
AUTOMATED
SOFTWARE
DEBLOAT

Speaker: César Soto Valero
Supervisor: Benoit Baudry
Co-supervisors: Martin Monperrus, Thomas Durieux

50% SEMINAR

AGENDA

2

AGENDA

1. INTRODUCTION AND STATE-OF-THE-ART

2

AGENDA

1. INTRODUCTION AND STATE-OF-THE-ART
2. CONTRIBUTIONS

I. Detecting and removing bloated dependencies
II. Longitudinal analysis of bloated dependencies
III. Trace-based debloat for Java bytecode

2

AGENDA

1. INTRODUCTION AND STATE-OF-THE-ART
2. CONTRIBUTIONS

I. Detecting and removing bloated dependencies
II. Longitudinal analysis of bloated dependencies
III. Trace-based debloat for Java bytecode

3. SUMMARY AND FUTURE WORK

2

AGENDA

1. INTRODUCTION AND STATE-OF-THE-ART
2. CONTRIBUTIONS

I. Detecting and removing bloated dependencies
II. Longitudinal analysis of bloated dependencies
III. Trace-based debloat for Java bytecode

3. SUMMARY AND FUTURE WORK
4. PHD PROGRESS

2

AGENDA

1. INTRODUCTION AND STATE-OF-THE-ART
2. CONTRIBUTIONS

I. Detecting and removing bloated dependencies
II. Longitudinal analysis of bloated dependencies
III. Trace-based debloat for Java bytecode

3. SUMMARY AND FUTURE WORK
4. PHD PROGRESS
5. Q&A

2

“ Software tends to
grow over time,
whether or not
there's a need
for it.

3Holzmann, G. J. (2015). Code inflation. IEEE Software, 32 (2).

“ Software tends to
grow over time,
whether or not
there's a need
for it.

3Holzmann, G. J. (2015). Code inflation. IEEE Software, 32 (2).

THE HISTORY OF THE true COMMAND

1979

$ ls –l /bin/true
-rwxr-xr-x 1 root root 0 Jan 10 1979 /bin/true

4Holzmann, G. J. (2015). Code inflation. IEEE Software, 32 (2).

THE HISTORY OF THE true COMMAND

1984

$ ls –l /bin/true
-rwxr-xr-x 1 root root 276 May 14 1984 /bin/true

5Holzmann, G. J. (2015). Code inflation. IEEE Software, 32 (2).

THE HISTORY OF THE true COMMAND

2010

$ ls –l /bin/true
-rwxr-xr-x 1 root root 8377 Sep 10 2010 /bin/true

6Holzmann, G. J. (2015). Code inflation. IEEE Software, 32 (2).

THE HISTORY OF THE true COMMAND

TODAY

$ type true
true is a shell builtin

7Holzmann, G. J. (2015). Code inflation. IEEE Software, 32 (2).

8Size (in bytes) of the true command

Holzmann, G. J. (2015). Code inflation. IEEE Software, 32 (2).

18

8 377

1

10

100

1000

10000

1979 1983 2010 Today

0 ?

SOFTWARE
BLOAT
Code that is packaged in an application
but that is not necessary for building and
running the application.

9

IT IS A
PROBLEM

For size
For security
For maintenance
For performance 10

11

UN
SO

UN
D SOUN

D

DOMAIN SPECIFIC

GENERIC
STATE-OF-THE-ART MATRIX

Jiang et. al., JRed: Program Customization and Bloatware Mitigation [COMSAC’16] 11

UN
SO

UN
D SOUN

D

DOMAIN SPECIFIC

GENERIC
STATE-OF-THE-ART MATRIX

JRed

12Quian et. al., RAZOR: A Framework for Post-deployment Software Debloating [USENIX’19]

STATE-OF-THE-ART MATRIX

RAZOR
JRed

UN
SO

UN
D SOUN

D

DOMAIN SPECIFIC

GENERIC

13

JShrink

Bruce et. al., JShrink: In-depth Investigation into Debloating Modern Java Applications [FSE’20]

STATE-OF-THE-ART MATRIX

RAZOR
JRed

UN
SO

UN
D SOUN

D

DOMAIN SPECIFIC

GENERIC

14THIS WORK!

