address code bloat in compiled applications but also
tackle bloat issues related to configuration files and third-party dependencies.

Debloating using dynamic analysis

Using dynamic analysis for detecting code bloat involves running a software appli-
cation and monitoring its behavior to identify sources of code bloat. For example,
this technique can be used to identify code that is rarely executed, code that
consumes excessive resources, or code that can be optimized to reduce its size.
Debloating based on dynamic analysis techniques is more aggressive and could
remove reachable code [154], i.e., the parts of an application that can be reached
statically but that may not be executed at runtime, within a specific period, in a
production environment. Dynamic analysis tools use a range of profiling and trac-
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ing techniques to monitor the execution of a software application, and some tools
can even automatically generate test cases to exercise code that is rarely executed.

In recent years, there has been a growing interest in developing debloating tech-
niques for program specialization using dynamic analysis. These techniques aim
to create smaller, specialized versions of programs that consume fewer resources
and reduce the attack surface Azad et al. [71]. However, capturing complete and
precise dynamic usage information for debloating is challenging, especially at
scale, due to dynamic language features such as type-induced dependencies [155],
dynamic class loading [149], and reflection [47]. Debloating techniques based
on dynamic analysis have been applied to various contexts, ranging from C com-
mand line programs [103] and JavaScript frameworks [80] to fully containerized
applications [90]. Sun et al. [98] propose PERSES, an approach that reduces
programs by exploiting their formal syntax and focuses on smaller, syntactically
valid variants, while Heo et al. [99] presents a C program reducer based on the
syntax-guided Hierarchical Delta Debugging algorithm, which uses reinforcement
learning to aggressively remove redundant code and improve processing time.

Dynamic analysis-based debloating has led to several novel approaches, such
as the work by Landsborough et al. [93], which presents two distinct methods.
The first approach employs dynamic tracing to safely remove specific program
features but is limited to removing code reachable in a trace when an undesirable
feature is enabled. The second approach utilizes a genetic algorithm to mutate a
program until a suitable variant is found, potentially removing any non-essential
code for proper execution, but possibly breaking program semantics unpredictably.
Additionally, Sharif et al. [79] proposes TRIMMER, a tool using dynamic analy-
sis to debloat applications based on user-provided configuration data, offering
application specialization benefits by eliminating unused functionalities within a
user-defined context. To further mitigate the construction of malicious programs,
Porter et al. [109] introduces a demand-driven approach to reduce dynamically
linked code surfaces by loading only the necessary set of library functions at
each call site within the application at runtime, leveraging a decision-tree-based
predictor and optimized runtime system.
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Insights on Debloating using Dynamic Analysis

Debloating using dynamic analysis has demonstrated potential in generat-
ing specialized, efficient programs and reducing attack surfaces, leveraging
runtime information. However, scalability challenges and the reliance on com-
prehensive workloads covering all use cases present significant barriers to its
widespread adoption. To improve these debloating techniques, research should
also concentrate on identifying code bloat in third-party dependencies, which
frequently contribute to increased application size and complexity.

Debloating using hybrid techniques

Using a hybrid approach for debloating involves combining both static and dynamic
analysis techniques to identify and remove code bloat. This approach typically
starts by executing static analysis to identify potential sources of code bloat and
then using dynamic analysis to refine the code removal phase or validate the
debloating results. Hybrid approaches for debloating can be more effective than
using either static or dynamic analysis alone, as they strike a balance between the
aggressiveness of dynamic analysis and the conservative advantages of static anal-
ysis. This allows for more comprehensive identification and removal of code bloat.

Bruce et al. [48] develop an end-to-end bytecode debloating framework called
JSHRINK. It augments traditional static reachability analysis with dynamic profiling
and type dependency analysis and renovates existing bytecode transformations
to account for new language features in modern Java. The authors highlight
several nuanced technical challenges that must be handled properly and examine
behavior preservation of debloated software via regression testing. Qian et al.
[85] introduces a debloating framework called RAZOR, which aims to reduce
the size of bloated code in deployed binaries without requiring access to the
program source code. RAZOR uses control-flow heuristics to infer complementary
code necessary to support user-expected functionalities and generates a functional
program with minimal code size. The framework has been evaluated on commonly
used benchmarks and real-world applications, showing that it can reduce over 70%
of code from bloated binaries without introducing new security issues, making it a
practical solution for debloating real-world programs. Quach et al. [88] introduce
a generic inter-modular late-stage debloating framework. It combines static
(i.e., compile-time) and dynamic (i.e., load-time) approaches to systematically
detect and automatically eliminate unused code from program memory. This can
be thought of as a runtime extension to dead code elimination. Unused code
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is identified and removed by introducing a piece-wise compiler that not only
compiles code modules (executables, shared resources, and static objects) but
also generates a dependency graph that retains all compiler knowledge on which
function depends on what other function(s).

Insights on Debloating using Hybrid Techniques

Debloating using hybrid approaches that combine static and dynamic analysis
techniques for debloating offer a balance between the aggressive nature of
dynamic analysis and the conservative benefits of static analysis. This can lead
to more comprehensive identification of code bloat. There is a growing need
to develop tools utilizing this approach and evaluate their effectiveness on
real-world software applications to further enhance the soundness of static
analysis for debloating purposes.

2.2.3 Granularity of debloating

One important aspect of debloating is the granularity at which it is performed. This
ranges from coarse-grained debloating of entire features or modules to low-level
debloating of individual program instructions or statements (as illustrated in Fig-
ure 2.4). The effectiveness of debloating at different levels of granularity depends
on the specific software application and the goals of the debloating process. For
example, coarse-grained debloating can be effective in removing a large amount
of software bloat in an application but it may also remove useful functionalities
for some particular users. On the other hand, fine-grained debloating can yield
removing more targeted code pieces but it could be time-consuming and more
challenging to implement. Multiple studies have been performed at different
debloating granularities. Overall, care must be taken when removing code at each
granularity level, as excessive removal may have unintended consequences that
could negatively impact the program’s behavior [156]. We discuss below the three
main levels: level debloating, fine-grained, and coarse-grained debloating.

Debloating at low-level

The lowest level of granularity in debloating is instruction-level debloating, which
involves identifying and removing individual source code pieces or program state-
ments that are not essential to the core functionality of the software application.
For instance, a particular instruction may have been added during the develop-
ment process for debugging purposes or to accommodate a particular hardware
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Figure 2.4: Granularity of debloating techniques and their impact according to the amount of
bloated code removed.

architecture, but may not be necessary for the program to function properly. By
removing such instructions, the size of the deployed code is reduced, which could
result in faster execution times and improved performance. Overall, low-level
debloating is challenging to implement due to the interdependencies between the
different components of the software stack.

Wagner et al. [117] present a method to mitigate the bloatware problem in
“always connected” embedded devices. Specifically, by storing the library code
in a remote server. The instructions that are needed will be downloaded on
demand. In addition, by applying some more sophisticated analysis, some library
code can be downloaded in advance before they are actually executed to improve
runtime performance. Morales et al. [122] proposes a multi-objective optimization
approach, called MOMIT, to miniaturize JavaScript apps to run on IoT devices
with limited memory, storage, and CPU capabilities, which reduces code size,
memory usage, and CPU time while allowing the apps to run on additional
devices. Xin et al. [107] propose a general approach that allows for formulating
program debloating as a multi-objective optimization problem. The approach
defines a suitable objective function, so as to be able to associate a score to every
possible reduced program, and tries to generate an optimal solution (i.e. one that
maximizes the objective function). According to Ziegler et al. [95], in the domain
of embedded systems, there is a significant shift towards adopting commodity
hardware and moving away from special-purpose control units in industrial sectors
such as the automotive industry and avionics. As a result, there is a consolidation
of heterogeneous software components to run on commodity operating systems
during this transition. They propose an approach towards lightweight binary
tailoring.

In addition, some studies have also examined debloating at the level of control
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flow and data flow techniques in order to generate smaller program variants [110,
115, 157, 158]. Control-flow debloating involves identifying and removing redun-
dant control structures such as loops or conditionals, while data-flow debloating
involves identifying and removing redundant data structures or data accesses.
Although these approaches have proven to be highly effective in reducing software
bloat and improving performance, they may require more sophisticated tools and
validation techniques.

Insights on Debloating at the Low Level

Debloating at low-level involves identifying and removing individual source
code pieces or program statements that are not essential to the core func-
tionality of the software application. Despite existing approaches, there is a
growing need for the development of more sophisticated tools that can tackle
debloating challenges at the level of control flow and data flow techniques in
order to generate smaller program variants. By creating and evaluating such
tools on real-world software applications, researchers can continue to improve
the efficiency and performance of software systems while reducing bloat.

Debloating at the fine-grained level

At a finer level of granularity, debloating can be performed at the level of API
members, such as classes, functions, or variables. This approach involves identify-
ing and removing entire classes or methods that are not used or are redundant
within the software application. Fine-grained debloating can be more effective
than lower-grained debloating in reducing software bloat, but it can also be more
time-consuming and require more manual effort.

Tip et al. [89] explore extraction techniques, such as removing unreachable
methods, inlining method calls, and transforming the class hierarchy to reduce
application size, and introduces a uniform approach that relies on a modular
specification language called MEL for supplying additional user input for model-
ing dynamic language features and extracting software distributions other than
complete applications, while discussing associated issues and challenges with
embedded systems applications extraction. Vázquez et al. [80] define the notion
of Unused Foreign Function (UFF) to denote a JavaScript function contained in de-
pendent libraries that are not needed at runtime. Also, they propose an approach
based on dynamic analysis that assists developers to identify and remove UFFs
from JavaScript bundles. The results show a reduction of JavaScript bundles of
26%. Also for JavaScript, Turcotte et al. [46] present a fully automatic technique
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that identifies unused code by constructing static or dynamic call graphs from
the applications tests and replacing code deemed unreachable with either file- or
function-level stubs. If a stub is called, it will fetch and execute the original code
on-demand, thus relaxing the requirement that the call graph be sound. Kalhauge
and Palsberg [55] presents a general strategy for reducing dependency graphs
in input such as C#, Java, and Java bytecode, which has been a challenge for
delta debugging. The authors present a tool called J-REDUCE, which achieves
more binary reduction and is faster than delta debugging on average, enabling
the creation of short bug reports for Java bytecode decompilers.

Insights on Debloating at the Fine-Grain Level

Most debloating approaches have focused on fine-grained debloating. There
is a growing need to improve the application of these techniques to other
programming languages and software ecosystems, as well as to debloat code
elements from third-party dependencies. To address this, researchers could
explore new strategies and tools that can effectively streamline dependency
graphs, while ensuring compatibility with different programming languages
and build systems.