STATE-OF-THE-ART MATRIX

RAZOR
JRed

UN
SO

UN
D SOUN

D

DOMAIN SPECIFIC

GENERIC

JShrink

14THIS WORK!

STATE-OF-THE-ART MATRIX

RAZOR
JRed

UN
SO

UN
D SOUN

D

DOMAIN SPECIFIC

GENERIC

Static + dynamic
analysis

Java

JShrink

1st CONTRIBUTION
DepClean: Automatically detecting and removing

bloated dependencies in Maven projects

16

OVERVIEW

16

OVERVIEW

P

16

OVERVIEW

P

<dependency>
<groupId>org.A</groupId>
<artifactId>A</artifactId>

</dependency>
<dependency>

<groupId>org.B</groupId>
<artifactId>B</artifactId>

</dependency>
<dependency>

<groupId>org.C</groupId>
<artifactId>C</artifactId>

</dependency>

16

OVERVIEW

P

16

OVERVIEW

P

A B C

16

OVERVIEW

Direct dependencies

P

A B C

16

OVERVIEW

P

A B C

16

OVERVIEW

P

A B C

D E F

16

OVERVIEW

Transitive dependencies

P

A B C

D E F

16

OVERVIEW

P

A B C

D E F

16

OVERVIEW

P

A B C

D E F

Q

16

OVERVIEW

P

A B C

D E F

Q

<parent>
<groupId>org.Q</groupId>
<artifactId>Q</artifactId>

</parent>

16

OVERVIEW

P

A B C

D E F

Q

16

OVERVIEW

P

A B C

D E F

Q

G

16

OVERVIEW

Inherited dependencyP

A B C

D E F

Q

G

16

OVERVIEW

Transitive dependencies

Inherited dependency

Direct dependencies

P

A B C

D E F

Q

G

17

PROBLEM

P

A B C

D E F

Q

G

17

PROBLEM

P

A B C

D E F

Q

G

18

PROBLEM

P

A

D F

19

PROBLEM

19

PROBLEM

20

DEPCLEAN TOOL

https://github.com/castor-software/depclean

https://github.com/castor-software/depclean

20

DEPCLEAN TOOL

Uses advanced static
bytecode analysis to
detect and remove
bloated dependencies

https://github.com/castor-software/depclean

https://github.com/castor-software/depclean

20

DEPCLEAN TOOL

Uses advanced static
bytecode analysis to
detect and remove
bloated dependencies
Automatic generation of
a debloated POM file

https://github.com/castor-software/depclean

https://github.com/castor-software/depclean

20

DEPCLEAN TOOL

Uses advanced static
bytecode analysis to
detect and remove
bloated dependencies
Automatic generation of
a debloated POM file
Maven plugin easy to
integrate in a CI pipeline

https://github.com/castor-software/depclean

https://github.com/castor-software/depclean

Example: maven-core project (v3.7.0) 21

https://github.com/castor-software/depclean-web

https://github.com/castor-software/depclean-web

Example: maven-core project (v3.7.0) 22

https://github.com/castor-software/depclean-web

https://github.com/castor-software/depclean-web

HOW MUCH DEPENDENCY BLOAT EXISTS?

23

HOW MUCH DEPENDENCY BLOAT EXISTS?

23

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Direct Inherited Transitive

D
ep
en
de
nc
ie
s

Bloated Used

9K artifacts and 723K dependencies

HOW MUCH DEPENDENCY BLOAT EXISTS?

23

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Direct Inherited Transitive

D
ep
en
de
nc
ie
s

Bloated Used

9K artifacts and 723K dependencies

q 2.7% of direct
dependencies are bloated

q 15.1% of inherited
dependencies are bloated

q 57% of transitive
dependencies are bloated

ARE DEVOPERS WILLING TO REMOVE BLOAT?

24

ARE DEVOPERS WILLING TO REMOVE BLOAT?