Debloating at the coarse-grained level

At the coarsest level of granularity, debloating can be performed at the level of
entire features or modules. This approach involves identifying and removing
entire code segments that are not essential to the core functionality of the software
application. Coarse-grained debloating can be effective in reducing software bloat
and improving performance, but it may also lead to the removal of useful or
important functionalities.

Ruprecht et al. [94] propose an automated approach for d tailoring the sys-
tem software for special-purpose embedded systems by completely removing
unnecessary features. The goal is to optimize functionality and reduce mem-
ory usage, as exemplified by the significant memory savings (between 15% and
70%) achieved in tailored Linux kernels for Raspberry Pi and Google Nexus 4
smartphones. Rastogi et al. [90] propose a technique for debloating application
containers running on Docker. They decompose a complicated container into
multiple simpler containers with respect to a given user-defined constraint. Their
technique is based on dynamic analysis to obtain information about application
behaviors. The evaluation on real-world containers shows that this approach
preserves the original functionality, leads to a reduction of the image size of up
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to 95%, and processes even large containers in under thirty seconds. Chen et
al. [101] presents an approach called TOSS that automates the customization of
online servers and software systems by identifying desired code using program
tracing and tainting-guided symbolic execution, and removing redundant features
through static binary rewriting to create a customized program binary. The ap-
proach was evaluated on MOSQUITTO, and it successfully created a functional
program binary with only desired features, resulting in a significant reduction of
the potential attack surface.

Bu et al. [113] propose a bloat-aware design paradigm towards the develop-
ment of efficient and scalable Big Data applications in object-oriented GC-enabled
languages. It points out that the negative impact on performance caused by
bloatware has been significant on software specifically designed to handle large
amounts of data, such as GIRAPH and HIVE. Qian et al. [123] present SLIMIUM, a
debloating framework for the web browser CHROMIUM that harnesses a hybrid
approach for fast and reliable binary instrumentation. The main idea behind
SLIMIUM is to determine a set of features as a debloating unit on top of a hybrid
(i.e., static, dynamic, and heuristic) code analysis, and then leverage feature sub-
setting to code debloating. Starov et al. [120] investigate to what extent the page
modifications that make browser extensions fingerprintable are necessary for their
operation. By analyzing 58,034 browser extensions from the Google Chrome App
Store, they discovered that 5.7% of them were unnecessarily identifiable because
of extension bloat. Agadakos et al. [104] present NIBBLER: a system that identifies
and erases unused functions within dynamic shared libraries. NIBBLER works in
tandem with defenses like continuous code re-randomization and control-flow
integrity, enhancing them without incurring additional runtime overhead. NIBBLER

reduces the size of shared libraries and the number of available functions.

Insights on Debloating at the Coarse-Grain Level

Debloating at the coarse-grained level has shown promise in reducing software
bloat and improving performance. However, this approach may also lead to the
removal of useful or important functionalities. Future work should focus on
refining coarse-grain debloating techniques to maintain critical features while
still optimizing software systems, exploring the application of these methods to
various programming languages and software ecosystems, and evaluating their
effectiveness in real-world scenarios.
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Table 2.2: Comparison of existing Java debloating tools and techniques. TARGET is the type
of artifact considered for debloating: bytecode (B), or source code (S); ANALYSIS refers to the
type of code analysis performed for debloating: Static, Dynamic, or Hybrid; EXP. SCALE

counts the number of study subjects used to evaluate the technique; GRANULARITY is the
code level at which debloating is performed: field (F), method (M), class (C) or dependency
(D). The four columns in EVALUATION CRITERIA present the criteria used to assess the validity
the debloating technique: compilation (COMP.), test suite (TESTS), client applications
(CLIENTS), and human developers via pull requests (DEVS). The last column, OUTPUT, is the
outcome of the debloating techniques.

REF. TARGET ANALYSIS EXP. SCALE
GRANULARITY EVALUATION CRITERIA OUTPUT
F M C D COMP. TESTS CLIENTS DEVS

[63] bytecode Static 9 libs 7 3 3 7 3 7 7 7 Debloated JARS

[55] bytecode Dynamic 3 apps 7 7 3 7 3 3 7 7 Debloated JARS

[48] bytecode Hybrid 26 projects 3 3 3 7 3 3 7 3 Debloated JARS

C1 [2] src. code Static 30 projects 7 7 7 3 3 3 7 3 Debloated POMs

C2 [6] bytecode & Hybrid 30 projects 7 7 3 3 3 3 7 7 Specialized POMs
src. code

C3 [4] bytecode Dynamic 395 libs
7 3 3 3 3 3 3 7 Debloated JARS

1,370 clients

2.3 Novel Contributions of This Thesis to Software Debloating

Similar to other software stacks, Java applications often suffer from the detrimen-
tal effects of software bloat. Part of this bloat comes with the addition of new
features, whereas another part is a result of reusing third-party dependencies. De-
pendency bloat negatively impacts the size of the applications, affects the project’s
maintenance, degrades performance, and potentially compromises security. To
address this issue, we propose propose various techniques for debloating Java
applications using code analysis techniques in order to detect and remove code
bloat from third-party dependencies. In the following, we proceed to highlight the
distinctive aspects of our contributions compared to the current state-of-the-art
debloating techniques for Java.

Table 2.2 positions the research papers proposed in our contributions that come
along with a software tool (i.e., DEPCLEAN in C1 [2], DEPTRIM in C2 [6], and
JDBL in C3 [4]) in relation to the more related tools and techniques for software
debloating in Java (i.e., JRED in [63], J-REDUCE in [55], and JSHRINK in [48]).
First, we note that all prior techniques focus on debloating Java bytecode rather
than targeting source code. This is because targeting Java bytecode offers a more
general and efficient method for bloat removal (e.g., enabling debloating for JVM
languages like Scala, Groovy, or Kotlin) while source code debloating introduces

45



CHAPTER 2. STATE OF THE ART

extra complexities associated to compilation inconsistencies. In contrast, our
tools DEPCLEAN and DEPTRIM focus on debloating dependency trees through
the analysis of dependency and the subsequent transformation of pom.xml files.
In addition to the technical contributions, we perform the first empirical study
that explores and consolidates the concept of bloated dependencies in the MAVEN

ecosystem and is the first to investigate the reaction of developers to the removal
of bloated dependencies.

Existing techniques for detecting code bloat in Java predominantly utilize
static and dynamic program analysis, with some employing hybrid approaches
to tackle potential issues arising from the Java dynamic language features. As
with our tools, existing debloating techniques primarily rely on static (JRED) and
dynamic (J-REDUCE) program analysis algorithms to detect code bloat. In the case
of JSHRINK, it adopts a hybrid approach to address the potential unsoundness
of static analysis for detecting used code. In the case of DEPTRIM, it implements
a novel variant of the hybrid approach in which the versions of the specialized
dependency trees are validated based on the results of the project’s tests when
building with the specialized version of the dependency.

With regards to the scale of our experiments, both DEPCLEAN and DEPTRIM

are assessed on a significant set of 30 notable MAVEN projects, surpassing the
scope of prior studies. It is important to note that each contribution requires the
projects to be built both before and after debloating, ensuring the integrity of the
build process and of the debloated artifacts. Remarkably, we evaluate JDBL on
395 libraries and 1,370 client applications, which is an order of magnitude larger
than previous work. JDBL stands as the pioneering debloating tool that utilizes a
large set of clients of the debloated software artifacts for validation purposes.

With respect to the granularity of the code bloat removal, state-of-the-art Java
tools focus on removing fields, methods, and classes. All prior tools excise classes,
with only JSHRINK targeting fields. Besides removing methods and classes, our
tools address bloat within third-party dependencies. For instance, DEPCLEAN

eliminates entirely unused dependencies, while DEPTRIM removes classes from
partially used dependencies in addition to discarding completely unused ones.

With respect to the debloat evaluation criteria, all previous works rely on
compilation and tests (except JRED). Both JSHRINK and DEPCLEAN also involve a
user evaluation with developers through pull requests. Utilizing developers via pull
requests serves as an effective evaluation assessment for software debloating, as it
leverages their expertise and familiarity with the codebase, ensuring the proposed
debloating changes are relevant, maintain functionality, and align with the project’s
objectives. Furthermore, JDBL remains the sole study that incorporates client
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applications’ tests to evaluate the debloated artifacts’ usability, extending beyond
the confines of the project’s scope.

In conclusion, a review of the literature on debloating for the Java ecosystem
reveals that previous analysis techniques focus on fine-grained debloating, such
as removing fields, methods, and classes. Although these existing debloating
techniques can be effective at reducing program size and improving performance,
they may not address all sources of code bloat, such as third-party dependencies
in libraries and frameworks. As pointed out in Section 1.2, software dependencies
in Java projects are responsible for a large amount of the shared code size in
the compiled and packaged artifacts. Therefore, we identify a need to address
dependency-related bloat in addition to fine-grained debloating, in order to reduce
the overall size of a Java application and improve its performance, size, and
maintainability.

2.4 Summary

In this chapter, we introduce software bloat, a pervasive problem affecting all layers
of the modern software stack. We discussed how software bloat has emerged across
the software development lifecycle, needlessly increasing the size of software
applications, making them harder to understand and maintain, widening the
attack surface, and degrading the overall performance. This phenomenon is rooted
in several factors, including excessive code reuse, feature creep, code duplication,
and other human and technology-related factors. We identified various software
debloating techniques that have been proposed to mitigate software bloat at
different granularities. However, we observe that removing code bloat remains
a significant challenge due to the intricate nature and complexity of modern
software applications and their interdependencies. As software complexity and
feature richness continue to grow, tackling software bloat will remain a critical
research area in software engineering.
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Chapter 3

Thesis Contributions

“No te detengas avanza / Lucha prosigue y camina / Que el que no se
determina / Nada de la vida alcanza / Nunca pierdas la esperanza / De
realizar tus ideas / Cuando abatido te veas / Juega el todo por el todo
/ Y verás que de ese modo / Lograrás lo que deseas / No le temas al
fracaso / Que el que por su bien batalla / No hay barrera ni muralla /
Que le detengan el paso / Camina y no le hagas caso / Al que te hable con
pesimismo / Busca la dicha en ti mismo / Como el hombre valeroso / Mira
que el hombre penoso / Nunca sale del abismo.”

— Mi abuelo, Un día cualquiera hace años

WITH the increasing complexity of Java applications and their reliance
on third-party libraries, debloating Java dependencies has become
an essential engineering task. In this chapter, we present the main

contributions of this thesis to address the problem of software bloat in the Java
ecosystem. We start with an overview of the MAVEN dependency management
system and of its essential terminology, which constitutes the foundation for
comprehending the technical contributions. As introduced in Section 1.4, our work
contributes to the field of software debloating across three different aspects. First,
we provide a mechanism to detect and remove bloated Java dependencies, thereby
streamlining the dependency trees of software projects that build with MAVEN.
Second, we specialize used dependencies to reduce the amount of third-party
code, which yields even more benefits in terms of code size reduction. Finally,
we evaluate the impact of debloating Java libraries in relation to their client
applications through a novel coverage-based debloating technique, thus providing
valuable insights into the efficacy of this debloating technique. Furthermore,
we outline the tools and datasets we have contributed to promote reproducible
research in this field.
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1 <groupId>org.p</groupId>
2 <artifactId>p</artifactId>
3 <version>0.0.1</version>
4 <packaging>jar</packaging>
5 . . .
6 <dependencies>
7 <dependency>
8 <groupId>org.d1</groupId>
9 <artifactId>d1</artifactId>

10 </dependency>
11 <dependency>
12 <groupId>org.d2</groupId>
13 <artifactId>d2</artifactId>
14 </dependency>
15 <dependency>
16 <groupId>org.d3</groupId>
17 <artifactId>d3</artifactId>
18 </dependency>
19 </dependencies>
20 . . .

Listing 3.1: Excerpt of a MAVEN
pom.xml file declaring three
dependencies: d1, d2, and d3.

d1 d3

p

d2

d6d4 d5

Dependency relationship

Direct dependency Transitive dependency

Project code

Figure 3.1: Dependency tree from the
pom.xml file of Listing 3.1. The project p
declares the direct dependencies d1, d2,
and d3. The dependencies d4, d5, and d6
are transitive dependencies of p.

3.1 Essential Dependency Management Terminology

MAVEN [25] is a popular package manager and build automation tool for
Java projects and other programming languages that compile to the Java Virtual
Machine (JVM), such as Scala, Kotlin, Groovy, Clojure, or JRuby. MAVEN is
primarily designed to handle the dependencies within a software project. In
addition to this crucial functionality, it also handles other tasks during the project
build process, such as testing, packaging, and deployment. We define the key
concepts associated with handling dependencies in the MAVEN ecosystem below.

Maven Project. We consider a project a collection of Java source code files and
configuration files organized to be built with MAVEN. A MAVEN project declares a
set of dependencies in a specific configuration file known as pom.xml (acronym for
Project Object Model), which is located in the project’s root directory. The pom.xml
contains specific metadata about the project construction, its dependencies, and
its build process. MAVEN projects are usually packaged and deployed to external
repositories as single artifacts (JAR files). Listing 3.1 shows an excerpt of the
dependency declaration in the pom.xml of a project p. In this example, developers
explicitly declare the usage of three dependencies: d1, d2, and d3. Note that the
pom.xml of a Maven project is a configuration file subject to constant change and
evolution: developers usually commit changes to add, remove, or update the
version of a dependency.

Maven Dependency. A MAVEN dependency defines a relationship between a
project p and another packaged project d ∈ D. Dependencies are compiled JAR
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files, a.k.a. artifacts, uniquely identified with a triplet (G:A:V) where G is the
groupId, A is the artifactId, and V is the version. Dependencies are defined
within a scope, which determines at which phase of the MAVEN build cycle the
dependency is required (i.e., compile, runtime, test, provided, system, and
import). Listing 3.1 shows an example of dependency relationships. By declaring
a dependency towards d1, the project p states that it relies on some part of the
API of d1 to build and execute correctly. Dependencies are deployed to external
repositories to facilitate reuse. Maven Central [28] is the most popular public
repository to host MAVEN artifacts.

Direct Dependency. The set of direct dependencies Ddirect ⊂ D of a project p is
the set of dependencies explicitly declared in p’s pom.xml file. Figure 3.1 shows the
direct dependencies in the first level of the dependency tree of p, i.e., there is an
edge between p and each dependency [d1, d2, d3] ∈ Ddirect. Direct dependencies are
declared in the pom.xml by the developers, who explicitly manifest the intention
of using the dependency.

Transitive Dependency. The set of transitive dependencies Dtransitive ⊂ D of a
project p is the set of dependencies obtained from the transitive closure of direct
dependencies. Figure 3.1 shows the transitive dependencies in the second level of
the dependency tree of p, i.e., there is an edge between the direct dependencies
of p and each dependency [d4, d5, d6] ∈ Dtransitive. Transitive dependencies are
resolved automatically by MAVEN, which means that developers do not need to
explicitly declare these dependencies. Note that all the bytecode of these transitive
dependencies is present in the classpath of project p, and hence they will be
packaged with it, whether or not they are actually used by p.

Dependency Tree. The dependency tree of a MAVEN project p is a direct acyclic
graph that captures all dependencies of p and their relationships, where p is the
root node and the edges represent dependency relationships between p and the
dependencies in D. Figure 3.1 illustrates the dependency tree of the project p,
which pom.xml file is presented in Listing 3.1. In this example, p has three direct
dependencies, as declared in its pom.xml, and three transitive dependencies, as a
result of the MAVEN dependency resolution mechanism.

Maven Dependency Resolution Mechanism. To construct the dependency tree,
MAVEN relies on its specific dependency resolution mechanism [159]. MAVEN

resolves dependencies in two steps: 1) based on the pom.xml file of the project, it
determines the set of direct dependencies explicitly declared, and 2) it fetches the
JAR files of the dependencies that are not present locally from external repositories
such as Maven Central. Dependency version management is a key feature of
the dependency resolution mechanism, which MAVEN handles with a specific
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dependency mediation algorithm that avoids having duplicated dependencies and
cycles in the dependency tree of a project [159].

Maven Dependency Graph. The Maven Dependency Graph (MDG) is a vertex-
labeled graph, where vertices are MAVEN artifacts (uniquely identified by their
G:A:V coordinates), and edges represent dependency relationships among them [8].
Formally, the MDG is defined as G = (V, E), where: V is the set of artifacts in the
Maven Central repository; and E ⊆ V × V represent the set of directed edges
that determine dependency relationships between each artifact v ∈ V and its
dependencies.

3.2 Contribution #1: Removing Bloated Dependencies

Our first contribution focuses on solving a specific challenge of dependency man-
agement: the existence of bloated dependencies. This refers to packages that are
included as dependencies in a sofwtare project, and therefore get included in its
dependency tree, but that are actually not necessary for building or running the
project We develop a technique to effectively assess the impact of bloated depen-
dencies across the entire MAVEN ecosystem, as well as to effectively eliminate
them within MAVEN projects.

3.2.1 Novel concepts

For a set of dependencies D, and in the context of a MAVEN project, we introduce
the concept of bloated dependency in [2] as follows:

Bloated Dependency. A dependency d ∈ D in a software project p is said to be
bloated if there is no path in the dependency tree of p, between p and d, such that
none of the elements in the API of d are used, directly or indirectly, by p.

We found this type of dependency relationship between software artifacts
intriguing: from the perspective of the dependency management systems such as
MAVEN that are unable to avoid it, and from the standpoint of developers who
declare dependencies but do not actually use them in their applications. The major
issue with bloated dependencies is that the final deployed binary file includes more
code than necessary: an artificially large binary is an issue when the application is
sent over the network (e.g., web applications) or it is deployed on small devices
(e.g., embedded systems). Bloated dependencies could also embed vulnerable
code that can be exploited while being actually useless for the application [160].
Overall, bloated dependencies needlessly increase the difficulty of managing and
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evolving software applications, thereby making it imperative for developers to
detect and remove them.

3.2.2 Bloat detection

The first task to eliminate dependency bloat is to detect bloated dependencies. Our
proposed solution entails performing an in-depth analysis of the usage relation-
ships among the class members of the entire dependency tree of MAVEN projects,
which enables us to determine the usage status of each individual dependency
(i.e., used or bloated). By doing so, we can identify if the dependency is used or
not, and take appropriate actions to remove bloated dependencies. We define the
usage status of a dependency as follows:

Dependency Usage Status. The usage status of a dependency d ∈ D determines
if d is used or bloated w.r.t. to p, at a specific time of the development of p.

We implement dependency usage analysis in a software tool called DEP-
CLEAN [2]. DEPCLEAN builds a static call graph of the bytecode calls between the
class members of a compiled MAVEN project and its dependencies. To study the
distinctive aspects regarding the usage status of all dependencies in the depen-
dency tree of artifacts in the MAVEN ecosystem, we introduce a new data structure,
called the Dependency Usage Tree (DUT) as follows:

Dependency Usage Tree. The DUT of a project p, defined as DUTp = (V, E ,∇),
is a tree, whose nodes are the same as the MAVEN dependency for p and which
edges are all of the (p, pi), for all nodes pi ∈ DUTp. A labeling function ∇
assigns each edge one of the following six dependency usage types: ∇ : E →
{ud, ui, ut, bd, bi, bt} such that:

∇(〈p, d〉) =



ud, if d is used and it is directly declared by p

ui, if d is used and it is inherited from a parent of p

ut, if d is used and it is resolved transitively by p

bd, if d is bloated and it is directly declared by p

bi, if d is bloated and it is inherited from a parent of p

bt, if d is bloated and it is resolved transitively by p

Figure 3.2 shows an hypothetical example of DUT of a project p. Suppose
that p directly calls two sets of instructions in the direct dependency d1 and the
transitive dependency d6. Then, the subset of instructions called in d1 also calls

53



CHAPTER 3. THESIS CONTRIBUTIONS

Usage relationship

Used dependency Bloated dependency

Used API members

d1

d4 d6

p

d2 d3

d5

Figure 3.2: Dependency usage tree of
used and bloated dependencies
corresponding to the dependency tree
presented in Figure 3.1.

d1

p

d6d4

Used dependency Dependency relationship

Figure 3.3: Debloated dependency tree
after removing bloated dependencies with
DEPCLEAN, based on the DUT of
Figure 3.2.

instructions in d4. In this case, the dependencies d1, d4, and d6 are used by p,
while dependencies d2, d3, and d5 are bloated dependencies. For a MAVEN project,
DEPCLEAN constructs a DUT at build time and returns a report with the usage
status of each individual dependency.