24

USER STUDY ON 30 PROJECTS
• Jenkins
• Neo4j
• Flink
• Spoon
• Checkstyle
• CoreNLP
• jHiccup
• Alluxio
• TeaVM

… Full list: https://tinyurl.com/depclean-experiments

https://tinyurl.com/depclean-experiments

ARE DEVOPERS WILLING TO REMOVE BLOAT?

25

21 (70%)

5 (17%)

4 (13%)

Accepted & Merged Rejected NA

30 pull requests in 30 notable open source projects

ARE DEVOPERS WILLING TO REMOVE BLOAT?

25

Removed 140 bloated
dependencies in 21
projects thanks to
DepClean

21 (70%)

5 (17%)

4 (13%)

Accepted & Merged Rejected NA

30 pull requests in 30 notable open source projects

SUMMARY OF 1st CONTRIBUTION

26

SUMMARY OF 1st CONTRIBUTION

§ There is a lot of code bloat in Maven Central
• Caused by the induced transitive dependencies
• Caused by the heritage mechanism of multi-module projects
• Caused by software development practices

26

SUMMARY OF 1st CONTRIBUTION

§ There is a lot of code bloat in Maven Central
• Caused by the induced transitive dependencies
• Caused by the heritage mechanism of multi-module projects
• Caused by software development practices

§ Software developers care
• They are willing to remove bloated dependencies

26

SUMMARY OF 1st CONTRIBUTION

§ There is a lot of code bloat in Maven Central
• Caused by the induced transitive dependencies
• Caused by the heritage mechanism of multi-module projects
• Caused by software development practices

§ Software developers care
• They are willing to remove bloated dependencies

§ DepClean
• It is useful to automatically detect and remove bloated

dependencies
26

2nd CONTRIBUTION
Longitudinal Analysis of Bloated Java Dependencies

28

PROBLEM

28

PROBLEM

Time

SOFTWARE EVOLVES OVER TIME

28

PROBLEM

P

Time

v1

SOFTWARE EVOLVES OVER TIME

29

PROBLEM

P

A B

P

Time

v1 v2

SOFTWARE EVOLVES OVER TIME

30

PROBLEM

P

A B

C D

P

A B

P

Time

v1 v2 v3

SOFTWARE EVOLVES OVER TIME

31

PROBLEM

P

A B

C D

P

A B

P

Time

v1 v2 v3 v4

P

A B

C D

SOFTWARE EVOLVES OVER TIME

HOW DOES THE USAGE STATUS EVOLVES?

32

HOW DOES THE USAGE STATUS EVOLVES?

32

HOW DOES THE USAGE STATUS EVOLVES?

32

HOW DOES THE USAGE STATUS EVOLVES?

33

HOW DOES THE USAGE STATUS EVOLVES?

34

HOW DOES THE USAGE STATUS EVOLVES?

35

HOW DOES THE USAGE STATUS EVOLVES?

36

HOW DOES THE USAGE STATUS EVOLVES?

37

HOW DOES THE USAGE STATUS EVOLVES?

37

HOW DOES THE USAGE STATUS EVOLVES?

37

HOW DOES THE USAGE STATUS EVOLVES?

38

HOW DOES THE USAGE STATUS EVOLVES?

38

DO DEVELOPERS UPDATE BLOATED DEPENDENCIES?

39

DO DEVELOPERS UPDATE BLOATED DEPENDENCIES?

39

DO DEVELOPERS UPDATE BLOATED DEPENDENCIES?

39

DO DEVELOPERS UPDATE BLOATED DEPENDENCIES?

40

DO DEVELOPERS UPDATE BLOATED DEPENDENCIES?

40

SUMMARY OF 2nd CONTRIBUTION

41

SUMMARY OF 2nd CONTRIBUTION

§ The usage status of dependencies is mostly constant over
time
• It is safe to debloat dependencies (> 90% of dependencies do not

change)

41

SUMMARY OF 2nd CONTRIBUTION

§ The usage status of dependencies is mostly constant over
time
• It is safe to debloat dependencies (> 90% of dependencies do not

change)

§ Developers often update bloated dependencies
• An unnecessary maintenance effort due to the lack of tools

41

SUMMARY OF 2nd CONTRIBUTION

§ The usage status of dependencies is mostly constant over
time
• It is safe to debloat dependencies (> 90% of dependencies do not

change)

§ Developers often update bloated dependencies
• An unnecessary maintenance effort due to the lack of tools

§ Some dependency updates are suggested by Dependabot
• First empirical evidence of false alarms related to dependency

management caused by bots
41

3rd CONTRIBUTION
JDBL: Trace-based Debloat for Java Bytecode

43

PROBLEM

P

A B C

D E F

Q

G

44

PROBLEM

P

A

D F

Input

45

PROBLEM

Input

46

PROBLEM

47

PROBLEM

P

48

PROBLEM

Input

49

JDBL TOOL

https://github.com/castor-software/jdbl

https://github.com/castor-software/jdbl

49

JDBL TOOL

Relies on dynamic
analysis to collect
execution traces at
runtime

https://github.com/castor-software/jdbl

https://github.com/castor-software/jdbl

49

JDBL TOOL

Relies on dynamic
analysis to collect
execution traces at
runtime
Automatically remove
unused classes and
methods

https://github.com/castor-software/jdbl

https://github.com/castor-software/jdbl

49

JDBL TOOL

Relies on dynamic
analysis to collect
execution traces at
runtime
Automatically remove
unused classes and
methods
Package the debloated
application

https://github.com/castor-software/jdbl

https://github.com/castor-software/jdbl

APPROACH

50

JDBL

APPROACH

50

Project

Workload

Input

JDBL

APPROACH

50

Project

Workload
Trace

1

Input

JDBL

APPROACH

50

Project

Workload
Trace Remove

1 2

Input

JDBL

APPROACH

50

Project

Workload
Trace Remove Validate

1 2 3

Input

JDBL

APPROACH

50

Project

Workload
Trace Remove Validate

1 2 3
JAR

Input
Output

JDBL

CAN JDBL DEBLOAT AUTOMATICALLY?

51

CAN JDBL DEBLOAT AUTOMATICALLY?

51

IS THE BEHAVIOUR PRESERVED?

52

IS THE BEHAVIOUR PRESERVED?

52

WHAT IS THE BENEFIT?

53

WHAT IS THE BENEFIT?

53

ARE THE CLIENTS AFFECTED?

54

ARE THE CLIENTS AFFECTED?

54

SUMMARY OF 3rd CONTRIBUTION

55

SUMMARY OF 3rd CONTRIBUTION

§ Trace-based debloat is doable
• > 78% successfully debloated libraries

55

SUMMARY OF 3rd CONTRIBUTION

§ Trace-based debloat is doable
• > 78% successfully debloated libraries

§ Debloated libraries preserve the original behaviour
• > 70% libraries are not affected

55

SUMMARY OF 3rd CONTRIBUTION

§ Trace-based debloat is doable
• > 78% successfully debloated libraries

§ Debloated libraries preserve the original behaviour
• > 70% libraries are not affected

§ Debloated libraries are
• > 50% smaller than the original

55

SUMMARY OF 3rd CONTRIBUTION

§ Trace-based debloat is doable
• > 78% successfully debloated libraries

§ Debloated libraries preserve the original behaviour
• > 70% libraries are not affected

§ Debloated libraries are
• > 50% smaller than the original

§ Library clients preserve the original behaviour
• > 80% clients are not affected

55

LESSONS LEARNED

LESSONS LEARNED

57

LESSONS LEARNED

§ Debloat is hard in practice
• Determining what is actually used is not trivial
• Static + Dynamic analysis may help

57

LESSONS LEARNED

§ Debloat is hard in practice
• Determining what is actually used is not trivial
• Static + Dynamic analysis may help

§ Debloat is relevant
• Package ecosystems are bloated

• Developers are willing to debloat software
• More tools are needed for this purpose