Although bloated dependencies are present in the dependency tree of software
projects, bloated dependencies are useless and, therefore, developers should
consider removing them. In the next section, we discuss the approach implemented
in DEPCLEAN to remove bloated dependencies.

3.2.3 Bloat removal

A challenge when addressing bloated dependencies is to remove them from the
project without compromising the build’s success. Our solution relies on the
existing MAVEN dependency handling mechanisms to remove and exclude bloated
dependencies pom.xml files [159]. DEPCLEAN generates as output a variant of the
pom.xml file with all the bloated dependencies removed. DEPCLEAN addresses
both direct and transitive dependencies by modifying the XML entry corresponding
to the bloated dependency. Listing 3.2 shows an excerpt of the diff of such a change
in the pom.xml file for the example presented in Listing 3.1. Note that, in MAVEN,
there is two ways to remove bloated dependencies:

(i) If the bloated dependency is explicitly declared in the pom.xml, then we
remove its declaration clause directly (lines 12 to 19 in Listing 3.2);

(ii) If the bloated dependency is induced transitively from a direct dependency,
then we exclude it from the dependency tree (lines 5 to 10 in Listing 3.2). This
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1 <dependencies>
2 <dependency>
3 <groupId>org.d1</groupId>
4 <artifactId>d1</artifactId>
5 +aa<exclusions>
6 +aa <exclusion>
7 +aa aa <groupId>org.d5</groupId>
8 +aa aa <artifactId>d5</artifactId>
9 +aa </exclusion>

10 +aa<exclusions>
11 </dependency>
12 -aa<dependency>
13 -aa <groupId>org.d2</groupId>
14 -aa <artifactId>d2</artifactId>
15 -aa</dependency>
16 -aa<dependency>
17 -aa <groupId>org.d3</groupId>
18 -aa <artifactId>d3</artifactId>
19 -aa</dependency>
20 +aa<dependency>
21 +aa <groupId>org.d6</groupId>
22 +aa <artifactId>d6</artifactId>
23 +aa</dependency>
24 </dependencies>

Listing 3.2: Transformations
peformed in the pom.xml file of
Listing 3.1 to remove the bloated
dependencies d2, d3, and d5.

d1 d3d2

d6d4 d5

Dependency relationship

Direct dependency Transitive dependency

Project code

d6

p

Removed relationship Direct inclusion

Figure 3.4: Transformations in the
dependency tree of p as a result of
the changes in the pom.xml file
indicated in Listing 3.2.

exclusion consists in adding an <exclusion> clause inside a direct dependency
declaration entry, specifying the groupId and artifactId of the transitive
dependency to be excluded. Excluded dependencies are not added to the
classpath of the compiled artifact by way of the dependency in which the
exclusion was declared.

Figure 3.3 shows the result of the modified dependency tree after using DEP-
CLEAN to remove bloated dependencies. Figure 3.4 illustrates the transformations
made to the dependency tree to reach this state. Note that the transitive depen-
dency d6 was included as a direct dependency in the pom.xml (lines 20 to 23)
because it is actually used by p, but the direct dependency d3 from which it is
induced is bloated and therefore removed. It is worth mentioning that during this
removal process, DEPCLEAN does not perform any modifications to the source code,
compiled bytecode, or configuration files in the project under analysis. DEPCLEAN

is specifically designed to be non-invasive for the project, ensuring that it does not
modify the build process while performing its debloating operations. The details
about this procedure are described in Algorithms 1 and 2 in ??.
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3.2.4 Debloating assessment

Assessing the impact of removing bloated dependencies is crucial to ensure that the
project build remains unaffected. It is equally important that the debloating pro-
cess aligns with the project’s requirements and makes sense from a practical stand-
point. We use DEPCLEAN to perform two types of assessments: a large-scale quan-
titative analysis of dependency bloat in the Maven Central repository, and a quali-
tative analysis of bloated dependencies in 30 MAVEN projects involving developers.

The quantitative assessment consists in measuring the amount of dependencies
that can be removed. For this we leverage the MDG from our previous research [8]
to collect and analyze a large set of artifacts from Maven Central. We download
the JAR files of all the selected artifacts and their pom.xml files. We resolve all
their direct and transitive dependencies to our local repository and compute the
usage status of all dependency relationships for each artifact using DEPCLEAN. We
report the collected metrics and analyze how the specific reuse strategies of the
MAVEN package management system relates to the existence of software bloat.

The qualitative assessment consists in evaluating the relevance of the removal
of bloated dependencies in software projects. For this we systematically select
30 notable open-source projects hosted on GitHub and conduct an analysis of
dependency bloat. For each project, we use DEPCLEAN to analyze the dependency
tree and build the project with the debloated pom.xml file. If the project builds
successfully, we propose a corresponding change to the developers in the pom.xml
file in the form of a pull request. We engage developers in discussions regarding
the value of each pull request on GitHub and gather their feedback. Note that
although the submitted pull requests contain a small modification in the pom.xml,
the amount of bloated code removed is significant.

DEPCLEAN operates under the premise that a bloated dependency at a given
time will consistently remain bloated, hence it makes sense to remove it. We
further explore the validity of this assumption in the context of Java projects. To
do so, we performed a longitudinal study of bloated dependencies and analyze
how the usage status of dependencies evolves over time, from used to bloated, or
vice versa. Our empirical assessment shows that our hypothesis holds: the large
majority of the bloated dependencies stay bloated in all subsequent versions of
the dependency trees of the studied projects.

3.2.5 Key insights

We use DEPCLEAN to analyze the 723,444 dependency relationships of 9,639 arti-
facts hosted in Maven Central. Our findings indicate that 75.1% of these dependen-
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cies are bloated (2.7% are direct dependencies, 57% are transitive dependencies,
and 15.4% inherited dependency relationships in pom.xml files). Based on these
results, we distill two potential causes of bloat in the Java MAVEN ecosystem: 1)
the cascade of bloated transitive dependencies induced by direct dependencies,
and 2) the dependency heritage mechanism in multi-module MAVEN projects.

We supplement our quantitative investigation of bloated dependencies with a
comprehensive qualitative analysis of 30 popular Java projects. We use DEPCLEAN

to examine the dependency trees of these projects and submit the derived results
as pull requests on GitHub for evaluation by developers. Our results indicated
that developers are willing to remove bloated-direct dependencies: 16 out of 17
answered pull requests were accepted and merged by the developers in their
codebase. On the other hand, we find that developers tend to be skeptical about
excluding bloated-transitive dependencies: 5 out of 9 answered pull requests
were accepted. Overall, the feedback from developers reveals that the removal of
bloated dependencies is clearly worth the additional analysis and effort.

We conduct a longitudinal analysis of dependency usage across 31,515 versions
of MAVEN dependency trees in 435 Java projects. Our findings provide evidence
of bloat stability: once bloated, 89.2% of direct dependencies persist as bloated,
emphasizing the importance of bloat removal. Furthermore, we present evidence
indicating that developers expend unnecessary maintenance effort on bloated
dependencies. Our qualitative examination of the origins of bloated dependencies
uncovers that the primary contributing factor to this form of software bloat is the
addition of dependencies at the early stages of the project development.

Summary of Contribution #1

We conduct a systematic, large-scale study of bloated dependencies in the
MAVEN ecosystem. We implement a tool called DEPCLEAN, designed to au-
tomatically detect and remove bloated dependencies in MAVEN projects. We
found empirical evidence that dependency bloat is widespread among Java
artifacts within the Maven Central repository. Our study is the first to measure
the extent of dependency bloat on a large scale and perform a qualitative
assessment of the opinion of developers regarding the removal of bloated
dependencies. We found that developers are willing to remove bloated depen-
dencies to a large extend. Moreover, we demonstrate that a dependency, once
bloated, it is likely to stay bloated in the future.

This contribution is presented in Research Papers II [2] and III [3].
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3.3 Contribution #2: Specializing Used Dependencies

Our second contribution focuses on advancing the state-of-the-art of dependency
tree reduction by introducing an innovative technique that specialized depen-
dencies specifically to a project’s requirements. We implement this technique
in a tool called DEPTRIM, which systematically identifies and removes unused
classes across the dependencies of a MAVEN project. After debloating, DEPTRIM

repackages the used classes into a specialized version of each used dependency,
and substitutes the original dependency tree of a project with this specialized
variant. This approach enables building a minimal project binary containing only
the code that is relevant to the project, thereby optimizing resource utilization,
improving build performance, and reducing potential security risks associated
with unused code in third-party dependencies.

3.3.1 Novel concepts

We introduce the concept of specialized dependencies and specialized dependency
trees as follows:

Specialized Dependency. A dependency is said to be specialized with respect to
a project if all the classes within the dependency are used by the project, and all
unused classes have been identified and removed. Consequently, there is no class
file in the API of a specialized dependency that is unused, directly or indirectly, by
the project or any other dependency in its dependency tree.

Specialized Dependency Tree. A specialized dependency tree is a dependency
tree where at least one dependency is specialized and the project still correctly
builds with that dependency tree. This means that in at least one of the used
dependencies, unused classes have been identified and removed. A specialized
dependency tree may be one of the following two types:

• Totally Specialized Tree (TST): A dependency tree where all used dependencies
are specialized and the project build is successful.

• Partially Specialized Tree (PST): A dependency tree with the largest possible
number of specialized dependencies, such that the project build is successful.

We implement a tool called DEPTRIM that automatically generates a TST or
PST for MAVEN projects. DEPTRIM systematically identifies the required subset of
classes in each dependency that is necessary to build the project. The specialized
dependencies are repackaged and incorporated into the project’s dependency tree,
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yielding a tailored dependency tree specific to the project’s needs and require-
ments.

3.3.2 Bloat detection

In order to detect bloat in used dependencies, DEPTRIM relies on static analysis
to determine their API usage from the project compiled sources. This process
involves constructing a static call graph by utilizing the compiled dependencies
resolved by MAVEN and the compiled project sources. The call graph is generated
using the bytecode class members of the project as entry points. By leveraging
the API usage information from the static call graph, DEPTRIM can directly infer
and report class usage information from the bytecode, without the need to load
or initialize classes. The resulting report captures the dependencies, classes, and
methods that are actually used by the project, i.e., those that are reachable via
static analysis. This information is stored in data structure in order identify the
minimal set of classes in each dependency that are necessary to successfully build
the project.

Recalling the example of debloated dependency tree presented in Figure 3.3,
we observe that the debloated dependency tree of project p uses a subset of
the classes in dependencies d1, d2, and d3 (see Figure 3.5). Therefore, these
dependencies could be specialized with respect to p, by detecting and removing
the unused classes.