57

FUTURE WORK

58

FUTURE WORK

§ End-to-end software debloat

58

FUTURE WORK

§ End-to-end software debloat
§ Debloat containers

58

FUTURE WORK

§ End-to-end software debloat
§ Debloat containers
§ Debloat specific features

58

FUTURE WORK

§ End-to-end software debloat
§ Debloat containers
§ Debloat specific features
§ Debloat test suites

58

PHD PROGRESS

PAPERS DIRECTLY RELATED

1. César Soto-Valero, Thomas Durieux, Nicolas Harrand, Benoit Baudry. Trace-based
Debloat for Java Bytecode [Submitted to TSE]

2. César Soto-Valero, Thomas Durieux, Benoit Baudry. A Longitudinal Analysis of
Bloated Java Dependencies [Submitted to FSE]

3. Thomas Durieux, César Soto-Valero, Benoit Baudry. DUETS: A Dataset of
Reproducible Pairs of Java Library-Clients [MSR’21]

4. César Soto-Valero, Nicolas Harrand, Martin Monperrus, Benoit Baudry. A
Comprehensive Study of Bloated Dependencies in the Maven Ecosystem [EMSE’20]

5. César Soto-Valero, Amine Benelallam, Nicolas Harrand, Olivier Barais, Benoit Baudry.
The Emergence of Software Diversity in Maven Central [MSR’19]

60

Full list: https://www.cesarsotovalero.net/publications

https://arxiv.org/abs/2008.08401
TODO
https://arxiv.org/pdf/2103.09672.pdf
https://arxiv.org/abs/2001.07808
https://dl.acm.org/doi/10.1109/MSR.2019.00059
https://www.cesarsotovalero.net/publications

OTHER PAPERS

1. Nicolas Harrand, Amine Benelallam, César Soto-Valero, Olivier Barais, Benoit Baudry. Analyzing 2.3 Million
Maven Dependencies to Reveal an Essential Core in APIs [Submitted to JSS]

2. Gustaf Halvardsson, Johanna Peterson, César Soto-Valero, Benoit Baudry. Interpretation of Swedish Sign
Language using Convolutional Neural Networks and Transfer Learning [SNCS’21]

3. Nicolas Harrand, César Soto-Valero, Martin Monperrus, Benoit Baudry. Java Decompiler Diversity and its
Application to Meta-decompilation [JSS’20]

4. Raúl Reina, David Barbado, César Soto-Valero, José M. Sarabia and Alba Roldán. Evaluation of the Bilateral
Function in Para-athletes with Spastic Hemiplegia: a Model-based Clustering Approach [JSAMS’20]

5. Amine Benelallam, Nicolas Harrand, César Soto-Valero, Benoit Baudry, Olivier Barais. The Maven
Dependency Graph: a Temporal Graph-based Representation of Maven Central [MSR’19]

6. Nicolas Harrand, César Soto-Valero, Martin Monperrus, Benoit Baudry. The Strengths and Behavioral
Quirks of Java Bytecode Decompilers [SCAM’19]

7. César Soto-Valero, Miguel Pic. Assessing the Causal Impact of the 3-point Per Victory Scoring System in
the Competitive Balance of LaLiga [IJCSS’19]

8. César Soto-Valero, Yohan Bourcier, Benoit Baudry. Detection and Analysis of Behavioral T-patterns in
Debugging Activities [MSR’18] 61

Full list: https://www.cesarsotovalero.net/publications

https://arxiv.org/abs/2010.07827
https://www.sciencedirect.com/science/article/pii/S0164121220301151
https://www.sciencedirect.com/science/article/pii/S1440244019306620
https://dl.acm.org/doi/10.1109/MSR.2019.00060
https://ieeexplore.ieee.org/document/8930870
https://content.sciendo.com/view/journals/ijcss/18/3/article-p69.xml
https://ieeexplore-ieee-org.focus.lib.kth.se/document/8595192
https://www.cesarsotovalero.net/publications