The completeness of the call graphs is crucial for successful dependency spe-
cialization. If a necessary class member cannot be reached through static analysis,
DEPTRIM considers it unused and proceeds to remove it in a subsequent phase. To
overcome this limitation, DEPTRIM employs state-of-the-art static analysis tech-
niques of Java bytecode to capture invocations between classes, methods, fields,
and annotations (from the project and its direct and transitive dependencies). This
comprehensive approach ensures accurate detection of used and unused classes,
enabling the creation of a specialized dependency tree tailored to the project’s
requirements.

It is worth mentioning that that DEPTRIM also analyzes the constant pool of
class files to capture dynamic invocations from string literals, such as when loading
a class using its fully qualified name via reflection. The constant pool is a data
structure in Java class files that stores constants and symbolic references, including
literals and external references. By examining the constant pool, DEPTRIM can
identify instances of dynamically invoked classes, ensuring a more precise and
thorough dependency analysis. Moreover, the integration of DEPTRIM within the
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Figure 3.5: Used and unused API
members in the debloated dependency
tree from Figure 3.3.
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Figure 3.6: Specialized dependency tree
after removing unused API members from
Figure 3.5.

MAVEN build lifecycle further enhances the tool’s usability, making it a seamless
and convenient solution for developers to optimize their project dependencies.

3.3.3 Bloat removal

DEPTRIM receives as input a debloated dependency tree, such as the ones gener-
ated by DEPCLEAN. If the provided dependency tree is not debloated, DEPTRIM

determines which dependencies are bloated (i.e., there is no path from the project
bytecode toward any of the class members in the unused dependencies), and
removes them from the original pom.xml. Next, DEPTRIM proceeds to remove the
unused classes within non-bloated dependencies by analyzing the call graph of
static bytecode calls . Any class file from the dependencies that is not present in
the call graph is deemed unreachable and removed. Once all the unused class
files in a dependencies are removed, DEPTRIM qualifies the dependency tree as
specialized.

DEPTRIM downloads, unzips, and removes the unused compiled classes di-
rectly from the project dependencies at build time (i.e., during the MAVEN package
phase). Moreover, to facilitate reuse, DEPTRIM deploys each specialized depen-
dency in the local MAVEN repository along with its pom.xml file and corresponding
MANIFEST.MF metadata. After specializing each non-bloated dependency, DEPTRIM

produces a specialized version of the project’s dependency tree. For example, Fig-
ure 3.6 shows the specialized dependency tree after removing unused classes from
the dependencies d1, d2, and d3 as presented in Figure 3.5. In addition, DEPTRIM

produces a variant of the pom.xml file that removes the bloated dependencies
and points to the specialized dependencies instead of their original versions This
results in a TST or a PST for the project.

The output of the DEPTRIM is a set of specialized pom.xml files representing
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the dependencies of the project. These files encompass all the essential bytecode
and resources required for sharing and reusing functionalities among the packages
within the dependency tree. In particular, DEPTRIM takes care of keeping the
classes in dependencies that may not be directly instantiated by the project, but
are accessible from the used classes in the dependencies, with regard to the project.
The details about this procedure are described in Algorithms 1 in ??.

3.3.4 Debloating assessment

To assess the debloated dependency tree, DEPTRIM builds the totally specialized
dependency tree (TST or PST) of the project. All specialized dependencies replace
their original version in the project pom.xml. Then, in order to validate that the
specialization did not remove necessary bytecode, DEPTRIM builds the project, i.e.
its sources are compiled and its tests are run. If the build is a SUCCESS, DEPTRIM

returns this TST.
In cases where the build with the TST fails, DEPTRIM proceeds to build the

project with one specialized dependency at a time. Thus, rather than attempting to
improve the soundness of the static call graph, which is proven to be challenging
in Java [161], DEPTRIM performs an exhaustive search of the dependencies
that are unsafe to specialize. At this step, DEPTRIM builds as many versions of
the dependency tree as there are specialized dependencies, each containing a
single specialized dependency. DEPTRIM attempts to build the project with each
of these single specialized dependency trees. If the project build is successful,
DEPTRIM marks the dependency as safe to be specialized. In case the dependency
is not safe to specialize, DEPTRIM keeps the original dependency entry intact in
the specialized pom.xml file. Finally, DEPTRIM constructs a partially specialized
dependency tree (PST) with the union of all the dependencies that are safe to
be specialized. Then, the project is built with this PST to verify that the build is
successful. If all build steps pass, DEPTRIM returns this PST.

3.3.5 Key insights

We use DEPTRIM to generate specialized dependency trees for 30 notable open-
source Java projects. DEPTRIM effectively analyzes 35,343 classes across 467

dependencies in these projects. For 14 projects, it generates a dependency tree
where all compile its dependencies are effectively specialized. For the remaining 16

projects, DEPTRIM produces a dependency tree that includes all dependencies that
can be specialized without breaking the build, while leaving the others unmodified.
DEPTRIM specializes 86.6% of the dependencies, removing 47.0% of the unused
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classes from those dependencies. The specialized dependencies are deployed
locally as reusable JAR files. For each project, DEPTRIM generates a specialized
version of the pom.xml file, replacing the original dependencies with specialized
ones, ensuring that the project continues to build correctly.

We perform a novel assessment of the ratio of dependency classes compared
to project classes, based on actual class usages. We compute this ratio for the
30 original studied projects and found that it is 8.7×, which is evidence of the
massive impact of code reuse in the Java ecosystem. We found that it is possible
to decrease this ratio of dependency classes to project classes through dependency
specialization with DEPTRIM, from 8.7× to 4.4×. This result confirms the rele-
vance of our approach in substantially reducing the share of third-party classes in
Java projects.

Summary of Contribution #2

We advance the state-of-the-art for dependency tree reduction through the
implementation of a specialization technique that tailors individual dependen-
cies to the specific requirements of a project. We implement an automated
tool, DEPTRIM, that analyses third-party dependencies of a MAVEN project to
remove the unused classes. DEPTRIM repackages the dependencies to create a
specialized version of the dependency tree at build time. We use DEPTRIM to
successfully specialize the dependency tree of 14 projects in its entirety, and 16

partially, reducing the number of third-party classes by 47.0%. We found that
our specialization technique enables a reduction in the ratio of project classes
to dependency classes by a factor of two.

This contribution is presented in Research Paper VI [6].

3.4 Contribution #3: Debloating With Respect to Clients

Our third contribution goes one step further than any previous work on software
debloating and investigates how debloating Java libraries impacts the clients
of these libraries. We propose coverage-based debloating, a novel technique
to debloat projects based on coverage information collected at runtime. We
implemented this technique in a tool called JDBL, which precisely captures what
parts of a project and its dependencies are used when running with a specific
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workload. The goal is to determine the ability of dynamic analysis via coverage at
capturing the behaviors that are relevant for the clients of the debloated libraries.

3.4.1 Novel concepts

In this contribution, MAVEN projects are referred to as libraries, and the project
that reuses the library are called clients. We introduce a set of novel concepts
necessary for debloating libraries w.r.t. clients as follows:

Input Space. The input space of a compiled MAVEN project is the set of all valid
inputs for its public Application Programming Interface (API) that can be executed
by a client.

MAVEN projects provide API members, abstracting implementation details
to facilitate external reuse. Libraries generally provide public API members for
external reuse. However, there exist other dynamic reuse mechanisms that can
be utilized by Java clients (e.g., through reflection, dynamic proxies, or the use
of unsafe APIs). An effective way to determine which API members are reused is
trough the execution of a workload.

Project Workload. A workload is a set of valid inputs belonging to the input
space of a compiled MAVEN project.

Workloads play a crucial role in software debloating tasks that involve perform-
ing dynamic analysis. For instance, workloads are employed to identify unique
execution paths in software applications, similar to those performed for profiling
and observability tasks. These techniques focus on utilizing monitoring tools to
analyze the application’s response to various workloads at run-time, ultimately
contributing to a more efficient and streamlined software system. In this context,
by examining the application’s response to different workloads, it is possible to
generate execution traces.

Execution Trace. An execution trace is a sequence of calls between bytecode
instructions in a compiled MAVEN project, obtained as a result of executing the
project with a valid workload.

Given a valid workload for a project, one can obtain dynamic information
about the program’s behavior by collecting execution traces. We consider a trace
as a sequence of calls, at the level of classes and methods, in compiled Java classes.
These traces include the bytecode of the project itself, as well as the classes and
methods in third-party libraries.

Coverage-Based Debloating. Given a project and an execution trace collected
when running a specific workload on the project, coverage-based debloating
consists of removing the bytecode constructs that are not covered when running
the workload. Coverage-based debloating takes a project and workload as input
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Figure 3.7: Used and unused API
members in the dependency tree of
Figure 3.6. Note that the usage status is
w.r.t. the supplied workload.
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Figure 3.8: Debloated project from
Figure 3.7. Only the used API members of
the project and its dependencies are
packaged.

and produces a valid compiled Java project as output. The generated debloated
project is executable and has the same behavior as the original, modulo the
workload.

3.4.2 Bloat detection

JDBL collects a set of coverage reports that capture the set of dependencies,
classes, and methods actually used during the execution of the Java project.
The coverage collection phase receives two inputs: a compilable set of Java
sources, and a workload, i.e., a collection of entry-points and resources necessary
to execute the compiled sources. The workload can be a set of test cases or a
reproducible production workload. The coverage collection phase outputs the
original, unmodified, bytecode and a set of coverage reports that account for
the minimal set of classes and methods required to execute the workload. The
collection of accurate and complete coverage is essential for coverage-based
debloating

3.4.3 Bloat removal

The goal of the bytecode removal phase is to eliminate the methods, classes, and
dependencies that are not used when running the project with the workload. This
procedure is based on the coverage information collected during the coverage
collection phase. The unused bytecode instructions are removed in two passes.
First, the unused class files and dependencies are directly removed from the
classpath of the project. Then, the procedure analyzes the bytecode of the
classes that are covered. When it encounters a method that is not covered, the
body of the method is replaced to throw an UsupportedOperationException. We
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choose to throw an exception instead of removing the entire method to avoid JVM
validation errors caused by the nonexistence of methods that are implementations
of interfaces and abstract classes.

Capturing the complete coverage of the classes that are necessary for executing
a workload is critical for bloated code removal. Failure to achieve this could result
in a debloated project that either fails to compile or, even worse, causes runtime
errors when client projects use debloated libraries. To collect precise coverage
information, we harness the diversity of code coverage tool implementations [162]
and the dynamic logging capabilities of the JVM. We process and aggregate the
coverage reports from JACOCO, JCOV, YAJTA, and the JVM class loader. A class is
deemed covered if it is reported as used by at least one of these tools, ensuring
a comprehensive assessment of required classes for successful debloating. The
details about this procedure are described in Algorithms 1 in ??.