TEACHER ASSISTANT

1. DD2482 Automated Software Testing and DevOps, worked with Martin Monperrus & Benoit Baudry at KTH,
Spring 2021

2. WASP Software Engineering and Cloud Computing, worked with Martin Monperrus & Benoit Baudry at KTH,
Spring 2021

3. DD2480 Software Engineering Fundamentals, worked with Cyrille Artho at KTH, Spring 2021

4. DD1369 Software Engineering in Project Form, worked with Dena Hussain at KTH, Fall 2020

5. DD2460 Software Safety and Security, worked with Cyrille Artho at KTH, Spring 2020

6. DD2482 Automated Software Testing and DevOps, worked with Martin Monperrus & Benoit Baudry at KTH,
Spring 2020

7. DM1590 Machine Learning for Media Technology, worked with Bob Sturm at KTH, Spring 2020

8. DA2210 Introduction to the Philosophy of Science and Research Methodology for Computer Scientists,
worked with Linda Kann at KTH, Fall 2019

9. WASP Software Engineering and Cloud Computing, worked with Martin Monperrus & Benoit Baudry at KTH,
Spring 2019

10. ID2211 Data Mining, Basic Course, worked with Sarunas Girdzijauskas at KTH, Spring 2019 62

Full list: https://www.cesarsotovalero.net/service

https://www.kth.se/student/kurser/kurs/DD2482
https://www.monperrus.net/martin
https://softwarediversity.eu/
https://wasp-sweden.org/graduate-school/courses/software-engineering-and-cloud-computing
https://www.monperrus.net/martin
https://softwarediversity.eu/
https://www.kth.se/student/kurser/kurs/DD2480?l=en
https://www.kth.se/profile/artho
https://www.kth.se/social/course/DD1369/
https://www.kth.se/profile/denah/
https://www.kth.se/social/course/DD2460
https://www.kth.se/profile/artho
https://www.kth.se/student/kurser/kurs/DD2482
https://www.monperrus.net/martin
https://softwarediversity.eu/
https://www.kth.se/student/kurser/kurs/DM1590
http://www.eecs.qmul.ac.uk/~sturm/
https://www.kth.se/social/course/DA2210
http://www.csc.kth.se/~lk
https://wasp-sweden.org/graduate-school/courses/software-engineering-and-cloud-computing
https://www.monperrus.net/martin
https://softwarediversity.eu/
https://www.kth.se/student/kurser/kurs/ID2211?l=en
https://scholar-google-se.focus.lib.kth.se/citations?user=mhqpsO4AAAAJ&hl=en
https://www.cesarsotovalero.net/service

63

63

57 CREDITS
10 courses completed

63

57 CREDITS
10 courses completed

3 SUPERVISIONS
2 BSc + 1 MSc

63

8 PAPERS REVIEWED
3 as primary reviewer + 5 as sub-reviewer

57 CREDITS
10 courses completed

3 SUPERVISIONS
2 BSc + 1 MSc

63

8 PAPERS REVIEWED
3 as primary reviewer + 5 as sub-reviewer

57 CREDITS
10 courses completed

99 CITATIONS
Slow and steady wins the race

3 SUPERVISIONS
2 BSc + 1 MSc

64

64

3 PROJECTS
DepAnalyzer + DepClean + JDBL

64

3 PROJECTS
DepAnalyzer + DepClean + JDBL

10+ TRIPS
4 Countries

64

3 PROJECTS
DepAnalyzer + DepClean + JDBL

10+ TRIPS
4 Countries

64

3 PROJECTS
DepAnalyzer + DepClean + JDBL

50+ MERGED PRs
Still low, more to come!

10+ TRIPS
4 Countries

64

3 PROJECTS
DepAnalyzer + DepClean + JDBL

50+ MERGED PRs
Still low, more to come!

10+ TRIPS
4 Countries

12 PRESENTATIONS
e.g., SL, FOSDEM’21

1 BABY
The greatest challenge!

65

66

THANKS!
Any questions?
You can find me at:

cesarsv@kth.se
https://www.cesarsotovalero.net

mailto:cesarsv@kth.se
https://www.cesarsotovalero.net/