3.4.4 Debloating assessment

We analyze the impact of debloating Java libraries on their clients. This analysis is
relevant since we focus on debloating open-source libraries, which are primarily
designed for reuse in client applications. Moreover, this particular analysis offers
additional insights into the validity of the coverage-based debloating technique and
the effectiveness of JDBL. To validate the debloating from the clients’ perspective,
we conduct a two-layered assessment: a syntactic evaluation a semantic evaluation
of the clients. By performing these analysis, we can guarantee that the debloated
libraries preserve their functionality and compatibility, thus assessing the validity
of our debloating technique.

For syntactic assessment, we verify that the clients still compile when the
original library is replaced by its debloated version. We check that JDBL does
not remove classes or methods in libraries that are necessary for the compilation
of their client. As illustrated in Figure 3.9, we first check that the client uses the
library statically in the source code. To do so, we statically analyze the source
code of the clients. If there is at least one element from the library present in the
source code of a client, then we consider the library as statically used by the client.
If the library is used, we inject the debloated library and build the client again.
If the client successfully compiles, we conclude that JDBL debloated the library
while preserving the useful parts of the code that are required for compilation.

A debloated library stored on disk is of little use compared to a debloated
library that provides the behavior expected by its clients. Therefore, we also need
to determine if JDBL preserves the functionalities that are necessary for the clients.
As illustrated in Figure 3.9, we first execute the test suite of the client with the
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Figure 3.9: Experimental procedure to assess the impact of debloating a library on the clients
that use a subset of its functionalities.

original version of the library. We check that the library is covered by at least one
test of the client. If this is true, we replace the library with the debloated version
and execute the test suite again. If the test suite behaves the same as with the
original library, we conclude that JDBL is able to preserve the functionalities that
are relevant for the clients.

Building a sound dataset of clients that execute the libraries is challenging. To
ensure the validity of this protocol, we perform additional checks on the clients. All
the clients have to use at least one of the debloated libraries. We only consider the
clients that either have a direct reference to the debloated library in their source
code or which test suite covers at least one class of the library (static or dynamic
usage). The clients that statically use the library serve as the study subjects for
the syntactic assessment. The clients that have at least a test that reaches the
debloated library serve as the study subjects for the semantic assessment.

3.4.5 Key insights

We perform the largest empirical validation of Java debloating in the literature
involving 354 libraries and 1,354 clients that use these libraries. We evaluate JDBL
based on an original experimental protocol that assesses the impact of coverage-
based debloating on the libraries behavior, their size, as well as on their clients.
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Our results indicate that JDBL can reduce 68.3% of the bytecode size and that
211 (69.9%) debloated libraries still compile and preserve their original behaviour
according to the tests.

We evaluate the usefulness of debloated libraries with respect to their client
applications. Our findings reveal that 81.5% of the clients can successfully compile
and execute their test suites when replacing the corresponding dependency with a
debloated version of the library. These results demonstrate that the combination
of multiple coverage tools is effective in accurately capturing the code utilized at
runtime, ultimately showcasing the practicality of debloated libraries for client
applications.

Summary of Contribution #3

We propose a novel coverage-based debloating technique for Java applications.
This technique addresses one key challenge of debloating techniques based on
dynamic analysis: gathering precise and comprehensive coverage information
that comprises the minimal set of classes and methods required to execute a
program under a given workload. We conducted the most extensive empir-
ical validation of the applicability of a software debloating technique in the
literature, involving 354 libraries and 1,354 client applications. Our results
provide evidence of the massive presence of code bloat in those libraries and
the usefulness of our techniques to mitigate this phenomenon.

This contribution is presented in Research Paper IV [4].

3.5 Contribution #4: Reproducible Research

Reproducible research stands as a vital cornerstone of the scientific endeavor.
It plays an essential role in ensuring the validity and reliability of the research
findings. Given its importance, our fourth contribution focuses on the tools and
datasets that are part of the contributions of this thesis. These resources are of
utmost importance as they enable other researchers to reproduce the findings and
conclusions of our studies, validate the results, and build upon our work in future
research endeavors. By providing open access to the datasets and tools used, we
aim to promote transparency, accountability, and reproducibility for the best of
science.
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3.5.1 Software tools

Contributions C1, C2, and C3 in this thesis encompass a software tool engineered
to implement their respective debloating techniques In the following, discuss the
technical challenges associated with each tool, emphasizing their roles in fostering
reproducible research and advancing the field of software debloating in Java.

DEPCLEAN

DEPCLEAN is implemented in Java as a Maven plugin that extends the maven-
dependency-analyzer [163], which is actively maintained by the Maven team
and officially supported by the Apache Software Foundation. For the construc-
tion of the dependency tree, DEPCLEAN relies on the copy-dependencies and
tree goals of the maven-dependency-plugin. Internally, DEPCLEAN relies on the
ASM [164] library to visit all the class files of the compiled projects in order to
register bytecode calls towards classes, methods, fields, and annotations among
MAVEN artifacts and their dependencies. For example, it captures all the dynamic
invocations created from class literals by parsing the bytecodes in the constant
pool of the classes. DEPCLEAN defines a customized parser that reads entries
in the constant pool of the class files directly, in case it contains special refer-
ences that ASM does not support. This allows the plugin to statically capture
reflection calls that are based on string literals and concatenations. Compared to
maven-dependency-analyzer, DEPCLEAN adds the unique features of detecting
transitive and inherited bloated dependencies, and producing a debloated version
of the pom.xml file.

DEPCLEAN is open-source and reusable from Maven Central. DEPCLEAN is a
well-established project that adheres to sound engineering principles such CI/CD,
static analysis to ensure high code quality, and rigorous unit and integration
testing. it has been used to remove bloated dependencies in both open-source
and close-source projects, as well as for research purposes [40, 50, 165, 3].
As per January 2023, DEPCLEAN has 3.2K lines of Java code, 394 commits, 12
contributors, and 155 stars [166] on GitHub. We have done 9 releases to integrate
feedback from users and evolve with the new features of Java and MAVEN (e.g.,
to achieve compatibility with Java records and other MAVEN plugins). Its source
code is available at https://github.com/castor-software/depclean.

DEPTRIM

DEPTRIM is implemented in Java as a MAVEN plugin that can be integrated into a
project as part of the build pipeline, or be executed directly from the command

68

https://github.com/castor-software/depclean


3.5. CONTRIBUTION #4: REPRODUCIBLE RESEARCH

line. This design facilitates its integration as part of the projects’ CI/CD pipeline,
leading to specialized binaries for deployment. At its core, DEPTRIM reuses
the state-of-the-art static analysis of DEPCLEAN, located in the depclean-core
module. DEPTRIM adds unique features to this core static Java analyzer by
modifying the bytecode within dependencies based on usage information gathered
at compilation time, which is different from the complete removal of unused
dependencies performed by DEPCLEAN. It uses the ASM Java bytecode analysis
library to build a static call graph of class files of the compiled projects and their
dependencies. The call graph registers usage towards classes, methods, fields, and
annotations. For the deployment of the specialized dependencies, DEPTRIM relies
on the deploy-file goal of the official maven-deploy-plugin from the Apache
Software Foundation. For dependency analysis and manipulation, DEPTRIM relies
on the maven-dependency-plugin. DEPTRIM provides dedicated parameters to
target or exclude specific dependencies for specialization, using their identifier
and scope.

DEPTRIM is open-source and reusable from Maven Central. As per Jan-
uary 2023, DEPTRIM has 1.1K lines of code Java code, 119 commits, and 3

contributors. Its source code is publicly available at https://github.com/castor-
software/deptrim.

JDBL

The core implementation of JDBL consists in the orchestration of mature code
coverage tools and bytecode transformation techniques. The coverage-based
debloating algorithm is integrated into the different MAVEN building phases.
JDBL gathers direct and transitive dependencies by using the official maven-
dependency-plugin with the copy-dependencies goal. This allows JDBL to
manipulate the project’s classpath in order to extend code coverage tools at the
level of dependencies. As with DEPCLEAN and DEPTRIM, we rely on ASM [164] a
lightweight, and mature Java bytecode manipulation and analysis framework for
the bytecode analysis, the detection of bloated classes, and the whole bytecode
removal phase. The instrumentation of methods and the insertion of probes for
usage collection are performed by integrating JACOCO, JCOV, YAJTA, and the JVM
class loader within the MAVEN build pipeline.

JDBL is implemented as a multi-module MAVEN project with a total of 5.0K
lines of code written in Java. JDBL is designed to debloat single-module Maven
projects. It can be used as a MAVEN plugin that executes during the MAVEN

package phase. Thus, JDBL is designed with usability in mind: it can be easily
invoked within the MAVEN build life-cycle and executed automatically, no ad-
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Table 3.1: Reproducible datasets for each of the appended research papers.

RESEARCH PAPER DATASET URL ON GITHUB

I https://github.com/cesarsotovalero/msr-2019

II https://github.com/castor-software/depclean-experiments

III https://github.com/castor-software/longitudinal-bloat

IV https://github.com/castor-software/jdbl-experiments

V https://github.com/chains-project/ethereum-ssc

VI https://github.com/castor-software/deptrim-experiments

ditional configuration or further intervention from the user is needed. To use
JDBL, developers only need to add the MAVEN plugin within the build tags of
the pom.xml file. The source code of JDBL is publicly available on GitHub, with
binaries published in Maven Central. More information on JDBL is available at
https://github.com/castor-software/jdbl.

3.5.2 Reproducible datasets

All research papers in this thesis include a reproducible dataset specifically de-
signed for transparent and reliable research. Table 3.1 shows the URL on GitHub
of the companion dataset for each research paper. The datasets comprise a diverse
range of technologies employed for data collection, analysis, and manipulation
(e.g.. Shell scripts, Java artifacts, R and Python notebooks, Docker containers, CSV
files, and JSON files). These datasets allow other researchers to independently
verify the results obtained. It also enables the development of new methods and
techniques that can be applied to the same dataset.

In addition to the datasets that come with each research paper, the author of
this thesis contributed to making available two additional datasets in the Data
Showcase track of the Proceedings of the IEEE/ACM International Conference on
Mining Software Repositories:

• The Maven Dependency Graph: a Temporal Graph–Based Representation of
Maven Central [8].

• DUETS: A Dataset of Reproducible Pairs of Java Library–Clients [13].

These datasets play a valuable role in promoting reproducible research in the
field of Java dependency analysis. The technical challenges and benefits of both
datasets for the contribution of this thesis are discussed below.

70

https://github.com/cesarsotovalero/msr-2019
https://github.com/castor-software/depclean-experiments
https://github.com/castor-software/longitudinal-bloat
https://github.com/castor-software/jdbl-experiments
https://github.com/chains-project/ethereum-ssc
https://github.com/castor-software/deptrim-experiments
https://github.com/castor-software/jdbl


3.5. CONTRIBUTION #4: REPRODUCIBLE RESEARCH

MDG

The Maven Dependency Graph (MDG) is a graph-oriented open-source dataset
that characterizes the artifacts present in Maven Central and their associated
dependency relationships. It represents a snapshot of the Maven Central Repository
from September 6, 2018. The MDG is implemented as a Neo4j graph database and
contains a total of 2.4M artifacts and 9.7M dependency relationships among them.
The MDG aims at enabling the Software Engineering community to conduct large-
scale empirical studies on Maven Central. The dataset is accessible on Zenodo at
https://zenodo.org/record/1489120.

The author of this thesis contributed to the creation of this dataset, including
engaging in discussions leading to its technical implementation and development.
The dataset has found utility in the author’s Research Papers I [1] and II [2].
Furthermore, the dataset has been effectively reused by other researchers [14,
167, 168, 169].

DUETS

The DUETS dataset consists of a collection of single-module Java libraries, which
build can be successfully reproduced with MAVEN (i.e., all the test pass and a
compiled artifact is produced as a result of the build), and Java clients that use
those libraries. DUETS includes 94 different libraries, with a total of 395 versions, as
well as 2,874 clients. The construction of this dataset involved filtering 147K Java
projects and analyzing 34K pom.xml files in order to identify relevant libraries and
clients that reuse version of these libraries. We take a special care to build a dataset
for which we ensure that both the library and the clients have a passing test suite.
The dataset is accessible on Zenodo at https://zenodo.org/record/4723387.

The contributions in this thesis involve executing software tools on compilable
and testable software projects, which we provide with DUETS. We use the DUETS

dataset for the evaluation of debloating techniques that rely on both static and
dynamic analysis. The dataset has found utility in the author’s Research Papers
III [3], IV [4], and VI [6]. Furthermore, the dataset has been effectively reused
by other researchers seeking to explore the effects of API changes on clients of
various libraries [170, 171].
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Summary of Contribution #4

We contribute three new open-source research tools to the field of debloating
Java dependencies: DEPCLEAN, DEPTRIM, and JDBL. Each research paper
contributes experimental data and makes the results open. By sharing our
datasets and making this information widely accessible, we aim to facilitate
collaboration and knowledge sharing within the scientific community. Further-
more, we contribute two large Data Showcase datasets of Java dependencies.
Moreover, our contributions include two extensive Data Showcase datasets
of Java dependencies, which are essential for researchers and practitioners
seeking to explore various aspects of software engineering. These datasets
have been meticulously curated and pre-processed to ensure their quality and
usability, and we hope that they will be valuable resources for the community
for years to come. By following these reproducible research principles, we aim
to foster collaboration and trust in the scientific community and to advance
the field of software debloating.

This contribution is present in Research Papers I [1], II [2], III [3], IV [4],
V [5], and VI [6].

3.6 Summary

In this chapter, we presented and discussed the contributions of this thesis. First,
we elucidated the terminology and concepts of dependency management in the
MAVEN ecosystem. Further, we described the technical challenges pertaining
to debloating which were targeted in each of our contributions, namely bloat
detection, bloat removal, and debloat assessment.

The first contribution focuses on removing bloated dependencies. We found
that 75% of the dependency relationships in Maven Central are bloated, and
that developers are willing to remove bloated dependencies: we removed 140

bloated dependencies via merged pull requests in mature Java projects. The
second contribution focuses on specializing the remaining used dependencies in
the dependency tree of Java projects. We focus on reducing the share of third-
party classes across the dependencies. Our technique removes 47.0% of classes
in 30 projects, reducing the project classes to dependency classes ratio from 8.7

× to 4.4 × . The third contribution is centered around the process of debloating
Java libraries by removing features that are actually not used at runtime by their
clients. We found that 81.5% of the clients were able to successfully compile and
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execute their test suite using the debloated library. The fourth contribution focuses
on the technical challenges addressed by the three new open-source research
tools that contributed to the field of debloating in this thesis and describe the
two large datasets of Java dependencies employed in our research studies. We
made our research tools and results openly accessible and reproducible, aiming to
foster collaboration in the scientific community and advance the field of software
debloating.
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Chapter 4

Conclusions and Future Work

“Lättare sagt än gjort.”
— svenskt ordspråk

GIVEN the ever-increasing complexity of software systems, the research field
of software debloating is still in its early stages of development, with many
challenges and opportunities for further investigations. In this chapter,

we summarize the results of the three key technical contributions presented in
this thesis: removing bloated dependencies, specializing used dependencies, and
debloating w.r.t. clients. Moreover, we offer an author’s reflection on the particular
challenges encountered when conducting research in the field of empirical software
engineering. Finally, we discuss promising avenues for future studies and highlight
the current challenges that should be overcome in order to facilitate the progress
and adoption of software debloating techniques.

4.1 Key Experimental Results

In this thesis, we have focused on the design and implementation of software
debloating techniques in the context of Java dependencies. We propose various
techniques to address the following research problems: 1) the increasing practice
of software reuse leading to the emergence of bloated dependencies in the Java
ecosystem; 2) the existence of a large amount of bloated code in used dependen-
cies; and 3) the lack of knowledge regarding the impact of debloating libraries for
their clients. Our technical contributions are organized into three parts to target
these three problems.

First, we focus on addressing the problem of dependency bloat in the MAVEN

ecosystem We create the concept of “bloated dependencies” and propose an ap-
proach to detect and remove these dependencies. We implement this approach in
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a practical software tool called DEPCLEAN [2]. We use DEPCLEAN to empirically
study the pervasiveness of dependency bloat in the MAVEN ecosystem. Our results
reveal that 2.7% of directly declared dependencies, 15.4% of inherited dependen-
cies, and 57% of transitive dependencies are bloated. Our longitudinal analysis of
bloated dependencies shows that the usage status of such dependencies do not
change over time [3], and that developers are willing to remove bloated depen-
dencies when notified, as evidenced by the removal of 140 bloated dependencies
in 30 open-source projects. Beyond academic recognition, DEPCLEAN has received
positive feedback from developers for its ability to detect bloated dependencies in
a variety of real-world projects. Overall, our experimental results highlight the
importance of analyzing, maintaining, and testing configuration files and other
software artifacts related to the management of third-party dependencies (e.g.,
pom.xml files).

Second, we focus on the dependencies that are partially used by MAVEN

projects. We propose a novel technique called “dependency specialization” to
reduce the amount of third-party code in Java projects based on their actual
usage [6]. We implement this dependency specialization technique in a tool called
DEPTRIM, which automatically identifies the necessary subset of functionalities
for each dependency and removes the rest, resulting in repackaged specialized
dependencies. We use DEPTRIM to evaluate the effectiveness of our technique on
30 mature Java projects. Our results show that DEPTRIM successfully specializes
86.6% of the dependencies in the projects without affecting its build, while
dividing by two the amount of third-party code. Overall, our findings suggest that
the specialization of dependencies is an effective approach to significantly reduce
the share of third-party code in Java projects.

Third, we focus on investigating how debloating Java libraries impacts the
clients of these libraries. We propose a novel technique for debloating, which
we call “coverage-based debloating”, that leverages code coverage information
collected at runtime to detect and remove code bloat [4]. We implement this
approach in a software tool called JDBL which relies on a combination of state-of-
the-art Java bytecode coverage tools to precisely capture what parts of a project
and its dependencies are used when running with a specific workload. With
this information, JDBL automatically removes the parts that are not covered, in
order to generate a debloated version of the project. We use JDBL to debloat 211
Java libraries in order to determine the ability of this technique at capturing the
behaviors that are relevant for the clients of the debloated libraries The debloated
versions are syntactically correct and preserve their original behavior according
to the workload. We evaluate thi debloating approach on client projects that
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either have a direct reference to the debloated library in their source code or
which test suite covers at least one class of the libraries that we debloat. Our
results show that 81.5% of the clients, with at least one test that uses the library,
successfully compile and pass their test suite when the original library is replaced
by its debloated version. This result constitutes the first empirical demonstration
that debloating can preserve essential functionalities to successfully compile the
clients of debloated libraries.

4.2 Reflections on Empirical Software Engineering Research

Empirical software engineering is a fascinating research field that encompasses the
collection, analysis, and interpretation of data to improve software development
practices [76]. The inherent complexities of software development, coupled with
the challenges of collecting and analyzing large amounts of human and computer-
generated data, make empirical software engineering research a challenging field.
Throughout our contributions, we have embraced these challenges and have
striven to address and overcome each of them as they arose.

One of the primary challenges has been finding useful datasets of software
artifacts for our empirical experiments on debloating [172]. Collecting data of
software development projects for this purpose is a daunting task, as it requires
access to various software artifacts such as source code, build configuration files,
and third-party dependencies [173]. Additionally, researchers must ensure that
the data has been ethically collected, and is accurate, complete, and relevant
to their research questions [174]. For instance, we investigated to what extent
the number of bloated dependencies increases over time in software projects. To
collect relevant data, we need to analyze a large number of open-source repos-
itories of Java projects that are representative of the dependency management
process in the MAVEN ecosystem and analyze their dependency trees over time at
different releases. We encountered this task challenging as many repositories are
out of date [175] and some dependencies cannot be resolved (e.g., such as those
dependencies that are hosted in private repositories and become inaccessible to the
research community). However, we hope that leveraging new tools, such as bots
to automate pull requests [176] will encourage developers to update dependencies
and maintain their projects in an up-to-date state [177]. To further promote repro-
ducibility in our research and support the broader software engineering community,
we have invested significant effort in curating high-quality datasets of software
artifacts that are readily available for other researchers to use. In this same spirit,
the software engineering community has been actively promoting reproducible
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research by offering publicly accessible datasets via the Data Showcase track at the
International Conference on Mining Software Repositories (MSR). This initiative aims
to encourage the sharing of high-quality datasets for software engineering research
purposes. We are proud to have contributed to this effort throughout this thesis.

Another challenge of empirical software engineering research is finding sound
metrics to evaluate the proposed tools and techniques [178, 179, 180]. When
conducting our debloating experiments, we had to identify metrics that are valid
and reliable for measuring the effectiveness of our proposed debloating techniques.
For instance, in the case of our empirical evaluation of the debloating results of
JDBL, our experiments focus on measuring the amount of code bloat removed
in the debloated libraries at three different code granularity levels: methods,
classes, and dependencies. However, we notice that most previous works in
software debloating do not consider the code removed in third-party dependencies.
Therefore, we had to assume that counting the number of completely removed
third-party dependencies is a reasonable choice in this case. Overall, finding
appropriate metrics in software engineering can be challenging, as some metrics
may not exist previously and for those that already exist, it could be difficult to
accurately use them in the context of some specific experiment. We hope that
our original metrics will become beneficial to the research community exploring
software debloating techniques.

One more challenge we have encountered is establishing a fair and realistic
comparison of our techniques with other existing tools in the field. Research
tools are often not available or the research experiments conducted are not
reproducible [181]. For example, we encountered difficulties in finding available
software debloating tools, as some are closed-source or no longer accessible. Upon
contacting the authors of some existing tools, we faced challenges in executing
them correctly due to specific configuration requirements. Additionally, certain
experiments are designed for specific research environments, which complicates
the process of comparing them in diverse contexts. In this regard, the use of
Docker containers has been widely recognized as an effective way to promote
reproducibility in scientific research [182]. Docker provides a self-contained
environment that can be easily shared and replicated across different computing
platforms. In order to contribute to this ongoing effort and foster a culture of
reproducibility within the research community, we have made our software tools
(DEPCLEAN, DEPTRIM, and JDBL) publicly available and reusable, providing an
opportunity for other researchers to easily build upon our work and perform fair
comparisons in future studies.

Last but not least, we have learned after working on tens of thousands of

78



4.3. FUTURE WORK

open-source projects that it is hard to build and execute software in general [183].
This can be a challenging and time-consuming process, especially for large projects
containing millions of lines of code and thousands of dependencies. For instance,
while conducting our experiments on the software supply chain of the Ethereum
Java clients Besu and Teku [5], we embraced the opportunities presented by
their significant engineering complexity to further enhance our understanding
of complex software systems (e.g., at that moment, Besu was composed of 41
internal modules, containing 355 unique third-party dependencies provided by
165 distinct supplying organizations). Through our experience, we notice that
studying projects with well-defined CI/CD pipelines can greatly simplify the build-
ing process, thereby saving time and effort for researchers that would otherwise
be spent on manual configuration and integration. Moreover, sometimes when we
were building and executing the software multiple times to collect sufficient data
we found nondeterministic behaviors (e.g., flaky tests [184], Heisenbugs [185], or
non-atomic operations [186]). We believe that the existence of those engineering
challenges when building and executing real-world software represents fundamen-
tal opportunities that contribute to the vibrant and dynamic nature of empirical
software engineering research.

In summary, empirical software engineering research provides answers to the
fundamental questions about the practice of software development. It is a thriving
research field that holds promise for advancing our understanding of software
development practices and improving the quality of software products [187].
Throughout our research journey, we have successfully tackled various challenges,
including gathering valuable datasets, identifying suitable metrics, comparing our
work w.r.t. other research tools, and building and executing software projects from
public repositories on GitHub. These challenges, which are commonly encountered
by researchers in the field, have served as opportunities for us to enhance the
quality of our research and draw more impactful conclusions. As such, it is
imperative that our community remain aware of these existing challenges and
continue working to mitigate them through more careful planning and execution
of their research projects, ultimately promoting reproducible science. We believe
that research on empirical software engineering will remain a vital and enduring
research field for years to come.

4.3 Future Work

Software debloating is an important area of research that has the potential to
significantly improve the performance and reliability of software applications. Our
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research has shown that there exist open challenges in improving the effectiveness
of debloating. In this section, we discuss potential research directions on top of
our contributions.

4.3.1 Neural debloating

The overall research goal of software debloating is to facilitate the adoption
and integration of automatic software debloating techniques in the industry to
improve software. An interesting direction for future work in this field is to explore
the use of advanced Machine Learning methods to enhance the effectiveness of
debloating. Promising seminal efforts in this direction have already been made
employing Reinforcement Learning [99]. We consider promising the use of Deep
Learning algorithms to learn patterns of code execution in order to detect and
predict the emergence of code bloat. By leveraging the capabilities of these
algorithms, debloating techniques can potentially achieve a higher degree of
precision and promptness in identifying and removing code that is not necessary
for the software’s functionality.

One possible research direction towards incorporating advanced Machine
Learning methods into software debloating would be to use Convolutional Neural
Networks (CNN) and Neural Machine Translation (NMT) networks to facilitate
feature extraction and representation of code execution patterns. These neural
network architectures have proven to be effective in various software engineering
tasks, including code generation from textual program descriptions [188] and
automatic program repair [189]. Additionally, reinforcement learning algorithms,
such as Q-learning or Deep Q-Networks (DQN), could be employed to train agents
capable of making optimal decisions during the debloating process [190]. We
believe that the combination of cutting-edge Machine Learning techniques holds
immense potential to revolutionize software debloating, ultimately leading to
leaner, more efficient, and secure software systems that can benefit the entire
software engineering community.

The preservation of software functionality after the debloating process is a
complex challenge that lies at the heart of software debloating [49]. This challenge
is particularly daunting when attempting to identify and remove code that appears
to be unused but is actually necessary for the proper functioning of the application.
By leveraging advanced Machine Learning techniques, researches can potentially
improve the accuracy of identifying truly necessary code, thereby preserving
the intended behavior of the debloated artifacts. On the other hand, current
debloating approaches rely on static analysis techniques, which face the intractable
problem of accurately determining whether a given piece of code is actually
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necessary for the correct execution of the software application. Moreover, some
debloating techniques may inadvertently introduce new bugs or vulnerabilities,
which necessitates a thorough evaluation of the debloating process. By harnessing
the capabilities of Machine Learning, we hope that innovative techniques will be
developed in order to accurately identify and preserve the necessary behavior of
the application, ultimately addressing this critical area of research in the field of
software debloating.

To evaluate such a technique, an experiment could be designed in which
a dataset of software projects with known code bloat issues is collected. The
new neural debloating approach would be applied to these projects, and the
results be compared against traditional debloating methods (such as the code
analysis techniques contributed in this thesis), as well as with the results obtained
using the reinforcement learning approach by Heo et al. [99]. Evaluation metrics
could include the amount of code bloat removed, the accuracy of the debloating
decisions, and the impact on software functionality, as assessed by successfully
passing the test suite. The ultimate goal is to apply and evaluate these debloating
techniques in real-world production environments. This experiment would provide
valuable insights into the effectiveness of advanced Machine Learning methods
for software debloating and help establish the potential of these techniques in
addressing uncovered future issues associated with the existence of code bloat.

4.3.2 Debloating across the whole software stack

Exploring debloating software across the entire software stack is a vital area for fu-
ture research, as it can significantly improve the efficiency and security of software
systems [36]. A promising direction involves focusing on software components
within the Java Development Kit (JDK), which serves as a foundational part of
numerous Java-based applications. Despite its importance, the JDK contains
several features that are rarely used and therefore add unnecessary code bloat
to the running applications. For instance, the CORBA (Common Object Request
Broker Architecture) module, which facilitates communication between objects
in a distributed system, is currently included in many JDK distributions even
though most modern applications have transitioned to alternative technologies
like RESTful web services or gRPC for distributed computing. In the case of
DEPCLEAN, it imports the entire package java.util.zip from the JDK, yet it
only uses classes ZipEntry and ZipFile for performing JAR file manipulations,
and the other classes from this package, such as classes Deflater and Inflater
for general purpose compression constitute bloat for DEPCLEAN. Although the
Java community has made substantial efforts in providing tools like jdeps to help
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identify which packages are actually used by an application, there is still a lack of
fully automatic tools to effectively debloat Java software. To address this issue,
future research efforts could focus on identifying and removing these unused
features from the JDK, thereby reducing the overall size of the software stack and
improving its performance.

Debloating an entire software stack, such as the JVM, JDK, and the OS layer
running on top of modern containers, is a complex yet crucial endeavor because it
involves carefully analyzing, maintaining, and testing not only the application code
but also its dependencies and the underlying runtime environment. To accomplish
this, a holistic approach is required, which considers debloating at every layer of
the stack. One of the main challenges for future research on full-stack debloating
is that dependencies and features often interact in non-trivial ways, making it
difficult to determine which components can be safely removed without affecting
the overall functionality. To tackle this challenge, researchers could develop
sophisticated debloating techniques that combine static and dynamic analysis,
along with Machine Learning, to identify and remove bloat at different levels
(e.g., through the analysis of system calls). For instance, a debloating approach
could begin by analyzing the JDK and JVM layers, identifying rarely used or
obsolete modules and components. Following this, the debloating process could be
extended to the application and container layers, focusing on the dependencies and
features specific to the frameworks used, e.g. Spring Boot or Quarkus. Throughout
the process, the future debloating techniques will ensure the preservation of
software functionality by carefully evaluating the potential impact of each code
removal on the overall system’s behavior.

The results of our studies stress the need to engineer, i.e., analyze, maintain,
and test dependency configuration files to avoid software bloat at a higher level
of the software stack. Debloating modern frameworks that contain many bloated
dependencies, such as the aforementioned Spring Boot and Quarkus, is another
important area for future research. These frameworks are designed to simplify the
development process by providing pre-built features and dependencies that can be
easily integrated into applications. However, this convenience comes at the cost of
bloated dependencies and unnecessary features that can slow down application
performance and increase the risk of security vulnerabilities. To address this issue,
future research could focus on developing more efficient and streamlined versions
of these frameworks that remove unnecessary dependencies and features, while
still maintaining the core functionality that developers appreciate. By doing so,
tailored frameworks can help to reduce the overall bloat of the software stack and
improve the efficiency and security of software in production environments.
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4.4 Summary

In this section, we presented the key results for each of our technical contributions.
We discussed how our debloating approaches help to cope with the increasing
complexity of software systems. Additionally, we reflected on the challenges
encountered while conducting empirical software engineering research, offering
valuable insights on the opportunities for future work. As we continue to identify
promising research directions for further studies in this field, it is essential to con-
front and overcome the existing challenges in order to promote the development
and adoption of effective software debloating techniques, ultimately contributing
to developing better software systems.
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